用户名: 密码: 验证码:
大型立式超精密机床系统误差分析与辨识技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向。以超精密加工技术为支撑的半导体器件,为电子、信息产业的发展奠定了基础。现代科学技术的发展以试验为基础,所需试验仪器和设备几乎无一不需要超精密加工技术的支撑。当前超精密加工已进入纳米尺度,成为尖端技术发展中不可缺少的关键加工手段,不论是军事工业,还是民用工业,都需要这种先进的加工技术。
     本文主要针对两轴立式大型超精密机床加工精度进行研究,采用传递矩阵法、有限元方法以及多体系统理论对影响加工精度的机床主要部件误差进行分析。为能够比较全面表征已加工表面形貌特征,本文选择小波方法、相关性分析方法和功率谱密度方法对机床已加工表面形貌进行分析,小波变换方法区别于传统傅立叶变化方法的主要特征是能够在时频域对信号进行全面表征,相关性分析可以对两个不同过程信号的相关性进行评估。功率谱密度方法可以全面反映检测信号中的小尺度波纹特征,据此对机床误差进行了辨识。
     针对液体静压轴承结构,根据流体力学知识推导出轴承参数公式并与其他计算方法进行了对比。基于牛顿定律,建立了主轴系统平衡状态下数学模型,以此模型为基础推导了主轴加工过程中偏摆幅值与轴承刚度等参数关系,并给出了各个方向上运动刚度。通过建立主轴系统动力学模型研究了加工过程中质量不平衡引起的主轴受迫振动,并推导出了相应动态频率响应。从机床主轴系统的传热机理着手进行分析,建立了主轴系统的热-机械模型,推导出了主轴系统内部传递热量的计算依据。分析了在不同条件热误差影响下轴承特性的变化,从而推导出机床整个主轴系统的。
     文中利用多体系统理论建立了机床X向和Z向导轨耦合的运动误差模型,针对空气静压溜板结构,根据气体润滑理论推导出了双排节流空气静压溜板的气膜压力分布,得出相应承载力公式,气膜刚度。给出了气膜厚度变化时整个溜板系统频率变化规律。建立了运动溜板和卸荷溜板刚度耦合的动力学模型,推导出了气膜厚度变化时溜板沿垂直方向的振动响应幅值变化规律,最后得出在整个气膜厚度波动范围内,刚度耦合的溜板系统响应频率的相应变化范围。
     最后以小波变换为手段对检测信号进行处理。从主轴回转误差的检测着手进行分析,提出了以维尔斯特拉斯函数建立的主轴综合回转误差模型,与实际检测结果的对比验证了此模型的正确性与可行性。以互相关性分析为手段,分别分析了导轨系统和主轴系统误差与加工面形结果的相关性,从而推导出了各误差对加工精度的影响程度。以小波方法和功率谱密度方法相结合,从频域对导轨系统和主轴系统误差进行分析,提取出了机床相关振动信号的频域特征,从而根据频谱特征辨识出影响加工精度的各个误差源。
Ultra-precision machining technology is the development foundation for high-tech industries. The semiconductor device supported by ultra-precision machining technology, laid the foundation for the development of electronics and information industry. The development of modern science and technology based on the test, almost all of the test equipment needs the support of ultra-precision machining technology. Now ultra-precision machining has entered the nano-scale, and become an indispensable key means of developing high-tech. Whether the military industry, or civilian industry, all need such advanced machining technology.
     The research on machining precision of a two-axis large ultra-precision machine tool, analyzing the errors of main components of machine tool by the transfer matrix method, finite element method and multi-body theory. In order to show the comprehensive characterization of workpiece, wavelet method, correlation analysis and power spectral density method are used to analyze the surface topography of workpiece, different from the traditional Fourier transfer method, wavelet method express the comprehensive characterization of the signal in time and frequency domain. Correlation analysis method can estimate the signal in two different processes. Power spectral density method can fully reflect the impact of small-scale waviness of surface morphology on the machined accuracy.
     For the hydrostatic bearings, the parameters equation of bearings was deduced by the knowledge of fluid mechanics, and the calculated results were compared with other calculations. The mathematical model of spindle system in equilibrium was established according to Newton’s law, based on the model, the relationship between derivation angle and stiffness of bearing was deduced, and the stiffnesses in all directions are given. The forced vibration of spindle caused by unbalance during machining process was researched through dynamic model of spindle, dynamic frequency response was deduced according to the model of spindle. Thermal-mechanical model of spindle system was established, the calculation basis of the heat transfer in the spindle system was deuced, and thermal error was analyzed with heat transfer mechanism, the variation of bearing performance at the different conditions under the influence of thermal errors, and the impact on the machining accuracy was analyzed.
     The coupling error model of guideways of machine tool was established with multi-body system theory. For the complex structure of guideway and unloading slide, the pressure distribution of gas film of guideway with double row orifices by gas lubrication theory, and corresponding load capacity and gas stiffness was obtained. The movement frequency with gas film thickness of entire slide system during machining process was showed. The coupling dynamic model of motion and unloading slides was established through corresponding frequency, the dynamic response of slide with the variation of gas film thickness was deduced. Finally, the variation of moving frequency in the whole gas film thickness was obtained.
     Finally, the measured result of workpiece was processed by wavelet transfer. The rotation error model of spindle was proposed by Weierstrass function, and the correctness and feasibility of this model was verified by comparing with actual test results. The correlation between guideway, spindle system and measured result of workpiece was analyzed, thus the degree of influence of every error on the machining accuracy was deduced. Combained with wavelet method and power spectral density method, the errors of guideway and spindle systems was analyzed in frequency domain, the characteristics of vibration signal of machine tool in frequency domain was extracted, and various error that affect the machining accuracy were identified according to the spectral characteristics.
引文
1唐友亮,余勃,赵宏顺,周德廉.浅议数控机床的最新发展趋势.机电产品开发与创新. 2007, 5:181~183
    2 Mahbubur Rahman, Jouko Heikkala, Kauko Lappalainen. Modeling, Measurement and Error Compensation of Multi-axis Machine Tools. Part: Theory. International Journal of Machine Tools & Manufacture. 2000, 40:1535~1546
    3 V. S. B. Kiridena, P. M. Ferreira. Computational Approaches to Compensating Quasistatic Errors of Three-axis Machining Centers. International Journal of Machine Tools & Manufacture. 1994, 34(1):127~145
    4 Wei Gao, Makoto Tano, Takeshi Araki, Satoshi Kiyono and Chun Hong Park. Measurement and Compensation of Error Motions of a Diamond Turning Machine. Precision Engineering. 2007, 31(3): 310~316
    5 Y. Y. Hsu, S. S. Wang. A New Compensation Method for Geometry Errors of Five-axis Machine Tools. International Journal of Machine Tools & Manufacture. 2007, 47(2): 352~360
    6孙涛,蒋建明.影响超精密加工精度的主要因素.长沙航空职业技术学院学报. 2003, 3(1):49~51
    7袁巨龙,王志伟,文东辉等.超精密加工现状综述.机械工程学报. 2007, 43(1):35~48
    8国家自然科学基金委员会工程与材料科学部.学科发展战略研究报告(2006年-2010年)——机械与制造科学.科学出版社. 2006
    9 A. H. Slocum. Precision Machine Design. Englewood Cliffs. Prentice-Hall.1992.
    10袁哲俊,王先奎.精密和超精密加工技术.机械工业出版社,1999
    11 B. Cassin. Recent C&B axis development from Moore Nanotechnology Systems, LLC. http://www.nanotechsys.com. 2009
    12 Nanotech 350UPL Brochure. Moore Nanotechnology Systems Ltd. http://www.nanotechsys.com. 2009
    13 Nanotech 500FG Brochure. Moore Nanotechnology Systems Ltd.http://www.nanotechsys.com. 2009
    14 J. Jedrzejewski, W. Modrzycki. Intelligent Supervision of Thermal Deformations in High Precision Machine Tools. Proc. 32nd Int. Matador Conf, Manchester, UK. 1997:457~462
    15 C. J. Evans, R. J. Kocken. Self-calibration: Reversal, Redundancy, Error Separation and Absolute Testing. Annals of the CIRP. 1996,45 (2): 617~632
    16李圣怡,戴一帆等.精密和超精密机床精度建模技术.国防科技大学出版社. 2007.3
    17赵雪松,赵晓芬.机械制造技术基础.华中科技大学出版社. 2006.9
    18 R. Ramesh, M. A. Mannan, A. N. Poo. Error Compensation in Machine Tools-A Review Pate I: Geometric, Cutting-Force Induced and Fixture-Dependent Errors. Machine Tools & Manufactures. 2000, (40):1235~1256
    19 J. Ni. CNC Machine Accuracy Enhancement through Real-Time Error Compensation. ASME Trans Journal of Manufacturing Science and Engineering. 1997,119: 717~724
    20 D. L. Leete. Automatic Compensation of Alignment Errors in Machine-Tool. Int. J. Mach. Tools Des. Res. 1961,1:293~324
    21 D. French, S. H. Humphries. Compensation for Backlash and Alignment Errors in a Numerically Controlled Machine-tool by a Digital Computer Program. M.T. D. R.Conf. Proc.1967, 8:707~726
    22 Schultschik R. The Components of Volumetric Accuracy. Annals of the CIRP. 1977, 26(1):223~228
    23 Hocken R, et al. Three Dimensional Metroloty. Annals of the CIRP. 1977, 26(1):403~408
    24 P. M. Ferreira, C. R. Liu. An Analytical Quadratic for the Geometric Errors of a Machine Tool. Journal of Manufacturing System.1986, 5(1):51~62
    25 D. N. Reshetor, V. T. Portman. Accuracy of Machine Tools. American Society of Mechanical. 1989
    26 A. K. Elshchnawy, I. Ham. Performance Improvement of Coordinate Measuring Machines by Error. Manufacturing Systems. 1989, 2 (9):151~158
    27 Chen J. S. , Yuan J. , Ni J. . Compensation of Non-Rigid Body Kinematic Effect of a Machining Center. Transaction of NAMRI. 1992,20:325~329
    28 Lin P. D. , Ehmann K. F. .Direct Volumetric Error Evaluation of Multi-Axis Mchines. Int. J. of Mach. Tools Manufacture. 1993,33(5):675~693
    29 John C., Ziegert and Prashant Kalle. Error Compensation in Machine Tools: A Neural Network Approach. Journal of Intelligent Manufacturing. 1994,5:143~151
    30 Ji-Hun Jung, Jin-Phil Choi, Sang-Jo Lee. Machining Accuracy Enhancement by Compensating for Volumetric Errors of a Machine Tool and On-Mchine Measurement. Journal of Materials Processing Technology. 2006,174:56~66
    31 Kyoung-Gee Ahn, Byung-Kwon Min, Zbigniew J.Pasek. Modeling and Compensation of Geometric Errors in Simultaneous Cutting Using a Multi-Spindle Machine Tool. International Journal of Advanced Manufacturing Technology.2006, 29(9):929~939
    32 John M.Fines, Arvin Agah. Machine Tool Positioning Error Compensation Using Artificial Neural Networks. Engineering Applications of Artificial Intelligence. 2008, 21:1013~1026
    33 J. P. Allen, S. R. Postlethwaite, D. G. Ford. Practical Application of Thermal Error Correction- 4 Case Studies. Proc. 3rd Int. Conf. on Laser Metrology and Machine Performance- Lamdamap.1997, 359~369
    34 Y. Yoshida, F. Honda, M. Kubota. Effect of Thermal Deformation on the Cylindrical Accuracy in a Grinding Process, Proc. 10th Int. MTDR Conf, Manchester, UK. 1969, 161~170
    35 M. Weck, L.Zangs. Computing the Thermal Behaviour of Machine Tools Using Finite Element-Possibilities and Limitations. Proceedings of the 16th MTDR Conference 1975, 16:185~194
    36 R. Venugopal, M. Barrsh. Thermal Effects on the Accuracy of Numerically Controlled Machine Tools. Annals of the CIRP. 1986,1:255~258
    37 J. Jedrzejewski, W. Modrzycki. A New Approach to Modelling Thermal Behaviour of a Machine Tool under Service Conditions. Annals of the CIRP. 1992,41(1): 455~458
    38 Lo CH, Yuan J, Ni J. Error Link Metrology and Flexible Error Synthesis Model for Correcting Quasi-Static Machine Errors. Transaction of the North American Manufacturing Research Institute of SME. 1994,267~273
    39 S. C. Huang. Analysis of a Model to Forecast Thermal Deformation of Ball Screw Feed Drive Systems. International Journal of Machine Tools and Manufacture. 1995,35 (8): 1099~1104
    40 J. S. Chen, G. Chiou. Quick Testing and Modelling of Thermally-Induced Errors of CNC Machine Tools. International Journal of Machine Tools and Manufacture. 1995,35(7):1063~1074
    41 J. Mou, M. A. Donmez, C. Cetinkunt. An Adaptive Error Correction Method Using Feature-Based Analysis Techniques for Machine Performance Improvement. Part I: Theory Derivation, ASME Trans. Journal of Engineering for Industry. 1995,117:584~590
    42 J. Yuan, J. Ni. The Real-Time Error Compensation Technique for CNC Machining Systems. Mechatronics. 1998,8:359~380
    43 Jin-Hyeon Lee, Seung-Han, Yang. Statistical Optimization and Assessment of a Thermal Error Model for CNC Machine Tools. Machine Tools & Manufacture. 2002,42:147~155
    44 H. Yang, J. X. Yuan, J. Ni. Dynamic Modelling for Machine Tool Thermal Error Compensation. ASME Journal of Manufacturing Science and Engineering. 2001. 125:245~254
    45 Alexander H.Slocum. Precision machine design. Printed in the United States of America. 1992
    46 Stao H, O-hori M. Characteristics of Two Dimensional Surface Roughness Taking Self-Exicited Chatter Marks as Objective. Annals of the CIRP. 1981,30(1):481~486
    47 S. M. Pandit and Revach S. A Data Dependent Systems Approach to Dynamics of Surface Generation in Turning. Transactions of ASME, Journal of Engineering for Industry. 1981,103:437~445
    48 M. Pandit. Characteristic Shapes and Wavelength Decomposition of Surfaces in Machining. Annals of the CIRP.1981,30(1):487~492
    49 S. C. Lin, M. F. Chang. A Study on the Effects of Vibrations on the Surface Finish Using a Surface Topography Simulation Model for Turning. International Journal of Machine Tools & Manufacture. 1998, 38:763~782
    50 R. Haberland, G. Pfeifer. Generation of Surface Topology by InteractionSpindle Speed and Feed Velocity. SPIE Vol.1266 In-Process Optical Measurement and Industrial Methods. 1990, 245~253
    51 R. Haberland. Machine Vibration and Machined Surface. Proc. of 2nd Euspen International Conference-Turin, Italy-May 27th-31st. 2001,810~813
    52 O. B. Abouelatta and J. Madl. Surface Roughness Prediction based on Cutting Parameters and Tool Vibrations in Turning Operations. Journal of Materials Processing Technology. 2001, (118):269~277
    53丁振乾.我国机床液体静压技术的发展历史及现况.精密制造与自动化. 2003, (3):19~21
    54袁哲俊,王先逵.精密和超精密加工技术.机械工业出版社. 2004.6
    55文秀兰,林宋,谭昕等.超精密加工技术与设备.化学工业出版社. 2006.5
    56 J. K. Martin. Measured Stiffness and Displacement Coefficients of a Stationary Rotor Hydrostatic Bearing. Tribology International. 2004, (37):809~816
    57 Narendra Singh, Satish C. Sharma, etc. Performance of Membrane Compensated Multirecess Hydrostatic/Hybrid Flexible Journal Bearing System Considering Various Recess Shapes. Tribology International. 2004, (37):11~24
    58 Yuan Kang, Ping-chen Shen, etc. Modified Predictions of Restriction Coefficient and Flow Resistance for Membrane-type Restrictors in Hydrostatic Bearing by using Regression. Tribology International. 2007, (40):1369~1380
    59 R. F. Ferguson. The Performance of Hydrostatic Thrust Bearing with Special Reference to Their Use on Machine Tool Slideways. Doctorate thesis. University of Manchester. 1959
    60 M. Aleyaasin, R. Whalley, M. Ebrahimi. Error Correction in Hydrostatic Spindles by Optimal Bearing Tuning. Machine Tools & Manufacture. 2000,40:809~822
    61 H. Urreta, M.Zubieta, Ma J.E, et. Analytic, Numeric and Experimental Study of Hydrostatic Journal Bearings Behaviour for Grinding Machines. 12th IFToMM World Congress, Besancon, France. 2007
    62 Ahmad W. Yacout, Ashraf S. Ismaeel, Sadek Z. Kassab. The Combined Effects of the Centripetal Inertia and the Surface Roughness on the Hydrostatic Thrust Spherical Bearings Performance. Tribology. 2007, 40:522~532
    63 Shiyu Zhou, Jianjun Shi. Imbalance Estimation for Speed-Varying Rigid RotorsUsing Time-Varying Observer. Trans ASME J Dyn Syst Meas Contr. 2001, 123:637~644
    64 Mohamed Fourka, Yong Tian, Marc Bonis. Prediction of the Stability of Air Thrust Bearings by Numerical, Analytical and Experimental Methods. Wear. 1996,198:1~6
    65 San Andre’s L. De Santiago O. Forced Response of a Squeeze Film Damper and Identification of Force Coefficients from Large Orbital Motions. Trans ASME 2004,126:292~300
    66 Zahloul H, Bouzidane A, Bonneau O. Static Characteristics of a Rectangular Four-Pad Hydrostatic Thrust Bearing. International Mechanical Engineering Conference. Kuwait. 2004, 460~471
    67 A. Bouzidance, M. Thomas. An Electrorheological Hydrostatic Journal Bearing for Controlling Rotor Vibration. Computers & Structures. 2008,86:463~472
    68 S. Yoshimoto, J. Tamura, T. Nakamura. Dynamic Tilt Characteristics of Aerostatic Rectangular Double-pad Thrust Bearings with Compound Restrictors. Tribology. 1999,32:731~738
    69 T. Kawai, K. Ebihara, Y. Takeuchi. Improvement of Machining Accuracy of 5-axis Control Ultraprecision Machining by Means of Laminarization and Mirror Surface Finishing. Annals of the CIRP. 2005,54(1):329~332
    70 A. Slocum, M. Basaran, R. Cortesi, et al. Linear Motion Carriage with Aerostatic Bearings Preloaded by Inclined Iron Core Linear Electric Motor. Precision Engineering. 2003,27(4): 382~394
    71 H. Shinno, H. Hashizume, Yoshioka, et al. X-Y-θNano Positioning Table System for a Motor Machine. Annals of the CIRP. 2004,337-340
    72 T. Aoyama, Y. Kakinuma, Y. Kobayashi. Numerical and Experimental Analysis for the Small Vibratioin of Aerostatic Guideways. Annals of the CIRP. 2006,55(1):419~422
    73 J. B. Bryan. A Simple Method for Testing Measuring Machines and Machine Tools. Precision Engineering.1982,4(2):61~69
    74 W. Knapp. Test of Three-dimension Uncertainty of Machine Tools and Measuring Machnes and Its Relation to the Machine Error. Ann. CIRP. 1983,32(1):459~464
    75 Okuyama S, et al. Effect of Floating Capacity on the Measurement Error of the CBP Method. Advanced in Abrasive Technology (II),Yomano Press Ltd. 1998
    76 S. Hong, Y. Shin, H. Lee. An Efficient Method for Identification of Motion Error Sources from Circular Test Results in NC Machines. International Journal of Machine Tools and Manufacture. 1997,37 (3):327~340
    77 Dong-Sik Kim, In-Cheol Chang, Seung-Woo Kim. Microscopic Topographical Analysis of Tool Vibration Effects on Diamond Turned Optical Surfaces. Precision Engineering. 2002, 26:168~174
    78 Ji-Hun Jung, Jin-Phil choiSang-Jo Lee. Machining Accuracy Enhancement by Compensating for Volumetric Errors of a Machine Tool and On-Mchine Measurement. Journal of Materials Processing Technology. 2006, 174:56~66
    79 Wei Gao, Makoto Tano, Takeshi Araki, etc. Measurement and Compensation of Error Motions of a Diamond Turning Machine. Precision Engineering. 2007, (31):310~316
    80 W. Gao, T. Motoki, S. Kiyono. Nanometer Edge Profile Measurement of Diamond Cutting Tools by Atomic Force Microscope with Optical Alignment Sensor. Precision Eng. 2006, 30(4):396~405
    81 Wei Gao, Jun Aoki, Bing-Feng Ju, et al. Surface Profile Measurement of a Sinusoidal Grid Using an Atomic Force Microscope on a Diamond Turning Machine. Precision Engineering. 2007,31:304~309
    82 R. Grejda, E. Marsh, R. Vallance. Techniques for Calibrating Spindles with Nanometer Error Motion. Precis Eng. 2005,29(1):113~123
    83 H. F. F. Castro. A Method for Evaluating Spindle Rotation Errors of Machine Tools Using a Laser Interferometer. Measurement. 2008,41:526~537
    84 Shujie Liu, Kentaro Watanabe, Xin Chen, et al. Profile Measurement of a Wide-Area Resist Surface Using a Multi-ball Cantilever System. Precision Engineering. 2009,33:50~55
    85 Veeco Instruments Forms Process Equipment Group. III-VS Review. 2006,19(1):15
    86 Staniskaw Adamczak, Tadeusz Orzechowski, Tomasz L. Stanczyk. The Infrared Measurement of Form Deviations of Machine Parts in Motion. Measurement. 2007,40:28~35
    87 Z. K. Peng, P. W. Tse, F. L. Chu. A Comparison Study of Improved Hilbert-Huang Transform and Wavelet Transform: Application to Fault Diagnosis for Rolling Bearing. Mechanical Systems and Signal Processing. 2005,19:974~988
    88 C. Quan, H. Niu, C. J. Tay. An Improved Windowed Fourier Transform for Fringe Demodulation. Optics & Laser Technology. 2009
    89 Lutfiye Durak. Shift-Invariance of Short-Time Fourier Transform in Fractional Fourier Domains. Journal of the Franklin Institute. 2009, 346:136~146
    90 Li Haosheng, Wu Su, Hubert Kratz. FFT and Wavelet-Based Analysis of the Influence of Machine Vibrations on Hard Turned Surface Topographies. Tsinghua Science and Technology. 2007, 12(4):441~446
    91 Lingadurai, M. S. Shunmugam. Metrological Characteristics of Wavelet Filter Used for Engineering Surfaces. Measurement. 2006, 39:575~584
    92 J. Antonino-Daviu, P. Jover, M. Riera, etc. DWT Analysis of Numerical and Experimental Data for the Diagnosis of Dynamic Eccentricities in Induction Motors. Mechanical Systems and Signal Processing. 2007, (21):2575~2589
    93 Satish Chand. SC-and SS-Wavelet Transforms. Signal Process. 2009, 89:305~313
    94 Zhu Kunpeng, Wong Yoke San, Hong Geok Soon. Wavelet Analysis of Sensor Signals for Tool Condition Monitoring: A Review and Some New Results. Machine Tools & Manufacture. 2009, 49:537~553
    95 P. S. Bhowmik, P. Purkait, K. Bhattacharya. A Novel Wavelet Transform Aided Neural Network based Transmission Line Fault Analysis Method. Electrical Power & Energy System. 2009, 31:213~219
    96 J. L. Rodgers, W. A. Nicewander. Thirteen Ways to Look at the Correlation Coefficient. The American Statician. 1988, 42:59~66
    97 L. Andren, L. Hakansson, A. Brandt, et al. Identification of Motion of Cutting Tool Vibration in a Continuous Boring Operation-Correlation to Structural Properties. Mechanical Systems and Signal Processing. 2004, 18:903~927
    98 Adam G. Rehorn, Ervin Sejdic, Jin Jiang. Fault Diagnosis in Machine Tools Using Selective Regional Correlation. Mechanical Systems and Signal Processing. 2006, 20:1221~1238
    99 Suryannarayana Chandaka, Amitava Chatterjee, Sugata Munshi. Cross-Correlation Aided Support Vector Machine Classifier for Classification of EEG Signals. Expert Systems with Applications. 2009, 36:1329~1336
    100 M. H. A. Bonte, A. de Boer, R. Liebregts. Determiniing the Von Mises Stress Power Spectral Density for Frequency Domain Fatigue Analysis Including out-of-phase Stress Components. Journal of Sound and Vibration. 2007, 302:379~386
    101 Keiko Yoshida. Power Spectral Density Peak Estimation From Broadband Data. Journal of Sound and Vibration. 2008,312:893~905
    102 F. Lu, D. Kennedy, F. W. Williams, et al. Symplectic Analysis of Vertical Random Vibration for Coupled Vehicle-track Systems. Journal of Sound and Vibration. 2008, 317:236~249
    103朱建忠,李圣怡,黄凯.超精密机床变分法精度分析及其应用.国防科技大学学报. 1997, 4:36~40
    104杨建国,潘志宏,薛秉源.数控机床几何和热误差综合的运动学建模.机械设计与制造. 1998, 5:31~32
    105陈涛,彭芳瑜,周云飞.基于结构误差补偿的多坐标机床后置变换.中国制造业信息化.2003, 32(2):88~90
    106 C. F. Cheung, W. B. Lee. Characterisation of Nanosurface Generation in Single-Point Diamond Turning. Int, J. Mach. Tools and Manuf. 2001,41:851~875
    107 W. B. Lee, C. F. Cheung. A Dynamic Surface Topography Model for the Prediction of Nano-Surface Generation in Ultra-Precision Machining. International Journal of Mechanical Sciences. 2001,43:961~991
    108 C. F. Cheung, W. B. Lee. A Muti-Spectrum Analysis of Surface Roughness Formation in Ultra-Precision Turning. Precision Engineering. 2002, (24):77~87
    109尹自强,李圣怡.振动影响下金刚石车削表面的形貌仿真.国防科技大学学报. 2003, 25(1):78~83
    110 Yuan Kang, Ping-chen Shen, etc. Modified Predictions of Restriction Coefficient and Flow Resistance for Membrane-type Restrictors in Hydrostatic Bearing by using Regression. Tribology International. 2007, (40):1369~1380
    111马锡琪,邓晓京.数控机床三维运动误差的测量技术及其评价方法.机械科学与技术.1994,(4):97~100
    112虞文华,吴昭同.数控机床运动误差源识别技术的研究.浙江大学学报. 1996, 4(30),408~414
    113 J. M. Lai, et al. Modeling and Analysis of Nonlinear Guide Way for Ball Measurement and Diagnosis. Int. J. Mach. Tools. Manufacturing. 1997, 37(5):687~707
    114洪迈生,苏恒,李自军,魏元雷.数控机床的运动精度诊断——评述与对策.机械工程学报. 2002, 38(2):90~94
    115丘华ほか.リンタ机构きを用ぃろNC工作机械の运动精度测量法.日本机械学会论文集.1996, 62 (593):320~325
    116姜明锡等.リンタ机构にょろNC工作机械の运动の测量方法.日本机械学会论文集. 1996, 62(602):4086~4091
    117何正嘉,孟庆丰,赵纪元.非平稳机械动态信号的时频分析.动态分析与测试技术. 1992, (3):5~11
    118赵佰亭,陈希军,曾庆双.基于小波变换的精密测试转台测角系统的故障诊断.中国惯性技术学报. 2007, 15(5):630~634
    119徐宁,侯仰海,杨春林.利用ACF和PSD对微观表面特性研究.机械研究与应用. 2004, 17(5):54~56
    120吴贤莉.基于功率谱密度的车削质量控制.航空精密制造技术. 1999, 35(1):23~24
    121杨智,戴一帆,王贵林.小波在基于功率谱密度特征曲线评价中的应用.激光技术. 2007, 31(6):627~629
    122张耀满,王旭东,蔡光起,藤立波.高速机床有限元分析及其动态性能试验.组合机床与自动化加工技术. 2004, 12:15-17
    123黄伯文,尹苟保,刘桂秋.高精度车床主轴回转误差运动数字式测量法.精密机床动态检测与精度控制论文选集. 1987.10
    124 A. B. Jones. A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions. ASME J. Basic Eng. .1960, 309–320
    125 S. Y. Jeon, K. H. Kim. A Fluid Film Model for Finite Element Analysis of Structures with Linear Hydrostatic Bearings. Proceedings of the Institution of Mechanical Engineers. 2004, 218:309~316
    126 Y. Tian. Static and Dynamic Modeling of Fluid Bearing by the Finite ElementMethod and Experimental Comparison. PhD. Thesis. Mechanical System Division, University of Technology of Compiègne, France. 1993
    127陈燕生等.液体静压支承原理和设计.国防工业出版社. 1980.12:39-42
    128 Yong Tian, Marc Bonis. Analytical Approach for the Determination of the Dynamic Coefficients of Hybrid Bearings. Wear. 1995,188:66~76
    129 Hengling Tang. Dynamics of Machine Tool. Machinery Industry Press. 1983
    130 Yuzhong Cao, Yusuf Altintas. A General Method for the Modeling of Spindle-Bearing Systems. Journal of Mechanical Design. 2004,126:1089~1104
    131 A. Bouzidane, M. Thomas. An Electrorheological Hydrostatic Journal Bearing for Controlling Rotor Vibration. Computers & Structures. 2008, (86): 463~472
    132 J. B. Bryan. International Status of Thermal Error Research [J]. Annals of CIRP, 1990, 39(2):645-656
    133 M. WECK, MCKEOWN P. , BONSE R. ,HERBST U. .Reduction and Compensation of Thermal Error in Machine Tools [J], Annals of CIPP, 1995, 44(2):589-598
    134 P. M. Ferrerira, C. R. Liu, A Method for Estimating and Compensating Quasistatic Errors of Machine Tools. Journal of Engineering for Industry, 1993, 115(1): 149-159
    135 Robert B. Aronson. War Against Thermal Expansion. Manufacturing Engineering. 1996, 116 (6):45-50
    136洪迈生,苏恒,熊诗波等.数控机床运动误差检测技术(待续).组合机床与自动化技术. 2002, 1:18-22
    137 William S. Janna. Engineering Heat Transfer. Printed in the United States of America. 1986
    138 Yugnus A. Cengel. Heat transfer: A Practical Approach. McGraw-Hill Publisher. 2003:26
    139 I. Pop, Derek Ingham. Convective Heat Transfer. Pergamon publisher. 2001.2
    140 Louis C. Burmeister. Convective Heat Transfer. 2nd ed. Publisher Wiley-Interscience. 1993:107
    141 Fouz, Infaz . Fluid Mechanics. Mechanical Engineering Deptartment, University of Oxford, 2001:96
    142 S. aus der Wiesche. Heat Transfer from a Rotating Disk in a Parallel AirCrossflow. International J. of Thermal Sci. ,2007, (46):745-754
    143 G. Cardone, T. Astarita, G. M. Carlomagno. Infrared Heat Transfer Measurements on a Rotating Disk. 1996, 1:1-7
    144 D. Dropkin, A. Carmi. Natural Convection Heat Transfer from a Horizontal Cylinder Rotating in Air. 1957, 79:741-749
    145毛英泰.误差理论与精度分析.国防工业出版社. 1982
    146 J. K. Lawson, C. R. Wolfe, K. R. Manes, et al. Specification of Optical Components Using the Power Spectral Density Function. SPIE. 1995, 2536 :38-50
    147 Goldstein H. Classical mechanics. 2nd ed. Addison-Wesley Publishing Company. 1980
    148 Huston R L,刘又午.多体系统动力学(上册).天津大学出版社. 1987
    149卢绍青.数控机床通用误差补偿技术研究.北京工业大学硕士论文, 2001:6
    150 Shiping Su, Yong Yang, Shenyi Li. Machining accuracy prediction system for CNC machine tools based on multi-body system theory. Journal of changsha university of electric power (natural science). 2003, 18(2):36~40
    151杨棣.机床动力学.机械工业出版社. 1983
    152孙训芳.材料力学(II)(第四版).高等教育出版社. 2002.6
    153党根茂.气体润滑技术.东南大学出版社. 1990.6
    154方同.振动理论及应用.西北工业大学出版社. 1998.5
    155《光学仪器设计手册》编写组:光学仪器设计手册.国防工业出版社. 1972
    156《机床译丛》编辑组:机床精度与测试.上海科学技术文献出版社. 1979
    157孙延奎.小波分析及其应用.机械工业出版社. 2005.3
    158冯之敬.机械制造工程原理.清华大学出版社. 1999.2
    159 Wei Gao, Makoto Tano, Takeshi Araki, etc. Measurement and Compensation of Error Motions of a Diamond Turning Machine. Precision Engineering. 2007, (31):310~316
    160 M. Ciavarella, G. Murolo, etc. Elastic Contact Stiffness and Contact Resistance for the Weierstrass Profile. Journal of the Mechanics and Physics of Solids. 2004, 52:1247-1265
    161温熙森,陈循,唐丙阳.机械系统动态分析理论与应用.国防科技大学出版社. 1998.4
    162 W. B. Lee, C.F.Cheung, S.To. A microplasticity analysis of micro-cutting force variation in ultra-precision diamond turning. Journal of Manufacturing Science and Engineering. 2002, 124:170~177
    163 K. D. Hurst, T. G. Habetler. Sensorless Speed Measurement Using Current Harmonics Spectral Estimation in Induction Machines Drives. IEEE Transactions on Power Electronics. 1996, 11(1): 66-73
    164 J. Blech. On Isothermal Squeeze Films. Journal of Lubrication Technology, 1983, 105:615~620

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700