用户名: 密码: 验证码:
稀土掺杂氧化铝恒速无压烧结行为及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温结构陶瓷是未来航空、航天发动机的关键材料,氧化铝-稀土系陶瓷熔点高达1700℃以上,备受人们关注,但是通过无压烧结工艺来制备此类材料,仍然存在很多问题,如烧结过程中均一性显微结构的形成,致密度的提高以及力学性能改善等,为了实现显微结构均一,力学性能优良的此类材料的无压烧结制备,有必要就其烧结行为进行研究。
     本论文以α-Al_2O_3以及纳米γ-Al_2O_3为原料,研究了稀土掺杂(RE=La、Ce、Nd、Gd、Eu、Y、Dy)氧化铝在恒速无压烧结条件下的烧结行为、膨胀行为、相变过程的影响及作用机理;建立了纯α-Al_2O_3低升温速率条件下的主烧结曲线,并研究了其烧结过程中的热行为。
     以全期烧结模型为基础建立了两种粒度分布的α-Al_2O_3低升温速率条件下(低于5℃/min)的主烧结曲线。α-Al_2O_3主烧结曲线对烧结路径不敏感,烧结体的相对密度仅是时间和温度的函数,利用主烧结曲线得到的密度和Archimedes法实测密度吻合,证明了所建立主烧结曲线的有效性,因此可以对陶瓷烧结过程的致密化行为和最终密度进行预测;烧结体显微结构的演变与其密度变化密切相关,利用主烧结曲线可以预测氧化铝陶瓷烧结过程中显微结构的演化;同时主烧结曲线提供了一种计算烧结激活能的新方法,200-500nm和2-3μm两种粒度氧化铝低升温速率烧结条件下的烧结激活能分别为1035和1148kJ/mol,大于高升温速率条件下得到的值。
     为了研究α-Al_2O_3恒速无压烧结过程中的热行为,对200-500nm原始粉以及10-20目的造粒后颗粒烧结过程中热力学函数进行了研究。研究表明烧结过程是一个吸热过程,相同升温速率条件下,造粒后颗粒烧结过程中的热焓要低于原始粉;两种颗粒低升温速率烧结过程中的热焓要大于高升温速率条件,这与烧结激活能的变化趋势相一致;通过直接法计算了样品的定压比热容C_p(单位为Jg~(-1)K~(-1)),发现随温度的升高,样品比热容不断增加,对两种样品1273.5K之前的比热容数据进行多项式拟合得到:200-500nm(C_p=2.70177-0.01187×T+1.35929×10~(-5)×T~2,拟合优度为0.99),10-20目(C_p=1.34048-0.00354×T+3.2239×10~(-6)×T~2,拟合优度为0.98);三种速率升温过程中,各种样品的热焓、熵以及吉布斯自由能的绝对值均在不断增加,表明样品的烧结过程是不可逆过程,以热力学函数不等式表示为dS>0或dG<0。
     稀土掺杂α-Al_2O_3烧结行为研究发现,稀土与氧化铝固相反应产生三种结构化合物-重稀土为石榴石结构RE_3Al_5O_(12)(RE=Y,Dy),轻稀土为磁铅石结构REAl_(11)O_(18)(RE=Nd,La,Ce)和钙钛矿结构AIREO_3(RE=Eu,Gd);与未掺杂样品相比,稀土掺杂均提高了样品收缩开始的对应温度,其中,Nd掺杂样品提高了近200℃;掺杂促进了致密化(La除外),其中Eu掺杂样品的收缩率比未掺杂样品提高了近3个百分点,掺杂抑制了颗粒粗化(La效果最明显),基体颗粒未出现异常长大,La和Nd掺杂样品中发现了长轴状及板状颗粒,主要是部分游离晶界的高迁移率使基体离子在某些基面发生优先偏聚引起;掺钕样品的透射电镜研究表明,当Nd离子在晶界处形成过饱和状态,就会产生第二相沉淀,主要分布于基体颗粒的交接处;掺杂后样品以沿晶断裂模式为主,主要是稀土氧化物与其它氧化物的共存弱化了氧化铝的界面结合强度,然而这种晶界强度的降低对氧化铝断裂韧性的影响是有限的。
     膨胀行为研究发现无论是坯体收缩前还是烧结体,其平均线膨胀系数均}JI于稀土掺杂得到较大提高;对于坯体样品,Nd掺杂样品最大为8.59×10~(-6)/℃,而未掺杂样品为6.78×10~(-6)/℃,轻稀土元素相对于重稀土元素,更有利于提高氧化铝坯体的热膨胀系数;对于烧结体,Eu掺杂样品最大为10.1×1010~(-6)/℃,而未掺杂样品为7.54×10~(-6)/℃,轻、重稀十对其影响差别不明显,基体中新物相的形成以及空位的增多是热膨胀系数增大的主要原因;根据复合体的热膨胀系数规律可以判定REAl_(11)O_(18)(RE=La,Ce,Nd),REAlO_3(RE=Gd,Eu),RE_3A_(15)O_(12)(RE=Y,Dy)三类结构化合物的热膨胀系数均要高于刚玉结构氧化铝。
     稀上掺杂及未掺杂纳米γ-Al_2O_3的烧结曲线分为R1(相变为主),R2(烧结致密化)两个阶段,掺杂抑制了其致密化;各种样品R1阶段相对密度变化值高于理论计算值,主要是相转变过程伴随有颗粒重排过程,不同掺杂对其影响存在差别;掺杂有效延长了样品中处于临界尺寸的θ相晶粒转变为α相形核粒了的时间;相变过程中,不同热处理条件下氧化铝的红外吸收谱存在差异,主要是由于不同物相的O~(2-)的密堆积方式和Al~(3+)的填充方式的不同影响了Al-O键的振动;La掺杂与未掺杂样品相同温度下对应红外特征吸收带400-1000cm~(-1)波数范围(Al-O键的振动吸收)吸收峰存在较大差别,证明了La~(3+)的引入改变了基体中Al~(3+)和O~(2-)周围的电子组态;La掺杂有效延迟了γ→α相转变过程中各中间相的出现,这主要是由于化合物LaAlO_3的产生(900-950℃之间)抑制了O~(2-)和Al~(3+)的扩散,从而提高了相变温度,不同稀土作用效果不同,主要是不同稀土对基体中Al~(3+)由四面体间隙位置向八面体间隙位置迁移速率的影响不同造成的。
The high-temperature structural ceramics, as the key materials, can be used as turbine blades for the shuttle in the future. The alumina doped with the rare earth having the melting point higher than 1700℃attracted much attention widely. However, there were still many problems about its preparation through pressureless sintering process, such as the formation of uniform structure, the increase of the density and the strength, et al. To prepare this kind of material with uniform structure and excellent strength through pressureless sintering process, it is necessary to investigate its sintering behavior.
     The pressureless sintering behaviors, thermal expansion behaviors, phase transformation process and the working mechanism at constant heating rates were investigated forα-Al_2O_3 and nanometerγ-Al_2O_3 doped with the rare earth (RE= La, Ce, Nd, Gd, Eu, Y, Dy). Otherwise, the master sintering curves (MSC) were constructed at low heating rates as well as the thermal behaviors were investigated for pureα-Al_2O_3.
     The MSC of 200-500nm and 2-3μmα-Al_2O_3 were constructed based on the combined-stage sintering model only at low constant heating rates lower than 5℃/min. In this condition, the sintering activation energies evaluated based on the MSC theory were 1035 and 1148 kJ/mol for 200-500nm and 2-3μm samples respectively, which were greater than that obtained at higher heating rates reported in other works. This phenomenan may be induced by the surface diffusion in the low temperature stage. The densities measured by Archimedes method for the samples undergoing different heating history agreed with that determined by the MSC. The results showed that the master sintering curve, in which the sintered density uniquely relies on the integral of a temperature function versus time, is insensitive to the heating path. Quantitative image analysis was used to characterize the sintered microstructure as a function of the time-temperature sintering conditions, and to verify the linkage between sintered density and microstructure. The results demonstrated how MSC theory can be applied to design a reproducible process to fabricate controlled density and microstructure ceramics undergoing the heating history with low heating rates.
     To study the thermal behaviors during the sintering process forα-Al_2O_3 with the particle size of 200-500nm, the thermodynamics functions of original particles and granulated particles with 10-20 mesh were investigated by DSC, respectively. It was found that the whole sintering process is an endothermic process. At the same heating rates, the enthalpy of the original particles was higher than that of granulated grains. For both of the two kinds of particles, the enthalpy during the sintering at low heating rates was greater than that of high heating rates, which complied with changing trend of the sintering activation energy. The specific heat capacity (c_p, J g~(-1) K~(-1)) of two samples obtained using the direct method increased with the temperature increasing. In the temperature range of room temperature-1273.5K, the relationship of c_p and the temperature can be expressed as certain multinomials: 200-500nm (c_p = 2.70177-0.01187×T+1.35929×10~(-5)×T~2, goodness of fitting was 0.99), 10-20 mesh (c_p = 1.34048 -0.00354×T + 3.2239×10~(-6)×T~2, goodness of fitting was 0.98). The absolute values of enthalpy, entropy and Gibbs energy rised with temperature increasing, which showed that the sintering process was anon-reversible process and could be expressed as dS>0 or dG<0.
     Three kinds of structural compounds including garnet-structure RE_3Al_5O_(12)(RE=Y, Dy), magnetoplumite-structure REAl_(11)O_(18)(RE=Nd, La, Ce) and perovskite-structure AIREO_3 (RE=Eu, Gd) came into being due to the solid reaction ofα-Al_2O_3 with the corresponding rare earth oxide during the sintering process. The initial shrinking temperatures for the doped samples were enhanced compared with the pure alumina, which for the Nd-doped sample was about 200℃higher than that of the un-doped specimen. The rare-earth dopants (La excluded) promoted the overall densification and inhibited the particle coarsing (La showing the stronger effect) without abnomal grain growth. The shrinkage of the Eu-doped sample was 3% higher than that of the un-doped specimen. There were some lathlike alumina grains in Nd- and La- doped specimens, which could be attributed to the preferential segregation of ions to some basal planes due to the higher mobility of some dissociative boundaries. In addition, it was found that the secondary phase precipitates occurred due to the supersaturation of Nd~(3+) at grain boundaries, which located predominantly at grain triple points. The fracture mode of intergranular dominated in the RE-doped samples, which could be ascribed to a weakened interface bonding as a result of the coexistence of rare-earth oxides and other oxides. However, the reduced grain boundary cohesion in RE-doped alumina is expected to have only a limited effect on fracture toughness.
     The average line expansion coefficients of the green compacts (α_g) before its shrinking and the sintered body (as) were enhanced by RE doping. For the green compact, theα_G, of Nd-doped specimen was 8.59×10~(-6)/℃, whereas, which was 6.78×10~(-6) /℃for un-doped sample, it was found that the light RE was more strongly than the heavy RE did for enhancingα_G For the sintered body, theα_S of Eu-doped specimen was 10.1×10~(-6)/℃, nevertheless, which was 7.54×10~(-6) /℃for the un-doped sample, it was found that the differences of light RE and heavy RE for enhancingα_S were little. The main factors causing the enhancedα_S were the formation of new compounds and the increasing vacancies due to the doping rare earth. According to the rule of the expansion coefficients for composites, it could be concluded that theα_S of REAl_(11)O_(18)(RE=La, Ce, Nd), REAlO_3(RE= Gd, Eu) and RE_3A_(15)O_(12)(RE=Y, Dy) were higher than that of the corundum-structure alumina.
     The sintering curves could be divided into two regimes of R1 (associated with the phase transition ofγ→αand R2 (densification ofα-Al_2O_3) for both RE-doped and un-doped nanometerγ-Al_2O_3. It was found that the RE doping inhibited the overall densification. An enhanced Rl relative density change, over and above that expected for the phase transitionγ→α, was brought about by particle re-arrangement (influenced by the doped RE) during the transformation. It was found that the time needed for performing the transformation of oneθ-crystallite of critical size to oneα-nucleus was lengthened significantly by the RE doping compared with the pure sample. The oxygen sublattice and the occupying interstitial sites of Al~(3+) for different alumina polymorphs were different, which would influence the vibration of Al-O bonds and further affected the IR spectra. The adsorption bands in the range of 400-1000cm~(-1) (characteristic bands of A-O vibration) for La-doped samples differenated greatly from that of un-doped specimens undergoing the same sintering process, which proved that the ionicity of Al~(3+) and O~(2-) were changed significantly due to the La dopant. The presence of LaAlO_3 precipitates (in the temperature range of 900-950℃) would block diffusion of O~(2-) and Al~(3+), which would retard the formation of the transition alumina effectively during the phase transitionγ→αand then enhancing phase transition temperature. It was found that the effect of doped RE for enhancing the ending temperature of phase transition was different, which could be attributed to the differences of them on influencing the migration rates of Al~(3+) from tetrahedral interstitial sites to octahedral interstitial sites.
引文
1 Su H, Johnson D L. Master sintering curve: A practical approach to sintering. J Am Ceram Soc, 1996(79): 3211-3217
    2 Ewsuk K G, Arguello J G. Controlling ceramic powder compaction through science-based understanding. Key Eng Mater, 2004(264): 149-154
    3 Ewsuk K G, Ellerby D T, DiAntonio C B. Analysis of nanocrystalline and microcrystalline ZnO sintering using master sintering curves. J Am Ceram Soc, 2006(89): 2003-2009
    4 Tatami J, Suzuki Y, Wakihara T, et al, Control of shrinkage during sintering of alumina ceramics based on master sintering curve theory. Key Eng Mater, 2006(317-318): 11-14
    5 姚义俊,丘泰,焦宝祥等.Y_2O_3,La_2O_3,Sm_2O_3对氧化铝陶瓷烧结及力学性能的影响.中国稀土学报,2005(23):156-161
    6 D Amutha Rani, Y Yoshizawa, K Hirao, et al. Effect of rare-earth dopants on mechanical properties of alumina. J Am Ceram Soc, 2004(87): 289-292
    7 Buban J P, Matsunaga K, Chen J, et al. Grain boundary strengthening in alumina by rare earth impurities. Science, 2006(311): 212-215
    8 Kaoru Nakamura, Teruyasu Mizoguchi, Naoya Shibata, et al. First-principles study of grain boundary sliding in α-Al_2O_3, Physical Review B, 2007(75): 1-8
    9 West G D, Perkins J M, Lewis M H. The effect of rare earth dopants on grain boundary cohesion in alumina. J Euro Ceram Soc, 2007(27): 1913-1918
    10 Filippo Maglia, Silvia Gennari, Vincenzo Buscaglia. Energetics of aluminum vacancies and incorporation of foreign trivalent ions in γ-Al_2O_3: An atomistic simulation study. J Am Ceram Soc, 2008(91): 283-290
    11 Masakuni Ozawa. Thermal stabilization of catalytic compositions for automobile exhaust treatment through rare earth modification of alumina nanoparticle support. Journal of alloys and compounds, 2006(408-412): 1090-1095
    12 Paglia G., Buckley C E, Rohl A L, et al. Boehmite derived γ-alumina system 1: Structural evolution with temperature, with the identification and structural determination of a new transition phase, γ-Alumina. Chem Mater, 2004(16): 220-236
    13 Ragan D D, Mates T, Clarke D R. Effect of yttrium and erbium ions on epitaxial phase transformations in alumina. J Am Ceram Soc, 2003(86): 541-545
    14 刘吉平,廖莉玲.无机纳米材料.第一版.北京:科学出版社,2003.15页
    15 杜明仙,翟效珍,丁李源等.高比表面积窄孔分布氧化铝的制备Ⅰ:沉淀条件的影响.催化学报,2002(23):465-468
    16 古堂生,林光明.非晶态和晶态纳米氧化铝粉的相变与红外光谱.无机材料学报,1997(12):840-844
    17 Roger B Bagwell, Gary L Messing. Effect of seeding and water vapor on the nucleation and growth of α-Al_2O_3 from γ-Al_2O_3. J Am Ceram Soc, 1999(82): 825-832
    18 Kao Hung Chan, Wei Wen chen. Kinetics and microstructure of heterogeneous transformation of θ-Alumina to α-Alumina. J Am Ceram Soc, 2000(83): 362-368
    19 Kuczynski G C. Self-diffusion in sintering of metallic particles. Trans Am Inst Mining Met Eng 1949(185): 169-178
    20 Frenkel J. Viscous flow of crystalline bodies under the action of surface tension. J Appl Phys, 1945(9): 385-393
    21 Coble R L. Sintering of crystaling of solids Ⅰ: Intermediate and final stage diffusion models. J Appl Phys, 1961(32): 787-792
    22 Kuczynski G C. Statistical theory of sintering. Z Metallkde, 1976(67): 606-610
    23 Frost H J. Cavities in dense random packings. Acta Metall, 1982(30): 889-904
    24 Arzt E. The influence of an increasing particle coordination on the densification of spherical powders. Acta Metall, 1982(30): 1883-1890
    25 Lange F F. Sinterability of agglomerated powders. J Am Ceram Soc, 1984(67): 83-89
    26 Kellett B J, Lange F F. Thermodynamics of densification Ⅰ: Intering of simple particle arrays, equilibrium configurations, pore stability, and shrinkage. J Am Ceram Soc, 1989(72): 725-734
    27 Ashby M F. A first report on sintering diagrams. Acta Metall, 1974(22): 275-289
    28 Johnson D L. New method of obtaining volume grain-boundary and surface diffusion coefficients from sintering data. J Appl Phys, 1969(40): 192-200
    29 Markondeya Raj P, Odulena A, Cannon W R. Anisotropic shrinkage during sintering of particle-oriented systems numerical simulation and experimental studies. Acta Mater, 2002(50): 2559-2570
    30 刘士荣,杨爱云.物理化学概念辨析.第一版.长沙:湖南科学技术出版社,1986.529页
    31 Yuji Hotta. Microstructure changges in sintered Al_2O_3 by acid treatment of compacts produced by slip casting in gypsum molds. Ceramic International, 2002(28): 593-599
    32 Dehaudt P, Bourgeois L, Chevrel H. Activation energy of UO_2 and UO_(2+x) sintering. Journal of Nuclear Materials, 2001(299): 250-259
    33 Wang J, Raj R. Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure aluminal, and aluminal doped with zirconia or titania. J Am Ceram Soc, 1990(73): 1172-1175
    34 Wang H T,Liu X Q.Kinetics and mechanism of a sintering process for macroporous alumina ceramics by extrusion.J Am Ceram Soc,1998(81):781-784
    35 Xuebin Zhang,Xingqin Liu,Guangyao Meng.Sintering kinetics of porous ceramics from natural diatomite.Journal of the American Ceramic Society,2005(88):1826-1830
    36 Kuang X,Carotenuto G,Nicolais L.A review of ceramic sintering and suggestions on reducing sintering temperatures.Advanced Performance Materials,1997(4):257-274
    37 Chu M Y,Rahaman N N,Brook R J,et al.Effect of heating rate on sintering and coarsening.J Am Ceram Soc,1991(74):1217-1225
    38 Sutton R A,Schaffer G B.An atomistic simulation of solid state sintering using monte carlo method.Materials Science and Engineering A,2002(335):253-259
    39 Zeming He,J Ma.Constitutive modeling of alumina sintering:grain-size effect on dominant densification mechanism.Computational Materials Science,2005(32):196-202
    40 Suk-Joong L Kang,Yang-Ⅱ Jung.Sintering kinetics at final stage sintering:Model calculation and map construction,Acta Mater,2004(52):4573-4578
    41 Smothers W J,Reynolds H J.Sintering and grain growth of alumina.J Am Ceram Soc,1954(37):588-595
    42 Huesup Song,Robert L Coble.Morphology of platelike abnormal grains in lifquid-phase-sintered alumina.J Am Ceram Soc,1990(73):2085-2090
    43 Kim Y M,Hong S H,Kim D Y,et al.Anisotropic grain growth in SiO_2/TiO_2-doped alumina.J Am Ceram Soc,2000(83):2809-2812
    44 Liang A Xue,I-Wei Chen.Low-temperature sintering of alumina with liquid-forming additive.J Am Ceram Soc,1991(74):2011-2013
    45 Erkalfa H,Misrli Z,Denmirci M,et al.The densification and microstructual development of Al_2O_3 with manganese oxide addition.J Euro Ceram Soc,1995(15):165-171
    46 Doh-Hyung Riu,Young-Min Kong,Hyoun-Ee Kim.Effect of Cr_2O_3 addition on microstructural evolution and mechanical properties of Al_2O_3 J Euro Ceram Soc,2000(20):1475-1481
    47 Chen Pei-Lin,Chen I-Wei.In-situ alumina/aluminate platelet composites.J Am Ceram Soc,1992(75):2610-2612
    48 Masaki Yasuoka,Kiyoshi Hirao,Mnuel E Brito,et al.High-strength and high-fracture-toughness ceramics in the Al_2O_3/ LaAl_(11)O_(18)systems.J Am Ceram Soc,1995(78):1853-1856
    49 Yi-Quan Wu,Yu-Feng Zhang,Xiao-Xian Huang,et al.In-situ growth of needlelike LaAl_(11)O_(18)for reinforement of alumina composites.Ceram Int,2001(27):903-906
    50 Upadhyaya G S.Some issues in sintering science and technology.Mater Chem & Phy,2001(67): 1~5
    51 Ewsuk K G,Arguello J G,Bencoe D N,et al.Characterizing powders for dry dressing,sintering.Bull Am Ceram Soc,2003(82):41~47
    52 Blaine D,Park S J,Suri P,et al.Application of work-of sintering concepts in powder metals.Metall & Mater Trans A,2006(37):2827~2832
    53 Hansen J D,Rusin R P,Teng M H.Combined-stage sintering model.J Am Ceram Soc,1992(75):1129~1135
    54 Kiani S,Panw J,Yeomans J A.A new scheme of finding the master sintering curve,J Am Ceram Soc,2006(89):3393-3396
    55 DiAntonio C B,Ewsuk K G.Controlled and predicted ceramic sintering through master sintering curve theory.Ceram Trans,2005(157):15~23
    56 Kutty T R G,Khan K B,Hegde P V,et al.Development of a master sintering curve for ThO_2.J Nucl Mater,2004(327):211~219
    57 Deborah C Blaine,Seong Jinpark Pavansuri,Randailm German.Application of work-of-sintering concepts in powder metals.Metallurgical and and Materials Transactions A,2006(37A):2827-2835
    58 Kutty T R G,Khan K B,Hegde P V,et al.Determination of activation energy of sintering of ThO_2-U_3O_8 pellets using the master sintering curve approach.Science of Sintering,2003(35):125-132
    59 Park S J,German R M.Master curves based on time integration of thermal work in particulate materials.Int J Materials and Structural Integrity,2007(1):128-147
    60 Kutty T R G,Hegde P V,Khan K B,et al.Densification behavior of UO_2 in six different atmospheres.J Nucl Mater,2002(305):159-168
    61 Fang T T,Shive J T,Shiau F S.On the evaluation of the activation of sintering.Mater Chem & Phy,2003(80):108-113
    62 Rusin R P.Sintering of nickel powder with or without dispersed alumina particles:[Ph.D.Dissertation]:Northwestern University,Evanston,IL,1993
    63 Su H,Johnson D L.Sintering of alumina in microwaveinduced oxygen plasma.J Am Ceram Soc,1996 (79):3199~3201
    64 Shuigen Huang,Lin Li,Jef Vleugels,et al.Thermodynamic prediction of the nonstoichiometric phase Zr_(1-z)Ce_zO_(2-x)in the ZrO_2-CeO_(1.5)-CeO_2 system.Journal of the European Ceramic Society,2003(23):99-106
    65 Yuksel Sankaya,Kezban Ada,Müserref (O|¨)nal.A model for initial-stage sintering thermodynamics of an alumina powder.Powder Technology,2008(188):9~12
    66 van Ekeren PJ, van Genderen A C G., van den Berg G. J K. Redetermination of the thermodynamic properties of the solid-solid transition of adamantane by adiabatic calorimetry to investigate the suitability as a reference material for low-temperature DSC-calibration, Thermochimica Acta, 2006(446): 33-35
    67 Emily M Hunt, Michelle L Pantoya. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites. Journal of applied physics, 2005(98): 1-8
    68 Run-hua Fan, Bing Liu, Jing-de Zhang, et al. Kinetic evaluation of combustion synthesis 3TiO_2+ 7Al→3TiAl+2Al_2O_3 using non-isothermal DSC method. Materials Chemistry and Physics, 2005(91): 140-145
    69 Sanders J P, Gallagher P K. Kinetic analysis using simultaneous TG/DSC measurements Part Ⅱ: Decomposition of calcium carbonate having different particle sizes. Journal of Thermal Analysis and Calorimetry, 2005(82): 59-664
    70 张均艳,李成栋,田学雷.基线处理办法在DSC测量中的应用.山东大学学报(工学版),2002(32):552-558
    71 张均艳.DSC测量中基线的准确确定.特种铸造及有色合金,2005(25):276-277
    72 Riko Ozao, Hiroshi Ogura, Moyuru Ochiai, et al. Thermal analysis of powdered alumina materials. Journal of Thermal Analysis, 1997(49), 49: 961-970
    73 陈维钧,陈建中.用DSC法测定BBO、LBO和CLBO晶体的恒压比热容.人工晶体学报,2003(32):152-155
    74 Krishnan R V, Manikandan P, Jena H, et al. Heat capacity of La_6UO_(12), Sm_6UO_(12) and Eu_6UO_(12) by DSC, Thermochimica Acta, 2008(472): 95-98
    75 张希华,刘长霞,李木森等.稀土改性增韧补强氧化铝基陶瓷复合材料机制研究.中国稀土学报,2006(24):414-417
    76 Matsunaga K, Nishimura H, Muto H, er al. Direct measurements of grain boundary sliding in yttrium-doped alumina bicrystals, Appl Phys Lett, 2003(82): 1179-1181
    77 Voytovych, MacLaren I, Gulgün M A, et al. The effect of yttrium on densification and grain growth in α-alumina, Acta Mater, 2002(50): 3453-3463
    78 Kaoru Nakamura, Teruyasu Mizoguchi, Naoya Shibata, et al. First-principles study of grain boundary sliding in α-Al_2O_3. Physical Review B, 2007(75): 1-8
    79 Dillon S J, Harmer M P. Multiple grain boundary transitions in ceramics: A case study of alumina. Acta.Mater, 2007(55): 5247-5254
    80 Altay A, Gulgun M A. Microstructural evolution of calcium-doped α-Alumina. J Am Ceram Soc, 2003(86): 623-629
    81 Kang S J L, Kang Y I. Sintering kinetics at final stage sintering: model calulation and map const ruction. Acta Mater, 2004(52): 4573-4578
    82 Fang J, Thompson A M, Harmer M P, et al. Effect of Y and La on the sintering behavior of ultra-high-purity A1_2O_3. J Am Ceram Soc, 1997(80): 2005-2012
    83 Wang C M, Cargill III G S, Chan H M, et al. Structural features of Y saturated and supersaturated grain boundaries in alumina. Acta Mater, 2000(48): 2579-2591
    84 Gülgün M A, Voytovych R, Maclaren I, et al. Cation segregation in an oxide ceramic with low solubility: Yttrium doped α-Alumina. Interface Sci, 2002(10): 99-110
    85 Chong-Min Wang, Helen M Chan, Martin P Harmer. Effect of Nd_2O_3 doping on the densification and abnormal grain growth behavior of high purity alumina. J Am Ceram Soc, 2004(87): 378-383
    86 I Bae, Baik S. Determination of critical concentrations of silica and/or calcia for abnormal grain growth in alumina. J Am Ceram Soc, 1993(76): 1065-1067
    87 Gulgun M A, Voytovych R, Bischoff E, et al. Microstructural development in α-Al_2O_3. Ceram Trans, 2000(118): 115-125
    88 Sato E, Carry C. Yttria doping and sintering of submicrometer-grained a-Alumina. J. Am. Ceram. Soc, 1996(79): 2156-2160
    89 Gruffel P, Carry C. Effect of grain size on yttrium grain boundary segregation in fine-grained alumina. J Eur Ceram Soc, 1993(11): 189-199
    90 Lartigue S, Priester L, Dupau F, et al. Dislocation activity and differences between tensile and compressive creep of yttria doped alumina. Mater Sci Eng A, 1997(164): 211-215
    91 Lartigue-Korinek S, Carry C, Priester L. Multi-scale aspects of the influence of yttrium on the microstructure, sintering and creep of alumina. J Eur Ceram Soc, 2002(22): 1525-1541
    92 Wang C M, Cargill III G S, Harmer M P, et al. Atomic structural environment of grain boundary segregated Y and Zr in creep resistant alumina from EXAFS. Acta Mater, 1999(47): 3411-3422
    93 Deng Z Y, Zhou Y, Brito M E, et al. Fracture-mode change in alumina-silicon carbide composites doped with rare-earth impurities. J Am Ceram Soc, 2003(86): 1789-1792
    94 李萍,杜永娟,俞浩等.锂辉石与氧化锆对堇青石陶瓷热膨胀率的影响.耐火材料,2003(37):139-141
    95 邓霞 ,岑远坤,陈永平等.氧化铝-氧化锆纳米复合渗透陶瓷热膨胀特性的研究.华西口腔医学杂志,2003(21):241-242
    96 薛明俊,孙承绪.改善氧化铝陶瓷抗热震性初探.华东理工大学学报,200l(27):701-703
    97 费业泰,赵静.材料热膨胀系数的发展与未来分析.中国计量学院学报,2002(13):259-263
    98 储刚,翟秀静,符岩等.燃烧法合成的纳米α-Al_2O_3晶格热膨胀系数研究.无机材料学报,2005(20):755-758
    99 巢永烈,孟辉,万乾炳等.GI-Ⅱ型渗透陶瓷代型材料与氧化铝烧结初期热膨胀性能匹配性的 研究.实用口腔医学杂志,2000(16):102-104
    100 苗恩铭.材料热膨胀系数影响因素概述.工具技术,2005(39):26-29
    101 钦征骑.新型陶瓷材料手册.第一版.南京:江苏科学技术出版社,1996.86页
    102 Bodnar I V, Korzun B V, Chibusova L V. Temperature dependence of thermal expansion coefficient of (CuInTe_2) _(1-x) (2ZnTe)_x solid solutions. Physica Status Solidi (A) Applied Research, 2000(179): 305-309
    103 Berlin Al, Gendelman O V, Mazo M A, et al. Thermal expansion coefficient in simple models of condensed matter. Doklady Akademii Nauk, 2004(397): 779-782
    104 徐强,王富耻,朱时珍等.空位对Sm_2Zr_2O_7陶瓷热膨胀系数的影响.稀有金属材料与工程,2007(36):541-543
    105 倪亚茹,陆春华,张焱等.稀土对硼铝硅酸盐玻璃形成及热膨胀性能的影响.稀土,2006(27):47-49
    106 Mishra R. S, Lesher C E, Mukherjee A K. High-pressure sintering of nanocrystallin γ-Al_2O_3. J Am Ceram Soc, 1996(79): 2989-2992
    107 Okorn Mekasuwandumrong, Panutin Tantichuwet, Choowong Chaisuk, et al. Impact of concentration and Si doping on the properties and phase transformation behavior of nanocrystalline alumina prepared via solvothermal synthesis. Materials Chemistry and Physics, 2008(107): 208-214
    108 Trueba M, Trasatti S P. γ-Alumina as a support for catalysts: A review of fundamental aspects. Eur J Inorg Chem, 2005(17): 3393-403
    109 Damyanova S, Petrov L, Centeno M A, et al. Thermal stability of alumina aerogel doped with yttrium oxide, used as a catalyst support for the thermocatalytic cracking (TCC) process: An investigation of its textural and structural properties. Applied Catalysis A: General, 2007(317): 275-283
    110 Legros C, Carry C, Bowen P, et al. Sintering of a transition alumina: effects of phase transformation, powder characteristics and thermal cycle. Journal of the European Ceramic Society, 1999(19): 1967-1978
    111 Sylvie Lartigue-Korinek, Corinne Legros, Claude Carry, et al. Titanium effect on phase transformation and sintering behavior of transition alumina. Journal of the European Ceramic Society, 2006 (26): 2219-2230
    112 P L Chang, F S Yen, K C Cheng, et al. Examinations on the critical and primary crystallite sizes during θ- to α-phase transformation of ultrafine alumina powders. Nano Letter, 2001(1): 253-261
    113 Okada K., Hattori A, Kamesshima Y, et al. Effect of monovalent cation additives on the gamma to alpha alumina phase transition. J Am Ceram Soc, 2000(83): 1233-1236
    114 Yen F S, Chang J L, Yu P C. Relationships between DTA and DIL characteristics of nanosized alumina powders during θ- to α-phase transformation. Journal of Crystal Growth, 2002 (246): 90-98
    115 张学清,项金钟,胡永茂等.纳米Al_2O_3的制备及红外吸收研究.中国陶瓷,2004(40):24-27
    116 李莉娟,孙凤久,楼丹花等.纳米氧化铝的晶型及粒度对其红外光谱的影响.功能材料,2007(38):479-484
    117 Okorn Mekasuwandumrong, Varong Pavarajarn, Masashi Inoue, et al. Preparation and phase transformation behavior of χ-alumina via solvothermal synthesis. Materials Chemistry and Physics, 2006(100): 445-450
    118 Schaper H, Amesz D J, Doesburg EBM, et al. The influence of high partial steam pressures on the sintering of lanthanum oxide doped gamma alumina. Applied Catalysis A: General, 1984(9): 129-132
    119 Wolverton C, Hass K C. Phase stability and structure of spinel-based transition aluminas. Phys Rev B, 2001(63): 1-16
    120 Paglia G, Buckley C E, Rohl A L, et al. Tetragonal structure model for boehmite-derived γ-Alumina. Phys Rev B, 2003(68): 1-11
    121 Paglia G, Buckley C E, Rohl A L, et al. Boehmite derived y-Alumina System Ⅰ: Structural evolution with temperature, with the identification and structural determination of a new transition phase, γ'-Alumina. Chem Mater, 2004(16): 220-236
    122 Castro R H R, Ushakov S V, Gengembre L. Surface energy and thermodynamic stability of γ-Alumina: effect of dopants and water. Chem Mater, 2006(18): 1867-1872
    123 Cai S H, Rashkeev S N, Pantelides S T. Atomic scale mechanism of the transformation of γ-Alumina to θ-Alumina, Phys Rev Lett, 2002(89): 1-4
    124 Pinto H P, Nieminen R M, Elliott S D, et al. Ab Initio Study of γ-Al_2O_3 Surfaces, Phys Rev B, 2004(70): 1-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700