用户名: 密码: 验证码:
鼠李糖脂生物表面活性剂对石油烃污染物生物降解影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境中广泛存在的石油烃污染物对人体健康和生态系统的安全构成了很大威胁。生物修复因其经济有效而成为一种最有发展潜力的治理石油烃污染的技术。但石油烃污染物生物可利用性低是限制其生物降解的主要因素。添加表面活性剂是提高其生物可利用性的一个有效方法。表面活性剂能够增大疏水性有机物在水相中的溶解度从而增加传质速率和生物可利用性。但化学合成的表面活性剂本身有毒且难于降解,使其在石油污染生物治理中的应用受到限制。生物表面活性剂具有无毒且易于降解等特性,这使其在石油烃污染的生物治理中具有广泛的应用前景。
     本论文考察了鼠李糖脂生物表面活性剂及其产生菌对石油烃污染物生物可利用性和生物降解的影响。主要研究结果可归纳如下:
     1.筛选出生物表面活性剂高产菌并对该菌株所产表面活性剂的结构和理化性质进行了系统研究。
     (1) 从含油废水中筛选出生物表面活性剂产生菌O-2-2,依据其生长形态及生理生化特征鉴定为铜绿假单胞菌(Pseudomonas aeruginosa)。利用薄层层析(TLC)、红外光谱(FT-IR)及气质联用(GC-MS)等手段分析表明该菌株所产生物表面活性剂为鼠李糖脂混合物。
     (2) 采用单次单因子法,确定菌株O-2-2产鼠李糖脂的适宜培养基组成和适宜培养条件。结果表明该菌株产鼠李糖脂的适宜培养基组成为(g/L):花生油80.0,NaNO_310.0,NaCl 1.1,KH_2PO_4 2.0,K_2HPO_4 5.0,MgSO_4·7H_2O 0.2,CaCl_2 0.01,FeSO_4.7H_2O 0.01,pH 7.0。该菌株产鼠李糖脂的适宜培养条件为:温度32℃,摇床转速200r/min。在此条件下培养108h,鼠李糖脂的产率达19.34g/L。
     (3) 利用高效液相色谱/电喷雾离子化质谱仪分离并鉴定了菌株O-2-2以花生油为碳源所产生物表面活性剂的组分。结果表明该生物表面活性剂中共含有21种鼠李糖脂的同系物,都由1~2分子的鼠李糖和1-2个含β-羟基的碳链长度为8~12的饱和或不饱和脂肪酸构成。
The hydrocarbon contamination of the environment is a serious threat to the health of human and ecosystem. Bioremediation has performed a great promise as a potentially effective and low-cost treatment option of hydrocarbon contamination. However, the low bioavailability of hydrocarbons leads to their slow biodegradation. An option to enhance the bioavailability of hydrocarbons is to add surfactants. Surfactants could increase the aqueous concentration of hydrophobic compounds resulting in higher mass transfer rate and bioavailability. But the use of synthetic surfactants in bio-treatment processes has been rather limited due to their toxicity and non-biodegradation. Biosurfactants have the advantages of being readily biodegradable and non-toxic compared to chemically produced surfactants which makes them more valuable in hydrocarbon biodegradation.In this study, biosurfactant and biosurfactant-producing microorganisms were investigated for their potential in enhancing bioavailiability and biodegradation of hydrocarbon. The main results were summarized as follows:Ⅰ. A strain which could highly produce biosurfactant was screened. The structure and physico-chemical properties of the biosurfactant produced by the strain were also studied intensively.1. A surfactant-producing bacterium, named as O-2-2, was screened from oil-producing wastewater and identified as Pseudomonas aeruginosa based on its morphological and physiological characteristics. The results of TLC, FT-IR and GC-MS showed that the biosurfactant produced by the strain O-2-2 was a rhamnolipid mixture.2. The optimal medium components and growth conditions for rhamnolipid production by the strain O-2-2 were studied using "one-variable-at-a-time" method. The results showed that the optimal medium for rhamnolipid production by this strain was 80.0 g/L peanut,
    10.0 g/L NaNO3, 2.0 g/L KH2PO4, 5.0 g/L K2HPO4, 0.2 g/L MgSO4-7H2O, 0.01 g/L CaCl2, 0.01 g/L FeSO4-7H2O, pH 7.0. The optimal cultivation conditions were observed at 32 °C and with 200 r/min. Under such conditions, the yield of rhamnolipid was as high as 19.34 g/L within 108 h.3. High pressure liquid chromatography/mass spectrometry using electrospray ionizationwas first used to analyze the components of rhamnolipid biosurfactant. 21 rhamnolipid homologs from the biosurfactant mixture produced by the strain 0-2-2 with peanut oil as carbon source were isolated and identified. The rhamnolipid homologs are formed by one or two rhamnose molecules linked to one or two /Miydroxy fatty acids of saturated or unsaturated alkyl chain between Cg and Cn-4. The critical micelle concentration of the biosurfactant is 70.5 mg/L. Its surface tension,interface tension (against n-hexadecane) and hydrophile-lipophile balance are 28.6 raN/m, 1.0 mN/m and 11.2, respectively. The biosurfactant can keep its surface activity at high temperature, in high-salinity solution and in a wide pH range of 5.5-14.0. Moreover, the biosurfactant possesses a high emulsifying activity to many kinds of hydrophobic organic substance, such as liquid paraffin, diesel oil and toluene.5. The solubilities of naphthalene, phenanthrene and pyrene increase linearly with rhamnolipid biosurfactant dose when the surfactant concentration is above CMC. The molar solubilization ratio (MSR) values decrease with increasing solute size and the micelle-phase/aqueous-phase partition coefficient (KmjC) values increase with the increasing hydrophobicity of PAHs. The phenanthrene solubility in rhamnolipid solution increases with the increase of temperature and salinity and reaches maximum at pH value of 5.5.II. The effect of rhamnolipid on biodegradation of alkane by P. earuginosa PS-1 was investigated. The biodegradation of n-hexadecane increased with obviously in the precence of the rhamnolipid. As viewed from the interactions between pollutant, hydrocarbon-degrading microorganisms and biosurfactant, the mechanisms of biosurfactant-enhanced biodegradation of hydrophobic hydrocarbon were intensively
    investigated. There are three mechanisms by which rhamnolipid biosurfactant enhanced the bioavailability of alkane. First, rhamnolipid can emulsify large oil droplets to small ones, therefore increasing substrate-water interfacial area and creating more opportunity for direct contract between cells and substrate. Second, rhamnolipid can promote alkane uptake through solubilization of hydrocarbon in micelles, which facilitates alkane into the cell through amphiphatic channel. Third, rhamnolipid can cause the cell surface to become more hydrophobic, which can increase the association of the cell with alkane substrate. In this study, the probable mechanism of the enhanced hydrophobicity of cell surface was concluded, which showed that biosurfactant can induce lipopolysacchalide to release from the cell surface by dissolution or complexation.III. The influence of rhamnolipid and sodium dodecyl sulfonate (SDS) on the phenanthrene biodegradation by Pseudomonas putida S-10-3 in aqueous and sediment slurry was studied. The artifically fresh-contaminated sediment and aged-contaminated one were used to determine the effect of aging process on bioremediation.1. Both rhamnolipid and SDS at high doses (above effective critical micelle concentration, CMCeff) can greatly enhance the desorption of sediment-sorbed phenanthrene, and rhamnolipid is more effective than SDS.2. The results of biodegradation experiments indicate that the biodegradation of phenanthrene depends on both the type of surfactants and their concentrations. During phenanthrene biodegradation, rhamnolipid was degraded by P. putida S-10-3 simultaneously, but SDS was not. Within optimal concentrations range of rhamnolipid, the biodegradation rate was enhanced with the increase of surfactant dose. There are two possible reasons, one is that rhamnolipid increase the solubility of phenanthrene and its bioavailability; the other is that the rhamnolipid may serve as cometabolic substance to increase biomass and promote the degradation rate of phenanthrene. However, with much higher dosage of rhamnolipid, the microorganisms might preferentially metabolize the biosurfactant and the phenanthrene biodegradation was inhibited. When amended with much higher of SDS, phenanthrene biodegradation was also inhibited because of
    the limited mass transfer of phenanthrene from micelle into water.3. With addition of surfactants into sediment slurry, the mass transfer of phenanthrene from sediment-sorbed phase to aqueous phase increased, resulting in the enhancement of phenanthrene biodegradation. On the other hand, aging process significantly decreased the desorption and biodegradation rate of pollutant.IV. The effects of adding biosurfactant and inoculating biosurfactant-producing strain to the petroleum hydrocarbons biodegradation were investigated.1. The addition of rhamnolipid increased the biodegradation extent of total petroleum hydrocarbon from 35.7% to 57.6% within 20 days. The biodegradation rates of both saturate and aromatic fractions were enhanced.2. Biosurfactant-producing strain 0-2-2 could utilize saturate fractions of crude oil and excrete rhamnolipid biosurfactant, resulting in a higher biodegradation of total petroleum hydrocarbon. Co-inoculating biosurfactant-producing strain could enhance the biodegradation of saturate fractions greatly, but decrease that of aromatic fractions, which indicated that there might be competition between biosurfactant-producing strain and the hydrocarbon-degrading consortia.
引文
1. Abalos, A., Pinazo, A., Infante, M. R., Casals, M., Garcy a, F., Manresa, A.. Physicochemical and Antimicrobial Properties of New Rhamnolipids Produced by Pseudomonas aeruginosa AT 10 from soybean oil refinery wastes. Langmuir, 2001, 17:1367-1371.
    2. Abu-Ruwaida, A. S., Banat, I. M., Hadeterto, S. and Khamis, A.. Nutritional Requirements and Growth Characteristics of a Biosurfactant Producing Rhodococcus Bacterium. World Journal of Microbiology and Biotechnology, 1991, 7: 53-61.
    3. Acquaviva, M., Bertrand, J. C., Gilewicz, M.. Effect of a synthetic surfactant on phenantherene and n-eicosane utilization by two pure marine strains grown separately in batch cultures with or without sand particles. World Journal of Microbiology and Biotechnology, 2001, 17: 481-485.
    4. Adria, A. B., Miller, R. M.. Application of a modified drop-collapse technique for surfaetant quantitation & screening of biosurfactant-producing microorganisms. Journal of Microbiological Methods, 1998, 32: 273-280.
    5. Al-Daher, R., Al-Awadhi, N., El-Nawawy, A. Bioremediation ofdarnaged desert environment using the windrow soil pile system in Kuwait. Environment International, 1998, 24:175-180.
    6. Aldrett, S., Bonner, J. S., Mills, M. A.. Microbial degradation of crude oil in marine environments tested in a flask experiment. Water Research, 1997, 31(11): 2840-2848.
    7. Allen, C. C. R., Boyd, D. R., Hempenstall, F., Larkin, M. J., Sharma, N. D.. Contrasting effects of a nonionic surfactant on the biotransformation of PAHs to cis-dihydrodiols by soil bacteria. Applied and Environmental Microbiology, 1999, 65: 1335-1339.
    8. Altas, R. M. and Bartha, R.. Inhibition by fatty acids of the biodegradation of petroleum. Antonie van Leeuwenhoek Journal of Microbiological Serol. 1973, 39:257-271.
    9. An, Y. J., Carryway, E. R. and Schlautman, M. A.. Solubilization of polycyclic aromatic hydrocarbons by perfluorinated surfactant micelles. Water Research, 2002, 36: 300-308.
    10. Arino, S., Marchal, R. and Vandecasteele, J. P.. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Applied Microbiology and Biotechnology, 1996, 45: 162-168.
    11. Aronstein, B. N. and Alexander, M.. Effect of a nonionic surfactant added to the soil surface on the biodegradation of aromatic hydrocarbons within the soil. Applied Microbiology and Biotechnology, 1993,39:386-397.
    12. Aronstein, B. N., Cavillo, Y., Alexender, M.. Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environmental Science and Technology, 1991,25:1728-1731.
    13. Atlas, R.M.. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological Review, 1981, 45: 180-209.
    14. Atlas, R. M., Bartha, R.. Degradation and mineralization of petroleum in seawater: limitation by nitrogen and phosphorus. Biotechnology and Bioengineering, 1972, 14: 309-317.
    15. Autry, A. R., Ellis, G M.. Bioremediation: An effective remedial alternative for petroleum hydrocarbon-contaminated soil. Environmental Progress, 1992,11(4): 318-323.
    16. Awashti, N., Kumar, A., Makkar, R., Cameotra, S.. Enhanced biodegradation of endosulfan, a chlorinated pesticide in presence of a biosurfactant. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 1999,34:793-803.
    17. Bai, G Y., Brusseau, M. L. and Miller, R. M.. Biosurfactant enhanced removal of residual hydrocarbons from soil. Journal of Contaminant Hydrology, 1997,25: 157-170.
    18. Bai, G Y., Brusseau, M. L., Miller, R. M.. Influence of cation type, ionic strength, and pH on solubilization and mobilization of residual hydrocarbon by a biosurfactant. Journal of Contaminant Hydrology, 1998,30:265-279.
    19. Banat, I. M., Makkar, R. S., Cameotra, S. S.. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 2000, 53(5): 495-508.
    20. Banat, I. M., Samarah, N., Murad, M.. Biosurfactants production and use in oil tank clear-up. World Journal of Microbiology and Biotechnology, 1991, 7: 80-84.
    21. Banat, I. M.. Biosurfactants production and possible use in microbial enhanced oil recovery and oil pollution remediation microbial enhanced oil recovery and oil pollution remediation: a review. Biorecource Technology, 1995, 51: 1-12.
    22. Banat, I. M.. The isolation of a thermophilic biosurfactant producing Bacillus sp.. Biotechnology Letters, 1993, 15:591-594.
    23. Barkay, T., Navon-Venezia, S., Ron, E., Rosenberg, E.. Enhancement of solubilization and biodegradation of polycyclic aromatic hydrocarbons by the bioemulsifier Alasan. Applied and Environmental Microbiology, 1999, 65: 2697-2702.
    24. Baron, S. S. and Rowe, J. J.. Anitibiotic action of pyrocyanine. Antimicrobial Agents and Chemotherapy, 1981 20: 814-842.
    25. Benincasa, M., Contiero, J. and Manresa, M. A.. Rhamnolipid production by Pseudomonas aeruginosa LB1 growing on soapstock as the sole carbon source. Journal of Food Engineering, 2002, 54: 283-288.
    26. Benka-Coker, M.O.. Applicability of evaluating the ability of microbes isolated from and oil spill site to degrade oil. Environmental Monitoring and Assessment, 1997, 45: 259-272.
    27. Berg, G, Seech, A., Lee, H., Trevors, J.. Identification and characterization of bacterium with emulsifying activity. Journal of Environmental Science and Health, 1990,7: 753-764.
    28. Bognolo, G. Biosurfactants as emulsifying agents for hydrocarbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999,152(2): 41-52.
    29. Boopathy, R.. Factors limiting bioremediation technologies. Bioresource Technology, 2000, 74: 63-67.
    30. Bosma, T. N., Middledorp, P. J. M., Schraa, G. and Zehnder, A. J. B.. Mass transfer limitation of biotransformation: quantifying bioavailability. Environmental Science and Technology, 1997, 31: 248-252.
    31. Bramwell, D. A. P., Laha, S.. Effects of surfactant addition on the biomineralization and microbial toxicity of phenanthrene. Biodegradation, 2000,11:263-277.
    32. Bruheium, P., Bredholt, H., Eimhjellen, K.. Bacterial degradation of emulsified crude oil and the effect of various surfactants. Canadian Journal of Microbiology, 1997,43:17-22.
    33. Bruns, A and Berth-Corti L.. Fundibacter jadensis gen. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. International Journal of Systematic Bacteriology, 1999, 49: 441-448.
    34. Cerniglia, C. E.. Biodegradation of polycylic aromatic hydrocarbons. Biodegradation, 1992, 3: 351-368.
    35. Chaineau, C.H., J.L. Morel and J. Oudot. Microbial degradation in soil microorganisms of fuel oil hydrocarbons from drilling cuttings. Environmental. Science and Technology. 29: 1615-1621.
    36. Champion, J. T., Gilery, J. C, Lamparski, H. Petterer, J and Miller, R. M.. Electron microscopy of rhamnolipid (biosurfactant) morphology: effect of pH, cadmium, and octadecane. Journal of Colloid Interface Science, 1995, 170: 569-574.
    37. Chapman, P.J., M. Shelton, M Grifoll, and S. Selifonov. 1995. Fossil fuel biodegradation:
     laboratory studies. Environmental Health Perspective, 1995, 103: 79-83.
    38. Chiou, C.T., Malcalm, R.L., Brinton, T.I. and Kile, D.E. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environment Science and Technology, 1986, 20: 502-508.
    39. Christofi, N. and Ivshina, I. B.. Microbial surfactants and their use in field studies of soil remediation. Journal of Applied Microbiology, 2002, 93(6): 915-929.
    40. Chung, N. and Alexander, M.. Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere, 2002, 48: 109-115.
    41. Churchill, P., Dudley, R. and Churchill, S. A.. Surfactant-enhanced bioremediation. Waste Management, 1995,15: 371-377.
    42. Coates, J. D., Woodward, J. and Allen, J.. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbour sediments. Applied and Environmental Microbiology, 1997,9:3589-3593.
    43. Cooper, D. G, Zajic, J. E. and Gerson, D. F., Production of surface-active lipids by Corynebacterium lepus. Applied and Environmental Microbiology, 1979, 37: 4-10.
    44. Copper, D. G, Macdonald, C. R., Duff, S. J. B. and Kosaric, N.. Enhanced production of surfactin from Bacillus subllis by continuous product removel and metal cation additions. Applied and Environmental Microbiology, 1981,42:408-412.
    45. Croft, B. C. Effect of bioremediation agents on oil biodegradation in medium-fine sand. Applied Bioremediation of Petroleum Hydrocarbons, Battelle Press, 1995, 6(3):423-434.
    46. Cassidy, D.P. and Hudak, AJ.. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. Journal of Hazardous Materials, 2001, 84(B): 253-264.
    47. Davis, D.A., Lynch, H.C., and Varley, J.. The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 cultures. Enzyme and Microbial Technology, 2001, 28: 346-354.
    48. Dean, S.M., Jin, Y., Cha, D.K., Wilson, S.V. and Radosevich M.. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. Journal Environmental Quality, 2001, 30: 1126-1133.
    49. Desai, J. D and Banat, I. M.. Microbiol production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 1997, 3: 47-64.
    50. Deschenes, L., Lafrance, P., Villeneuve, J. P. and Samson, R.. The impact of a biological and
     chemical anionic surfactants on the biodegradation and solubilization of PAHs in a creosote contaminated soil. Presented at the Fourth Annual Symposium on Groundwater and Soil Remediation (Calgary Alta), 1994. 21-23.
    51. Deschenes, L., Lafrance, P., Villeneuve, J., Samson, R.. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Applied Microbiology and Biotechnology, 1996,46:638-646.
    52. Deschens, L., Lafrance, P., Villeneuve, J. P. and Sanmson, R.. The effect of an anionic surfactant on the mobilization and biodegradation of PAHs in a creosote-contaminated soil. Hydrological Sciences Journal, 1995,40:471-484.
    53. Deziel, E., Paquette, G.., Villemur, R., Lepine, F... Biosurfactant Production by a Soil Pseudomonas Strain Growing on Polycyclic Aromatic Hydrocarbons. Applied and Environmental Microbiology, 1996,62:1908-1912.
    54. Dibble, J. T., and R. Bartha. The effect of environmental parameters on the biodegradation of oily sludge. Applied and Environmental Microbiology, 1979, 37:729-739.
    55. Dineen, D., Slater, J.P., Hicks, P., Holland, J. and L.D.. Clendening. In situ biological remediation of petroleum hydrocarbons in unsaturated soils. In Petroleum Contaminated Soils, Volume 3. Lewis Publishers, Chesea, MI. 1990. p: 177-187.
    56. Doong, R. A., Lei, W. G... Suluilization and mineraliztion of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. Journal of Hazardous Materials, 2003, 96(B): 15-27.
    57. Dubey, K., Juwarkar, A.. Distillery and curd whey wastes as viable alternatives sources for biosurfactant production. World Journal of Microbiology and Biotechnology, 2001,17(1): 61-69.
    58. Duncan, K., Jennings, E., Hettenbachs.. Nitrogen cycling and nitric oxide emissions in oil impacted prairie soils. Bioremediation Journal, 1998, 11(3): 195-208.
    59. Duvnjak, Z., Kosaric, N.. Production and release of surfactant by Corynebacterium lepus in hydrocarbon and glucose media. Biotechnology Letters, 1985, 7: 793-796.
    60. Edwards, D. A., Luthy, R. G. and Liu, Z.. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environmental Science and Technology, 1991, 25: 127-133.
    61. Efroymson,R.A.and Alexander,M..Environmental Science and Technology, 1994,28: 1172-1179.
    62. Ellis, B., Harol, P. and Kronberg, H.. Bioremediation of a creosote contaminated land. Environmental Technology, 1991, 11: 443-455.
    63. Fry, I. X, Chakrabarty, A. M., DeFrank J. J., Proc. 1992 CRDEC Science Conf. on Chemical Defense, Edgewood, Maryland, USA, 1993, 362-367.
    64. Grimberg, S. J., Aitken, M. D.. Biodegradation kinetics of phenanthrene solubilized in surfactant micelles. Microbial Processes for Bioremediation, 1995, 59-66.
    65. Grimberg, S. J., Nagel, J. and Aitken, M. D.. Kinetics of phenanthrene dissolution into water in the presence of nonionic surfactants. Environmental Science and Technology, 1995, 29: 1480-1487.
    66. Grimberg, S. J., Stringfellow, W. T. and Aitken, M. D.. Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Applied and Environmental Microbiology, 1996,62: 2387-2392.
    67. Groser, R. J., Warshewsky, D., Robie, V. J.. Indigenous and enhanced mineralization of pyrene, benzo(a)pyrene and carbazole in soil. Applied and Environmental Microbiology, 1991, 57: 3462-3469.
    68. Gruber, K., Sleytr, U. B.. Influence of an S-layer on surface properties of Bacillus stearothermophilus. Archives of Microbiology, 1991, 180: 101-105.
    69. Guerin, W. F., Boyd, S. A.. Differential bioavailability of soil-sorbed naphthalene for two bacterial species. Applied and Environmental Microbiology, 1992,58:1142-1152.
    70. Guerra-Santos, L. H., Kappeli, O., Fiechter, A.. Dependence of P.aeruginosa continuous culture biosurfactant productuin on nutritional and environmental factors. Applied Mirobiology and Biotechnology, 1986,24:443-448.
    71. Guha, S., Jaffe, P., Peters, C. Solubilization of PAH mixtures by a nonionic surfactant. Environmental Science and Technology, 1998, 32: 930-935.
    72. Guha, S., Jaffe, P.. Biodegradation kinetics of phenanthrene partitioned into the micellar phase of non-ionic surfactants. Environmental Science and Technology, 1996,30:605-611.
    73. Gupta, R. K., James, K., Smith, F. J.. Sucrose esters and sucrose ester/glyceride blends as emulsifiers. Journal of the American Oil Chemists' Society ,1983: 60(4): 862-869.
    74. Haba, E., Espuny, M. J., Busquets, M. and Manresa, A.. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Journal of Applied Microbiology, 2000, 88: 379-387.
    75. Harvey, S., Elashvili, L., Valdes, J.. Enchanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Bioresource Technology, 1990, 8: 228-230.
    76. Hatzinger, P. B., Alexander, M. Effect of ageing of chemicals in soil on their biodegradability and extractability. Environmental Science and Technology, 1995, 29: 537-545.
    77. Hayes, M. E., Nestaas, E., Hrebenar, K. R.. Microbial surfactants. Chemtech, 1986, 4: 239-243.
    78. Head, I. M., Swannell, R. P. J.. Bioremidiation of petroleum hydrocarbon contaminants in marine habitats. Current Opinion in Biotechnology, 1999, 10: 234-239.
    79. Helenius, A. and Simons, K.. Solubilization of membranes by detergents. Biochimica et Biophysica Acta, 1975, 415: 29-79.
    80. Henderson, S. B., Grigson, S. J. W., Johnson, P.. Potential Impact of Production Chemicals on the Toxicity of Produced Water Discharges from North Sea Oil Platforms. Marine Pollution Bulletin, 1999,38(12): 1141-1151.
    81. Herman, D. C, Artiola, J. F., Miller, R. M.. Removel of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environmental Science and Technology, 1995,29: 2280-2285.
    82. Hommel, R. K.. Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Bioremediation, 1990, 1: 107-119.
    83. Hua, Z. H., Chen, J., Lun, S. Y, Wang, X. R.. Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Research, 2003,37(17): 4143-4150.
    84. Hurt, K., Borazani, H., Diehl, S.V.. Biopiling creosone contaminated oil. Studies in Enviromental Science. 1997, 66: 617-687.
    85. Itoh, S. and Suzuki, T.. Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agricultural and Biological Chemistry, 1972, 36: 2233-2235.
    86. Itoh, S. and Suzuki, T.. Fructose-lipids of Arthrobacter, Corynebacteria, Nocardia and Mycobacteria grown on fructose. Agricultural and Biological Chemistry, 1974, 38: 1443-1449.
    87. Itoh, S., Tomita, F., Suzuki, T. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. Journal of Antibiotics, 1971, 14: 855-859.
    88. Ivshina, I. B., Kuyukina, M. S., Philp, J. C. and Christofi, N.. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World Journal of Microbiology and Biotechnology, 1998, 14: 711-717.
    89. Jahan, K., Ahmed, T., Maier, W. J.. Factors affecting the nonionic surfactant-enhanced biodegradation of phenanthrene. Water Environment Research, 1997(a), 69: 317-325.
    90. Jahan, K., Ahmed, T., Maier, W. J.. Phenanthrene mineralization in soil in the presence of nonionic surfactants. Toxicological and Environmental Chemistry, 1997(b), 64: 127-143.
    91. Jain, D. K., Lee, H. and Trevors, J. T.. Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. Journal of Industrial Microbiology, 1992, 10: 87-93.
    92. Jain, D.K., Collins-Thompson, D.L. and Lee, H.. A drop-collapse test for screening surfactant-producing microorganisms. Journal of Microbiological Methods, 1991, 13: 271-279.
    93. Javaheri, G E., Jenneman, G. E., Mcinnerney, M. J.. Anacrobic production of a biosurfactants by Baccillus licheniformis JF-2. Applied and Environmental Microbiology, 1995, 50: 698-700.
    94. Jee, V., Beckles, D. M., Ward, C. H. and Hughers.. Aerobic slurry reactor treatment of phenanthrene contaminated sediment. Water Research, 1998,32(4): 1231-1239.
    95. Jones, W.R. Practical applications of marine bioremediation. Current opinion in biotechnology, 1998,9:300-304.
    96. Jordan, R. N., Nichols, E. P. and Cunningham, A. B.. Role of (bio)surfactant sorption in promoting the bioavailability of nutrients localised at the solid-water interface. Water Science and Technology, 1999, 39: 91-98.
    97. Kakinuma, A. M., H. Sugino, M. Isono, G Tamura, and K., Arima. Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric. Biol. Chem. 1969, 33:973-976.
    98. Kanga, S., Bonner, J., Page, C, Millis, M., Autenrieth, R.. Solubilization of naphthalene and methyl substituted naphthalene from crude oil using biosurfactants. Environmental Science and Technology, 1997, 31: 556-561.
    99. Kappeli, O., Walther, P., Mueller, M. and Fiechter, A.. Structure of cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Archives of Microbiology, 1984, 138: 279-282.
    100. Kastner, M., M Breuer-Jammali and B Mahro. Impact of inoculation protocols, salinity and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Applied and Environmental Microbiology, 1998, 64: 359-362.
    101. Kim, I. S., Park, J. S., Kim, K. W.. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry, 2001, 16:1419-1428.
    102. Ko, S. H. and J. M. Lebault. Effect of a mixed culture on co-oxidation during the degradation of saturated hydrocarbon mixture. Journal Applied Microbiology, 1999, 87: 72-79.
    103. Kosaric, N.. Biosurfactants and their application for soil bioremediation. Food Biotechnology, 2001, 39(4): 295-304.
    104. Kosaric, N.. Biosurfactants. New York: Marcel Dekker. Inc. 1993, 65-67.
    105. Kretschmer, A., Bock, F. and Wanger, F.. Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Applied and Environmental Microbiology, 1982, 44(4): 864-870.
    106. Krieger-Brockett, B. B., Herwig, R. P. and Deming. J. W.. An assessment of organic contaminant biodegradation rates in marine environments. International In-Situ and On-Site. Bioremediation, 1997, 4(4): 427-432.
    107. Laha, S., Luthy, R. G... Effects of noionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotechnology and Bioengineering, 1992, 40:1367-1380.
    108. Laha, S., Luthy, R.. Inhibition of phenanthrene mineralization by nonionic surfactants in soil water systems. Environmental Science and Technology, 1991, 25: 1920-1930.
    109. Lai, B., Khanna, S., Degradation of crude oil by Acinetobacter calnoaceticus and Aicaligenes odorans. Journal of Applied Bacteriology, 1996, 81(4): 355-362.
    110. Lajoie, C. A., Layton, A. C. and Sayler, G. S.. Cometabolic oxidation of polychlorinated biphenyls in soil with a surfactant-based field application vector. Applied and Environmental Microbiology, 1994, 60: 2826-2833.
    111. Lajoie, C. A., Layton, A. C., Easter, J. P., Menn, F. M. and Sayler, G. S.. Degradation of nonionic surfactants and polychlofinated biphenyls by recombinant field application vectors. Journal of Industrial Microbiology and Biotechnology, 1997, 19: 252-262.
    112. Lang, S., Wullbrandt, D.. Rhamnose lipids-biosynthesis, microbial production and application potential. Applied Microbiology and Biotechnology, 1999, 51 (1): 22-32.
    113. Leahy JG and RR Colwell. Microbial degradation of hydrocarbon in the environment. Microbiol. Rev. 1990, 54:305-315.
    114. Lee, K. and S. De Mora. In Situ biodegradation strategies for oiled shoreline environments. Environmental Technology, 1999, 20: 783-794.
    115. LeFloch, S., Merlin, F. X., Guillerme, M., Dalmazzone, C. and LeCorre, P.. A field experimentation on bioremediation: BIOREN. Environmental Technology, 1999, 20, 897-907.
    116. Lemke, M. J., Churchill, P. F. and Wetzel, R. G. Effect of Substrate and Cell Surface Hydrophobicity on Phosphate Utilization in Bacteria. Applied and Environmental Microbiology, 1995,61:913-919.
    117. Lin, S. C. and Jiang, H. J.. Recovery and purification of the lipopeptide biosurfactant of Bacillus subllis by ultrafiltration. Biotechnology Techniques, 1997,11:413-416.
    118. Lin, S.C., Chen, Y.C. and Lin, Y.M. General approach for the development of high-performance liquid chromatography methods for biosurfactant analysis and purification. Journal of Chromatography,A., 1998, 825: 149-159.
    119. Lin, S.C., Lin, K.G. and Lo, C.C. Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme and Microbiology Technology, 1998, 23: 267-285
    120. Lin, S.C., Mark, A., Mukul, M., Sharma, M. and George, G Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Applied and Environmental Microbiology, 1994, 60: 31-38.
    121. Linhardt, R. J., Bakhit, R., Daniels, L.. Microbially produced rhamnolipids as a source of rhamnose. Biotechnology and Bioengineering, 1988, 33: 365-368.
    122. Liu, Z., Edwards, D. A., Luthy, R. G.. Sorption of non-ionic surfactants onto soil. Water Research, 1992,26:1337-1345.
    123. Liu, Z., Jacobson, A., Luthy, R.. Biodegradation of naphthalene in aqueous nonionic surfactant systems. Applied and Environmental Microbiology, 1995,61: 145-151.
    124. Liu, Z., Laha, S., Luthy, R. G.. Surfactant solubilization of polycyclic aromatic hydrocarbon compounds in soil/water suspensions. Water Science and Technology, 1991, 23:475-485.
    125. Long, S.C., Aelion, CM., Dobbins, D.C. and Pfaender, F.K., A comparison microbial community characteristics among petroleum-contaminated and uncontaminated subsurface soil samples. Microbial Ecology, 1995, 30: 297-307.
    126. Lowry, O. H., Rosebrough, N. J. and Farr, A. L.. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1951, 193: 265-275.
    127. Luthy, R. G, Alken, G R., Brusseau, M. L.. Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science and Technology, 1997, 31: 3341-3347.
    128. Makkar, R., Rockne, K. L.. Comparison of synthetic surfactants and biosurfactants in enhancing
     biodegradation of polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 2003, 22: 2280-2292.
    129. Maria, P.D., Steve, J.W.G, Chris, J.P. and Burgess, J.G. Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments. Marine Biotechnology. 2000, 2: 522-532.
    130. Marias, Kuyukina, Irena, I.H. and Philip, J.C. Recovery of Rhodococcus biosurfactants using methyal tertiary-butyal ether extraction. Journal of Microbiological Methods, 2001,46:149-156.
    131. Mata-Sandoval, J. C, Karns, J. and Torrents, A.. Effect of rhamnolipid produced by Pseudomonas aeruginosa UG2 on the solubilization of pesticides. Environmental Science and Technology, 2000, 34: 4923-4930.
    132. Mata-Sandoval, J. C, Karns, J., Torrents, A.. Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiological Research, 2001,155:249-256.
    133. Mata-Sandoval, J. C, Karns, J., Torrents, A.. Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. Journal of Agricultural and Food Chemistry, 2001, 49: 3296-3303.
    134. Mata-Sandoval, J., Karns, J., Torrents, A.. High-performance liquid chromatography method for the characterization of rhamnolipids mixture produce by Pseudomonas aeruginosa UG2 on corn oil. Journal of Chromatography A, 1999, 864:211-220.
    135. Mata-Sandoval, J.C, Karns, J. and Torrents, A. High-performance liquid chromatography method for characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. Journal of Chromatography, A., 1999, 864:211-220.
    136. Means, J. C, Wood, S. G., Hassett, J. J. and Banwart, W. L.. Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environmental Science and Technology, 1980, 14: 1524-1528.
    137. Mihelcic, J. R., Lueking, D. R., Mitzell, R. J. and Stapleton, J. M.. Bioavailability of sorbed- and seperate-phase chemicals. Biodegradation, 1993,4: 141-153.
    138. Miller, R. M. and Bartha, R.. Evidence for liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Applied and Environmental Microbiology, 1989, 55: 269-274.
    139. Moran, A., Olivera, N., Commedatore, M., Esteves, J., Sineriz, F.. Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9. Biodegradation, 2000, 11:65-71.
    140. Mulligan, C. N., Gibbs, B. F.. Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 1989, 55: 3016-3019.
    141. Mulligan, C. N., Yong, R. N., Gibbs, B. F.. Surfactant-enchanced remediation of contaminated soil: a review. Engineering Geology, 2001, 60: 371-380.
    142. Munstermann, B., Poremba, K., Lang, S. and Wagner, F.. Studies on environmental compatibility: Influence of (bio)surfactants on marine microbial and enzymatic systems. Proceedings of the International Symposium on Soil Decontamination Using Biological Processes, 1992,414-420.
    143. Nakahara, T., Hisatsuka, K. and Minoda, Y.. Effect of hydrocarbon emulsification on growth and respiration of microorganisms in hydrocarbon media. Journal of Fermentation Technology, 1981, 59:415-418.
    144. Neu, T. R. and Poralla, K.. Emulsifying agents isolated from bacteria isolated during screening for cells with hydrophobic surfaces. Applied Microbiology and Biotechnology, 1990, 32: 521-525.
    145. Noodman, W. H. and Janssen, D. B.. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2002, 68(9): 4502-4508.
    146. OGP. Aromatics in produced water: occurrence, fate and effects, and treatment. Report no.1. 20/324, 2002.
    147. Olivera, N. L., Commndatore, M. G, Moran, A. C. and Esteves, J. L.. Biosurfactant-enhanced degradation of residual hydrocarbons from ship bilge wastes. Journal of Industrial Microbiology and Biotechnology, 2000,25: 70-73.
    148. Osenberg, E., Navon, V. S., Zilber, R. I., Ron, E. Z.. Rate limiting steps in the microbial degradation of petroleum hydrocarbons. In Soil and Aquifer Pollution, Edited by Rubin, H. Berlin-Heidelberg: Springer-Verlag, 1998. 159-172.
    149. Osman, M., Ishigami, Y., Somera, J.. The bioconversion of ethanol to biosurfactants and dye by a novel coproduction technique. Journal of the American Oil Chemists' Society, 1996, 73: 851-856.
    150. Oudot, J., Merlin, F. X., Pinvidic, P.. Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Marine Environmental Research, 1998, 45(2): 113-125.
    151. Page, C. A., Bonner, J. S., Kanga, S. A., Mills, M. A. and Autenrieth, R. L.. Biosurfactant solubilization of PAHs. Environmental Engineering Science, 1999, 16: 465-474.
    152. Park, J. M., So, J. S.. Altered cell surface hydrophobicity of lipopolysaccharide-deficient mutant of Bradyrhizobium japonicum._Journal of Microbiological Methods, 2000, 41(3): 219-226.
    153. Pawl, T. K. and Edward, J. C.. Hydrocarbon contaminated and ground water. Lewis Publishers, INC, 1991. 187-253.
    154.Philipp,G.厦门大学生物系微生物学教研室译.厦门:厦门大学出版社,1989,423-424.
    155. Pignatello, J. J. and Xing, B.. Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science and Technology, 1996, 30:139-150.
    156. Pimienta, A. L., Diaz, M. P. M., Carvajal, F. G.. S., Grosso, V. J. L.. Production of biosurfactants (rhmnolipids) by Pseudomonas aeruginosa isolated from colombian sludges. Ciencia Tecnologia Futuro, 1997, 1(3): 95-108.
    157. Prak, D. J. L., Pfitchard, P. H.. Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar nonionic surfactant solutions. Water research, 2002, 36: 3463-3472.
    158. Prime, R. C. Labratorary studies of oil spill bioremediation. Symposium on biodegradation and bioprocessing presenting before the division of petroleum chemistry. 205th National Meeting, American Chemical Society, Denver, CO, 1993, 240-244.
    159. Prince, R. C., Lessard, R. R. and Clark, J. R. Bioremediation of marine oil spills. Oil & Gas Science and Technology. 2003, 58(4): 463-468.
    160. Pritchard, P. H., Mueller, J., Lantz, S., Santavy, D.. The potential importance of biodiversiry in environmental biotechnology applications: Bioremediation of PAH-contaminated soils and sediments. In: Microbial diversity and ecosystem function: IUBS/IUMS/SCOPE Workshop, Egham, England, UK, Auguest 10-13, 1993. D. Allsopp, R. R. Colwell, and D. L. Hawksworth (eds). Wallingford, England, UK: Cab International. 1995.161-182.
    161. Pritchard, P. H.. EPA's Alaska Oil spiils bioremediation project. Environmental Science and Technology, 1991, 25: 372-379.
    162. Providenti, M. A., Greer, C. W., Lee, H. and Trevors. J. T.. Phenanthrene mineralization by Pseudomonas sp. UG14. World Journal of Microbiology and Biotechnology, 1995, 11: 271-279.
    163. Providenti, M. A.. Effect of addition of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. FEMS Microbiology Ecology, 1995, 17: 15-26.
    164. Ramaswami, A., Ghoshal, S. and Luthy, R. G.. Mass transfer and bioavailability of PAH compounds in coal tar NAPL-slurry systems: 2. experimental evalutions. Environment Science and Technology, 1997, 31: 2268-2276.
    165. Ramaswami, A., Ghoshal, S., Luthy, R. G. Mass transfer and bioavailability of PAH compounds in coal tar NAPL-slurry systems: 2. experimental evalutions. Environmental Science and Technology, 1997,31:2268-2276.
    166. Rapp, P., Bock, H., Wager, F., Use of trehalose lipids in enhanced oil recovery. Biotechnology, 1977, 81; 177-185.
    167. Reid, B. J., Jones, H. C. Bioavailability of persistent organic pollutants in soils and sediments-a perspective on mechanisms, consequences and assessment. Environmental Pollution, 2000, 108: 103-112.
    168. Reiling, H. E., Wyss, U. T. and Santos, L. H. G. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 1986,51: 985-989.
    169. Reis, R. C. An overview of the environmental issues facing the upstream petroleum industry, SPE 26336, 1993.
    170. Rhaman, K. S. M, Banat, I. M. and Thahira, J.. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technology, 2002, 81: 25-32.
    171. Rhaman, K. S. M., Rhaman, T. J. and Kourkourtas, Y.. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 2003,90:159-168.
    172. Richard, E. M. and William, P. I.. Effects of a nonionic surfactant on biodegradation of phenanthrene and hexadecane in soil. Toxicological and Environmental Chemistry, 1998, 18: 1927-1931.
    173. Rijnarts, H. M., Bachmann, A., Jumelet, J. C. Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of a-hexachlorocyclohexane in a contaminated calcareous soil. Environmental Science and Technology, 1990, 24: 1349-1354.
    174. Robinson, K., Ghosh, M., Shi, Z.. Mineralization enhancement of non-aqueous phase and soil bound PCB using biosurfactant. Water Science and Technology, 1996,34: 303-309.
    175. Roeha, C, Infante, C... Enhanced oily sludge biodegradation by a tension-active agent isolated from Pseudomonas aeruginosa U S B-CS1. Applied Microbiology and Biotechnology, 1997, 47: 615-619.
    176. Ron, E. Z., Rosenberg, E.. Biosurfactants and oil bioremediation. Current Opinion in Biotechnology, 2002, 13:249-252.
    177. Rosenberg, E., Legmann, R., Kushmaro, A.. Petroleum bioremediation multiphase problem.
     Biodegradation, 1992, 3: 337-350.
    178. Rosenberg, E., Ron, E. Z.. Bioremediation of petroleum contamination. In: Bioremediation. Principles and Applications. R.L. & D.L. Crawford (eds) Cambridge University Press, 1996, 100-125.
    179. Rouse, J. D., Sabatini, D. A., Suflita, J. M., Harwell, J. H.. Influence of surfactants on microbial degradation of organic compounds. Critical Reviews in Environmental Science and Technology, 1994,24:325-370.
    180. Sanders, G., Jones, K. C, Hamilton, T. J. and Dorr, H.. Concentrations and deposition fluxes of polynuclear hydrocarbons and heavy metals in the dated sediments of a rural English lake. Environmental Toxicology and Chemistry, 1993,12:1567-1581.
    181. Schippers, C, Gessner, K., Mueller, T, Scheper, T. Microbial degradation of phenanthrene by addition of a sophorolipid mixture. Journal of Biotechnology, 2000, 83: 189-198.
    182. Sekelsky, A. M., Shreve, G S.. Kinetic model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonas aeruginosa. Biotechnology and Bioengineering, 1999, 63(4): 401-409.
    183. Shelton, D. R., Sadeghi, A. M., Karns, J. S., Hapeman, C. J.. Effect of wetting and drying of soil on sorption and biodegradation of atralize. Weed Science, 1995,43:298-305.
    184. Shimura, M.G, G Mukerjee-Dhar, K. Kimbara, H. Nagato, H. Kiyohara and T. Hatta. Isolation and characterization of a thermophilic Bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiology Letters, 1999,178: 87-93.
    185. Shin, K. H., Kim. K. W., and Seagren, E. A.. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene. Applied Microbiology and Biotechnology, 2004, 65: 336-343.
    186. Shreve, G S., Inguvam, S., Gunnam, S.. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa olecular. Marine Biology and Biotechnology, 1995, 4: 331-337.
    187. Shulga, A. N., Karpenko, E. V., Eliseev, S. A., Turovskii, A. A.. A method for determining the content of anionogenic surface-active peptidolipids of bacterial original. Mikrobiologichnyi Zhumal, 1993, 55(1): 85-88.
    188. Sim, L., Ward, O. P., Li, Z. Y.. Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. Journal of Industrial Microbiology and Biotechnology, 1997, 19: 232-238.
    189. Singer, M. E., Tyler, S. M, Finnerty, W. R.. Growth of Acinelobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics. Journal of Bacteriology, 1985, 162(1): 162-169.
    190. Sobisch, T., Heb, H., Niebelschutz, H., Schmidt, U.. Effect of additives on biodegradation of PAH in soils. Colloids Surf A, 2000, 162: 1-14.
    191. Stelmack, P. L., Gray, M. R., Pickard, M. A.. Bacterial adhesion to soil contaminants in the presence of surfactants. Applied and Environmental Microbiology, 1999, 65: 163-168.
    192. Stromgren, T., Sorstrom, S. E., Schou, L.. Acute Toxic effects of Produced Water in Relation to Chemical Composition and Dispersion. Marine Environmental Research, 1995, 40(2): 147-169.
    193. Sugiura, K., Ishihara, M., Shimauchi, T.. Physicochemical properties and biodegradability of crude oil. Environmental Science and Technology, 1997, 31: 45-51.
    194. Tarn, N. F. Y., GUO, C. L., Yau, W. Y.. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Marine Pollution Bulletin, 2002, 45: 316-324.
    195. Thangamani, S., Shreve, G. S.. Effect of anionic biosurfactant on hexadecane partitioning in multiphase systems. Environmental Science and Technology, 1994,28:1993-2000.
    196. Theng, B. K. G, Aislabie, J., Fraser, R.. Bioavailability of phenanthrene intercalated into analkylammonium-montmorillonite clay. Soil Biology and Biochemistry, 2001, 33: 845-848.
    197. Tiehm, A., Stieber, M., Werner, P., Frimmel, F.. Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environmental Science and Technology, 1997, 31: 2570-2576.
    198. Tienm, A.. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Applied and Environmental Microbiology, 1994, 60: 258-263.
    199. Tsomides, H. J., Hughes, J. B., Thomas, J. M., Ward, C. H.. Effect of surfactant addition on phenanthrene biodegradation in sediments. Toxicological and Environmental Chemistry, 1995, 14(3): 953-959.
    200. Turkovskaya, O. V, Dmitrieva, T. V. and Muratova, A. Y. A biosurfactant-producing Pseudomonas aeruginosa strain. Applied Biochemistry and Microbiology, 2001, 37(1): 71-75.
    201. Utvik, T. I. R., Durell, G. S. and Johnsen, S.. Determining Produced Water Originating Polycyclic Aromatic Hydrocarbons in North Sea Waters: Comparison of Sampling techniques. Marine Pollution Bulletin, 1999, 38: 977-989.
    202. Valsaraj, K. T., Thibodeaux, L. J.. Relationships between micelle-water and octanol-water partition constants for hydrophobic organics of environmental interest. Water Research, 1989, 23: 183-189.
    203. Van, H. J., Dyke, M. I., Conture, I. P., Brauer, M.. Pseudominas aeruginosa UG2 rhamnolipid biosurfactants structural characterization and their use in removing hydrophobic compounds from soil. Canadian Journal of Microbiology, 1993,39: 1071-1078.
    204. Van, H. J., Ward, O.. Influence of chemical surfactants on the biodegradation of crude oil by a mixed bacterial culture. Canadian Journal of Microbiology, 1999,45: 130-137.
    205. Velanker, S. K., Barneet, S. M., Houston, C. W.. Microbial growth on hydrocarbons-some experimental results. Biotechnology and Bioengineering, 1975,17(2): 241-251.
    206. Viney, I., Bewley, R. J. F., Preliminary studies on the development of a microbiological treatment for polychlorinated biphenyls. Archives of Environmental Contamination and Toxicology, 1990,19: 789-796.
    207. Vitale, A.A. and A.A. Viale. A decalin-consuming bacterial community. Revista Argent de Microbiology. 1994,26: 28-35.
    208. Volkering, F., Breure, A. M. and Rulken, W. H.. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 1998, 8:401-417.
    209. Volkering, R, Breure, A. M., Andel, J., Rulkens, W. H.. Influence of non-ionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 1995, 61: 1699-1705.
    210. Walker, J.D., Austin, H.F. and Colwell, R.R. Utilization of mixed hydrocarbon substrate by petroleum-degrading microorganisms. Journal of General and Applied Microbiology, 1975, 21: 27-39.
    211. Wang, C. S., Smith, R. L.. Lowery determination of protein in the presence of Trixon-100. Analytical Biochemistry, 63:414-417.
    212. Ward, D. M., Atlas, R. M., Boehn, P.D., Calder, J. A.. Microbial biodegradation and the chemical evolution of Amoco Cadiz oil pollutants. Ambio, 1980, 9: 277-283.
    213. Washburn, L., Stone, S. and MacIntyre, S.. Dispersion of produced water in a coastal environment and its biological implications. Continental Shelf Research, 1999, 19: 57-78.
    214. Weissenfels, W. D., Klewer, H., Landhoff, 1. Adsorption of polycyclic aromatic hydrocarbons by soil particles: influence on biodegradability and biotoxicity. Applied Microbiology and Biotechnology, 1992, 36: 686-696.
    215. Whyte, L. G, Slagman, S. J., Pietrantonio, F., Bouronniere, L., Koval, S. R, Lawrence, J. R., Inniss, W. E., and Greer, C. W.. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Applied and Environmental Microbiology, 1999, 65(7): 2961-2968.
    216. Whyte, L.G, J. Hawaii, E. Zhou, L. Bourbonniere, W.E. Inniss and C.W. Greer. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Applied and Environmental Microbiology, 1998, 64: 2578-2584.
    217. Willumsen, P. A., Karlson, U.. Screening of bacteria, isolated from PAH-contaminated soils for production of biosurfactant and bioemulsifiers. Biodegradation, 1997, 7:415-423.
    218. Wise, H. E. J. and Fahrenthold, P. D.. Predicting priority pollutants from petrochemical processes. Environmental Science and Technology, 1981, 15:1292-1304.
    219. Wu, J.. Rhamnolipid production by fermentation and its application in enzymatic hydrolysis of cellulose. Ph.D. dissertation. The University of Akron, Akron, Ohio. 1997.
    220. Wu, Y., Zhang, J., Tang, Y. Q.. Geochengmistry of n-alkanes and polycylic aromatic hydrocarbons in the sediments from the South China Sea. Journal of Ocean University of Qingdao, 1999, 29(1): 112-120.
    221. Yakimov, M.. Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnology and Applied Biochemistry, 1996,23: 13-18.
    222. Yeom, I. T, Ghost, M. M.. Mass transfer limitation in PAH-contaminated soil remediation. Water Science and Technology, 1998,37: 111-118.
    223. Zhang, Y, Maier, W. J. and Miller, R. M.. Effect of rhamnolipids on the dissolution, bioavailability and biodegradation of phenanthrene. Environmental Science and Technololgy, 1997, 31: 2211-2217.
    224. Zhang, Y., Miller, R. M.. Effect of a Pseudomonas rhamnolipid biosurfactant on cell
     hydrophobicity and biodegradation of octadecane. Applied and Environmental Microbiology, 1994, 60: 2101-2106.
    225. Zhang, Y. and Miller, R. M.. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environmental Microbiology, 1992, 58(10): 3276-3282.
    226. Zheng, Z., Obbard, J. P.. Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system. Water Research, 2002, 36: 2667-2672.
    227.陈坚,华兆哲,伦世仪.生物表面活性剂在环境生物工程中的应用.环境科学,1996,17(4):84-87.
    228.陈坚主编.环境生物技术.北京:中国轻工业出版社.1999.443-444.
    229.陈燕,李寅,堵国成.石油污染水体的生物修复.水处理技术,2003,29(5):249-252.
    230.陈碧娥,刘祖同.海洋烃细菌的分离及其特性.石油学报,2002,18(5):9-13.
    231.陈碧娥,刘祖同.湄州湾海洋细菌降解石油烃研究.石油学报,2001,17(3):31-35.
    232.陈碧娥,刘祖农.海洋烃细菌的分离及其特性.石油学报(石油加工).2002,18(5):9~13.
    233.陈碧娥,刘祖同.海洋丝状真菌转化石油烃的研究.石油学报(石油加工).2002,18(3):13-17.
    234.陈华林,陈英旭,王子健.中国南方河流和湖泊沉积物对菲的吸附特性.环境科学,2003,24(5):120-124.
    235.党志,于虹.土壤/沉积物吸附有机污染物机理的研究进展.化学通报,2001,2:81-85.
    236.丁克强,骆永明.多环芳烃污染土壤生物修复.土壤,2001,33(4):169-178.
    237.丁克强,骆永明.生物修复石油污染土壤.土壤,2001,4:179-184.
    238.丁明宇,黄健,李永祺.海洋微生物降解石油的研究.环境科学学报,2001,21(1):85-88.
    239.东秀珠,蔡妙英.常见细菌系统鉴定手册,北京:科学出版社,2001.
    240.方云,夏咏梅编译.生物表面活性剂.北京:中国轻工业出版社,1992,p:22-36
    241.高廷耀,顾国维.水污染控制工程(上册).北京:高等教育出版社,1999.
    242.顾传辉,陈桂珠.石油污染土壤生物降解生态条件研究.生态科学,2000,19(4):67-72.
    243.管亚军,梁凤来,张心平等.混合菌群对石油的降解作用.南开大学学报(自然科学),2001,34(4):82-85.
    244.郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复.海洋环境科学,2000,19(3):24-29.
    245.国家环境保护局.石油石化工业废水治理.北京:中国环境科学出版社,1992.
    246.华兆哲,陈坚,伦世仪.石油烷烃降解与生物表面活性剂生产的相关性研究及进展.石油化工,1998,27(12):925-929.
    247.贾凌云,吴刚,杨凤林.表面活性剂在污染土壤生物修复中的应用.现代化工,2003,23(9):58-61.
    248.金梁,顾宗濂,谢思琴,周德智.石油污染土壤及地下水的生物修复研究进展.应用与环境生物学报.1999,5(Suppl):130-135.
    249.金文标,宋莉辉,董晓利.油污土壤微生物治理的影响因素.环境保护,1998,10:27-28.
    250.李丽,张利平,张元亮.石油烃类化合物降解菌的研究概况.微生物学通报,2001,28(5):89-92.
    251.李习武,刘志培.石油烃类的微生物降解.微生物学报,2002,42(6):764-766.
    252.梁振,段继诚,张维冰,张玉奎.HPLC-ESI-MS/MS对灯盏花提取液中主要成分的分离定性.分析科学学报,2004,20(2):129-132.
    253.林力,杨惠芳,贾省芬.石油污染土壤的生物整治研究.上海环境科学,2000,19(7):325-329.
    254.林凤翱,于占国,李洪.海洋丝状真菌降解原油研究—石油烃降解的实验室模拟.海洋学报,1997,19(6):68-76.
    255.刘精今,陈竹新.植物油脂废水预处理技术.中国油脂,2001,26(3):9-10.
    256.龙涛,刘翔,杨建刚.非离子表面活性剂吐温80增溶条件下菲的生物降解.环境污染治理技术与设备,2003,4(5):1-4.
    257.罗启仕,张锡辉,王慧,钱易.生物修复中有机污染物的生物可利用性.生态环境,2004,13(1):85-87.
    258.梅建凤,闵航.生物表面活性剂及其应用.工业微生物,2001,31(1):54-57.
    259.潘冰峰,徐国梁,施屏邑.生物表面活性剂产生菌的筛选.微生物学报,1999,39(3):264-267.
    260.钱欣平,阳永荣,孟琴.生物表面活性剂对微生物生长和代谢的影响.微生物学通报,2002,29(3):75-78.
    261.任磊,黄廷林.石油污染土壤的生物修复技术.安全与环境学报,2001,1(2):50-54.
    262.沈萍,范秀容,李广武编.微生物学实验(第三版).北京:高等教育出版社,2002.92-95.
    263.盛下放,何琳燕,龚建勋.二株假单胞菌的疏水性及对其对菲的降解能力.环境科学学报,2004,24(5):942-944.
    264.时进钢,袁中兴,曾光明.生物表面活性剂的合成与提取研究进展.微生物学通报,2003,30(1):68-72
    265.王峰,王新,崔正刚.分光光度法测定微量阴离子表面活性剂.日用化学工业.2002,32(1):65-67.
    266.魏德洲,秦熠民.H_2O_2在石油污染土壤微生物治理过程中的作用.中国环境科学,1997,17(5):429-431.
    267.魏德洲,秦熠民.表面活性剂对石油污染物生物降解的影响.东北大学学报(自然科学版),1998,19(2):125-127.
    268.吴清平,蔡芷荷,张菊梅.表面活性素的结构特征及其生物合成机理.微生物学通报.1998,25(6):351-353.
    269.徐成勇,鲁时瑛,周莲,周东阳.发酵法生产生物表面活性剂.微生物学通报,2003,30(3):85-90.
    270.徐永珍,李江云等.一种细菌糖脂的化学结构和理化性质.化学学报,1988,5:264-268
    271.许世奋,蒋新,王连生等.长江和辽河沉积物中多环芳烃类污染物.中国环境科学,2000,20(2):128-131.
    272.薛燕芬,王修垣.石蜡杆菌B126产生的糖脂的理化性质.微生物学报,1996,36(2):121-125.
    273.薛燕芬,王修垣.石蜡杆菌B126产生糖脂的适宜条件.微生物学报,1995,35(6):465-469.
    274.杨建刚,刘翔,余刚.非离子表面活性剂Tween-20对菲生物降解的影响.环境科学,2004,25(1):53-56.
    275.杨建刚,刘翔,余刚.非离子表面活性剂溶液中多环芳烃的溶解特性.环境科学,2003,24(6):79-82.
    276.张旭,李广贺,黄巍.石油烃污染土层生物修复模拟实验研究.清华大学学报(自然科学版),2000,40(11):106-108.
    277.张甲耀,李静,夏威林,邓南圣.生物修复技术研究进展.应用与环境生物学报.1996,2(2):193-199.
    278.赵国玺.表面活性剂物理化学.北京:北京大学出版社(修订版),1991.191-192.
    279.赵国玺.表面活性剂物理化学.北京:北京大学出版社(修订版),1991.470-471.
    280.郑天凌,庄铁城,蔡立哲.微生物在海洋污染环境中的生物修复作用.厦门大学学报(自然科学版),2001,40(2):524-534.
    281.朱利中,冯少良.混合表面活性剂对多环芳烃的增溶作用及机理.环境科学学报,2002,22:774-778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700