用户名: 密码: 验证码:
含Sc超高强Al-Zn-Mg-Cu-Zr合金的均匀化和腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用活性熔剂保护熔炼,水冷铜模激冷铸造技术制备Al-8.1Zn-2.3Cu-2.05Mg-0.21Sc-0.12Zr合金铸锭。通过金相显微镜(OM)、扫描电镜(SEM),透射电镜(TEM)、差热分析(DSC)和X射线衍射(XRD)等分析手段,研究合金均匀化处理前后合金相组成和化学成分的变化。合金经均匀化、热轧、中间退火、冷轧成2.2 mm厚的板材。研究合金板材在不同时效制度下的晶间腐蚀、剥落腐蚀和应力腐蚀行为,以及不同时效制度下合金板材电化学阻抗谱的变化规律。得出了以下主要结论:
     (1)铸态Al-8.1Zn-2.3Cu-2.05Mg-0.21Sc-0.12Zr合金的晶界偏析比较严重,经均匀化处理后,合金晶界变得细小稀疏,合金元素分布趋于均匀,T相(Al2Mg3Zn3)完全回溶到基体中。合金适宜的均匀化处理制度为470℃×24 h,与均匀化动力学分析结果相符。
     (2)含Sc超高强Al-Zn-Cu-Mg-Zr合金单级时效后的晶间腐蚀和剥落腐蚀敏感性顺序为:自然时效>欠时效>峰时效>过时效。对合金腐蚀发展过程的电化学阻抗谱进行等效电路拟合,拟合数据与实验结果一致。随着在EXCO溶液中浸泡时间的延长,极化电阻值增大,合金的抗电化学腐蚀性能增强。自然时效态合金的极化电阻(Rpo)值较人工时效态低,表明人工时效处理能提高合金抗应力腐蚀的能力,其中过时效态合金的抗腐蚀性能最好。
     (3)与T6峰时效处理相比,双级时效或回归再时效后合金的晶间腐蚀深度都较浅,剥落腐蚀等级较低。电化学阻抗谱分析表明,双级时效和回归再时效处理后,合金的孔隙电容值减小,极化电阻值增大,抗剥落腐蚀性能提高。
     (4)在3.5%NaCl溶液中,T6峰时效态合金对应变速率为1×10-6s-1的应力腐蚀最为敏感。T6峰时效态合金应力腐蚀断口呈沿晶腐蚀断裂形貌,应力腐蚀区为准解理形貌,晶界处韧窝小且浅,断口中也存在大量的沿晶裂纹和二次裂纹,而双级时效和回归再时效态合金二次裂纹较少,具有较强的抗应力腐蚀能力。
     (5)含Sc超高强Al-Zn-Cu-Mg-Zr合金抗应力腐蚀性能提高的主要原因是晶界析出相聚集粗化并呈断续分布。这种晶界结构一方面阻断了晶界的阳极溶解;另一方面粗大的晶界析出相成为氢原子的不可逆陷阱,降低了晶界的氢脆倾向。
Al-8.1Zn-2.3Cu-2.05Mg-0.21Sc-0.12Zr alloy ingot was prepared by using active flux and water chilling copper mould. The phase constituents and composition distribution of the as-cast and homogenized alloy were studied by optical microscopy (OM), electronic microstructure analysis (SEM, TEM), differential scanning calorimeter (DSC) and X-ray diffraction (XRD). Then, the homogenized alloy was hot rolled, annealed and cold rolled into a sheet with thickness of 2.2 mm. The intergranular corrosion, exfoliation corrosion and stress corrosion behaviour of the alloy were studied, and the experimental results were analysized by means of Electrochemical Impedance Spectroscopy (EIS). The conclusions can be summarized as follows:
     (1) The main phases of the as-cast are Serious grain boundary segregation exists in the as-cast Al-8.1Zn-2.3Cu-2.05Mg-0.21Sc-0.12Zr alloy. After homogenization, the grain boundaries become sparse, and the alloying elements distributed uniformly. The T (Al2Mg3Zn3) phase dissolves completely into matrix during homogenization. The proper homogenizing process is 470℃×24 h which is consistent with the result of homogenization kinetics analysis.
     (2) The sequence of corrosion susceptibility of the one-stage aged alloys is: over-aged> peak-aged> under-aged> nature-aged. All EIS patterns are simulated, and the good agreement between the experimental results and the simulated results has been obtained. The polarization resistance for the alloys increases with the immersion time, which induces an increase in the electrochemical corrosion resistance of the alloy. On the other hand, the artificial aging heat treatment can provide better electrochemical corrosion behaviour than the naturally aging treatment. And the susceptibility of the over-aged alloy is the lowest.
     (3) The RRA or two-stage age treatment can provide the less depth of intergranular corrison and lower exfoliation corrosion grade than T6 peak-aged treatment. The results from the electrochemical impedance show that after the RRA or two-stage age treatment, the C2 to the capacitance of the pore layer decreases and the polarization resistance increases, which means that the RRA and two-stage age treatment can improve the corrosion resistance of the alloy.
     (4) The T6 peak-aged alloy is the most susceptible to SCC in 3.5% NaCl solution at 1×10-6s-1. The fractograph of the alloy reveals intergranular fracture, with a small amount dimples along grain boundaries and a large number of secondary cracks. While the number of the secondary cracks is relatively less for the two-step aged or RRA alloy at the same strain rate, indicating that the two-step aging or RRA treatment can improve the resistance to stress corrosion.
     (5) The increase of the stress corrison resistance of the alloys is mainly due to the accumulation and discontinuous distribution of grain boundary precipitates. On the one hand, the grain boundary structure block the anodic dissolution of the grain boundary precipitates; on the other hand, the coarse grain boundary precipitates are irreversible hydrogen traps, which reduce the tendency of the grain boundary embrittlement.
引文
[1]Fridlyander J S, Senatorova O G. Development and application of high-strength Al-Zn-Mg-Cu alloys[J]. Materials Science Forum,1996,217-222:1813-1818.
    [2]Dixit M, Mishar R S, Sankaran K K. Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys[J]. Materials Science and Engineering A,2008,478 (1-2):163-172.
    [3]王洪斌,黄进峰.Al-Zn-Mg-Cu系超高强铝合金的研究现状与发展趋势[J].材料导报,2003,17:1-一4.
    [4]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004.
    [5]弗得良捷尔.高强度变形铝合金(吴学译)[M].上海:上海科技出版社,1963.
    [6]马场义雄.超硬铝(EDS)及飞机铝合金发展动向(孙本良译)[J]. Aluminum Fabrication Technologyl:铝加工技术),1990,(4):21-31.
    [7]陈昌麒.超高强铝合金的发展[J].中国有色金属学报,2002,12:23-27.
    [8]Lukasak D A. Strong aluminum alloy shaves aircraft weight[J]. Advanced Marerials and Processes,1991,10:46-49.
    [9]甘卫平,范洪涛,许可勤.Al-Zn-Mg-Cu系高强铝合金研究进展[J].铝加工2003,150(3):6-12.
    [10]张君尧.航空结构用高纯高韧性铝合金的进展(1)[J].轻金属,1994,(6):54-58.
    [11]刘昌斌.夏长清.戴晓元.高强高韧铝合金的研究现状及发展趋势[J].矿冶工程,2003,23(5):74-82.
    [12]金相图谱编写组.变形铝合金金相图谱[M].北京:冶金工业出版社,1975.
    [13]Mondolfo L F.铝合金的组织与性能(王祝堂译)[M].北京:冶金工业出版社,1976.
    [14]Chinh N Q, Kovacs Z S, Reich L. New approach to the electric aging of dielectrics[J]. Materials Science Forum,1996,217:1293-1298.
    [15]Polmear I J. A trace element effect in alloys based on the aluminum-zinc-magnesium system [J]. Nature,1960,186:303-304.
    [16]Polmear I J. The ageing characteristics of complex Al-Zn-Mg alloys, distinctive effects of copper and silver on the ageing mechanism[J]. Journal of Institute Metals,1960-1961,89:51-59.
    [17]Westhof J.高强Al-Zn-Mg合金组织和强度性能与时效条件的关系(张育钦译)[J].轻合金加工技术,1993,21(10):44-47.
    [18]Smith W F.工程合金的组织和性能(张泉译)[M].北京:冶金工业出版社,1984.
    [19]Hyatt M V. Symp of Aluminum alloy in the Aircraft Industry. Turin,1976: 31-36.
    [20]王祝堂,张燕,江斌.钪-铝合金的新型微量合金元素[J].轻合金加工技术,2002,28(1):31-32.
    [21]杨守杰,谢优华,戴圣龙,陆政.锆元素在铝合金中的应用[J].航空材料学报,2002,22(6):56-61.
    [22]杨守杰,谢优华,朱娜,戴圣龙,陆政,苏彬,颜鸣皋.Zr对Al-Zn-Mg-Cu系超高强铝合金力学性能的影响[J].材料研究学报,2002,16(6):406-412.
    [23]Mukhopadhyay A K, Shiflet G J, Starke E A Jr. Role of vacancies on the precipitation processes in Zr modified aluminum based alloys[J]. Scripta Metallurgica,1989,24:307-312.
    [24]Mukhopadhyay A K, Yang Q B, Singh S R. The influence of zirconium on the early stages of aging of a ternary Al-Zn-Mg alloys[J]. Acta Metallugica et Materialia,1994,42 (9):3083-3091.
    [25]肖代红,巢宏,陈康华,黄伯云.微量Sc对AA7085铝合金组织与性能的影响[J].中国有色金属学报,2008,18(12):2145-2150.
    [26]Novotny G M, Ardell A J. Precipitation of Al3Sc in binary Al-Sc alloys[J]. Materials Science and Engineering A,2001,318 (1-2):144-154.
    [27]Cavanaugh M K, Birbilis N, Buchheit R G, Bovard F. Investigating localized corrosion susceptibility arising from Sc containing intermetallic A13Sc in high strength Al-alloys[J]. Scripta Materialia,2007,56 (11):995-998.
    [28]戴晓元,夏长清,刘昌斌.钪对Al-Zn-Mg-Cu-Zr合金组织性能的影响[J].稀有金属材料与工程,2006,35(6):913-916.
    [29]戴晓元,夏长清,古一.Al-Zn-Mg-Cu-Sc-Zr系富Al角相图评估[J].材料导报,2006,20(11):77-83.
    [30]Poganitsch R等.高强Al-Zn-Mg-Cu合金的金属间化合物[J].轻合金加工技术,1984,12(9):40-45.
    [31]Keams M A. The mechanism of phase transformations in crystalline solids[J]. Light Metals,1999,1:713-720.
    [32]刘小涛,董杰,崔建中.高强铝合金均匀化热处理[J].中国有色金属学报, 2003,13(4):909-913.
    [33]Nakai M, Takehiko E. New aspects of development of high strength Al alloys for aerospace applications[J].Materials Science and Engineering A,2002,285: 62-68.
    [34]Robson J D. Optimizing the homogenization of zirconium containing commercial aluminium alloys using a novel process model[J]. Materials Science and Engineering A,2002.338 (1-2):219-229.
    [35]陈康华,刘红卫,刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响[J].中南工业大学学报,2000,31(6):528-531.
    [36]陈康华,刘红卫,刘允中.强化固溶对Al-Zn-Mg-Cu合金理学性能和断裂行为的影响[J].金属学报,2001,37(1):29-33.
    [37]Min Song, Kanghua Chen. Effects of the enhanced heat treatment on the mechanical properties and stress corrosion behaviour of an Al-Zn-Mg-Cu alloy[J]. Journal of Materials Science,2008,43:5265-5273.
    [38]XiWu Li, BaiQing Xiong, YongAn Zhang, Cheng Hua, Feng Wang, BaoHong Zhu, HongWei Liu. Effect of one-step aging on microstructure and properties of a novel Al-Zn-Mg-Cu-Zr alloy[J], Science in China Series E:Technological Science,2009,52(1):67-71.
    [39]Cina B. Reducing the Susceptibility of Alloys Particularly Aluminum Alloys to Stress Corrosion Cracking[P].United States,3856584,1974-12-24.
    [40]Thompson J J, Tankins E S. A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7xxx aluminum alloys[J]. Materials Performance,1987,6:45-49.
    [41]谷亦杰,林建国,张永刚,陈昌麒.回归再时效(RRA)处理对7050铝合金的影响[J].金属热处理,2001,1:31-35.
    [42]宁爱林,刘志义,冯春,曾苏民.回归时间对RRA处理超高强铝合金力学性能的影响[J].材料研究学报,2008,22(4):357-362.
    [43]Chun Feng, Zhiyi Liu, Ailin Ning, Yanbin Liu, Sumin Zeng. Retrogression and re-aging treatment of Al-9.99%Zn-1.72%Cu-2.5%Mg-0.13%Zr aluminum alloy[J]. Transition Nonferrous Metals Society China,2006,16:1163-1170.
    [44]Brown R H, Fink W L, Hunter M S. Measurement of irreversible potentials as a metallurgical research tool[J].Transcation, American Intitute of Mining and Metallurgical Engineers,1941,143:115-120
    [45]Galvele J R, De Micheli S M. Mechanism of intergranular corrosion of Al-Cu alloys[J]. Corrosion Science,1970.10(11):795-807.
    [46]Buchheit R G, Morgan J P, Stoner G E. Electrochemical behavior of the T1 (Al2CuLi) intermetallic compound and its role in localized corrosion of AI-2% Li-3%Cu alloys[J]. Corrosion,1994.50:120-124.
    [47]Buchheit R G, Wall F D, Stoner G E. Anodic dissolution-based mechanism for the rapid cracking, pre-exposure phenomenon demonstrated by aluminum-lithium-copper alloys[J]. Corrosion,1995.51:417-423.
    [48]Cabot P L, Garrido J A, Perez E. Effect of the addition of Cr and Nb on the microstructure and electrochemical corrosion of heat-treatable Al-Zn-Mg alloys[J]. Journal of Applied Electrochemistry,1995,25 (11):781-791.
    [49]Maitra S, English G C. Mechanism of localized corrosion of 7075 alloy plate[J]. Metallugica and Materials Transaction A,1981.12:535-541.
    [50]Cabot P L, Centellas F, Garrido J A, Rogriguez R M, Brillas E, Perez E. Influence of the heat treatment in the electrochemical corrosion of AI-Zn-Mg alloys[J]. Journal of Applied Electrochemistry,1992,22 (11):541-552.
    [51]Ramgopal T, Gouma P I, Frankel G S. Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150[J]. Corrosion,2002,58 (8):687-697.
    [52]Robinson M J. The role of wedging stresses in the exfoliation corrosion of high strength aluminum alloys[J]. Corrosion Science,1981,23 (8):887-899.
    [53]Robinson M J, Jackson N C. Exfoliation corrosion of high strength Al-Cu-Mg alloys:effect of grain structure[J]. Corrosion,1999,34 (1):45-49.
    [54]Kelly D J, Robinson M J. Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090[J]. Corrosion,1993,49 (10):787-795.
    [55]李荻,张琪,王弟珍,郭宝兰,张玉梅.LY12铝合金晶间腐蚀模拟试验研究[J].航空材料学报,1998.24(1):77-82.
    [56]Moran J P. The influence of composition and microstructure on the corrosion behavior of two AlLiX alloys[J]. Corrosion,1987,43 (6):374-382.
    [57]Reboul M C, Bouvaist J. Exfoliation corrosion mechanisms in the 7020 aluminum alloy[J]. Werkstoffe and Korrosion,1979,30:700-712.
    [58]李娟,管线钢应力腐蚀慢应变速率拉伸试验研究:[硕士学位论文].长沙:中南大学,2007.
    [59]左景伊.应力腐蚀破裂[M].西安:西安交通大学出版社,1985.115-130.
    [60]Seamans G M. Evidence for Crack-Arrest Markings on Intregranular Stress Corrosion Fracture Surfaces in AI-Zn-Mg Alloys[J]. Metallurgical and Materials Transactions A,1980,11 (5):846-850.
    [61]Hardwick D A, Thompson A W, Bernstein.I M. Effect of copper content and Microstructure on the Hydrogen Embrittlement of Al-6Zn-2Mg Alloys[J] Metallurgical and Materials Transactions A,1983,14 (12):2517-2526.
    [62]Najjar D, Magnin T, Warner T J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy[J]. Materials Science and Engineering A,1997,238 (2):293-302.
    [63]Reda Y, Karim R A, Elmahallawi I. Improvements in mechanical and stress corrosion cracking properties in Al-Alloy 7075 via retrogression and reaging [J]. Materials Science and Engineering A,2008,485:468-475.
    [64]Conde A, Damborenea J de. An electrochemical impedance study of a natural aged Al-Cu-Mg alloy in NaCl[J]. Corrosion Science,1997,39 (1):295-303.
    [65]Conde A, Damborenea J de. Electrochemical modeling of exfoliation corrosion behavior of 8090 alloy[J]. Electrochimica Acta,1998,43 (8):849-860
    [66]Conde A, Damborenea J de. Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy[J]. Corrosion Science,2000,42: 1363-1377.
    [67]Osorio W R, Peixoto L C, Cante M V, Garcia A. Electrochemical corrosion characterization of Al-Ni alloys in a dilute sodium chloride solution[J]. Electrochimica Acta,2010,55:4078-4085.
    [68]Martins D Q, Osorio W R, Maria E P. Souza, Rubens Caram, Amauri Garcia. Effects of Zr content on microstructure and corrosion resistance of Ti-30Nb-Zr casting alliys for biomedical applications[J]. Electrochimica Acta,2008,53: 2809-2817.
    [69]Osorio W R, Peixoto L C, Cante M V, Garcia A. Microstructure features affecting mechanical properties and corrosion behavior of a hypoeutectic Al Ni alloy[J]. Materials and Design,2010,31:4485-4489.
    [70]Cao FH, Zhang Z, Li J F, Cheng Y L, Zhang J Q, Cao C N. exfoliation corrosion of aluminum alloy AA7075 examined by electrochemical impedance spectroscopy[J]. Materials and Corrosion,2004,55:18-23.
    [71]Li J F, Jia Z Q, Li C X, Birbilis N, Cai C. exfoliation corrosion of 7150 Al alloy with various tempers and its electrochemical impedance spectroscopy in EXCO solution[J]. Materials and Corrosion,2009,60 (6):407-414.
    [72]李劲风,张昭,曹发和,程英亮,张鉴清,曹楚南.LC4铝合金剥蚀及其电化学阻抗行为[J].中国有色金属学报,2002,12(6):1189-1193.
    [73]刘黄,罗兵辉,柏振海.Sc、Zr对Al-Zn-Mg-Cu合金组织与性能的影响[J].轻合金加工技术,2006,34(2):43-48.
    [74]王月.含钪铝合金的研究发展[J].上海金属,2003,25(1):36-40.
    [75]尹志民,潘清林,姜锋.钪和含钪合金[M].长沙:中南大学出版社,2007.
    [76]潘清林.Sc与Ti、Zr、Mn复合微合金化在Al-Mg合金中的作用:[博士学位论文].长沙:中南大学,2003.
    [77]卫英慧,贾连锁,胡兰青.Al-Li-Cu-Zr合金中T1相结构、形核和长大机制研究[J].稀有金属材料与工程,2003,32(6):428-431.
    [78]梁文杰.高强可焊耐蚀含Sc的Al-Cu-Li-Zr合金微观组织与性能研究:[博士学位论文].长沙:中南大学,2009.
    [79]Gui Q H, Jiang X J, Ma L M. Effect of 0.1%Y on microstructure and properties of 8090 Al-Li alloy [J]. Scrip Metall Mater,1993,28(3):297-300.
    [80]刘俊生.含Sc超高强Al-Zn-Mg-Cu-Zr合金热模拟与热处理研究:[硕士学位论文]长沙:中南大学,2007.
    [81]中华人民共和国国家质量技术监督局.GB 7998-2005.铝合金晶间腐蚀测试方法[S].北京:中国标准出版社,2005-7.
    [82]ASTM International, United States. ASTM G34-2001.Standard test method for exfoliation corrosion susceptibility in 2xxx and 7xxx series aluminium alloys[S].2001-12.
    [83]中华人民共和国国家质量技术监督局.GB/T 15970.7-2000.金属和合金的腐蚀-应力腐蚀试验-第七部分:慢应变速率试验[S].北京:中国标准出版社,2000-9.
    [84]Hillert A.合金扩散和热力学(赖和怡,刘国勋译)[M].北京:冶金工业出版社,1999.
    [85]刘晓涛,崔建忠.铝合金均匀化扩散动力学研究[J].材料导报.2004,18(6):102-104.
    [86]Liu X C, An C Q, Cui Z X. Metal Corrosion[M]. National Defence Industry Press, Beijing,2002.
    [87]Osorio W R, Spinelli J E, Ferreira I L, Garcia A. The role of macrosegregation and dendritic array spacings on the electrochemical behavior of an Al-4.5%Cu alloy[J]. Electrochimica Acta,2007,52:3265-3273.
    [88]Osorio W R, Goulart P R, Santos G A., Neto C M, Garcia A. Effect of dendritic arm spacing on mechanical properties and corrosion resistance of A19WtPctSi and Zn27WtPctAl alloys[J]. Metallurgical and Materials Transactions A,2006, 37:2525-2538.
    [89]Keddam M, Kuntz C, Takenouti H, Schuster D, Zuili D. Exfoliation corrosion of aluminum alloys examined by electrode impedance[J]. Electrochimica Acta, 1997,42(1):87-97.
    [90]曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响[J].中国腐蚀与防护学报,1989,9(4):261-270。
    [91]Cremasco A, Osorio W R., Celia M A, Garcia A, Caram R. Electrochemical corrosion behaviour of a Ti-35Nb alloy for medical prostheses[J]. Electrochimica Acta,2008,53:4867-4874.
    [92]Osorio W R, Cremasco A, Protasio P A, Garcia A, Caram R. Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications[J]. Electrochimica Acta,2010,55:759-770.
    [93]曹发和.高强度航空铝合金局部腐蚀的电化学研究:[博士学位论文].杭州:浙江大学,2005.
    [94]肖纪美,曹楚南.材料腐蚀学原理[M].北京:化学工业出版社,2002.
    [95]赵麦群,雷阿丽.金属的腐蚀与防护[M].北京:国防工业出版社,2002.
    [96]Ramgopal T, Gouma P I, Frankel G S. Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150[J]. Corrosion,2002,58 (8):687-697.
    [97]Wang Z T, Tian R Z. Handbook of Aluminum Alloy and its Working[M]. Central South University Press, Changsha,2000.
    [98]李劲风,张昭,郑子樵,谭澄宇,张鉴清.拉应力对7075铝合金的剥蚀及电化阻抗谱的影响[J].腐蚀科学与防护技术,2005,17(2):79-82
    [99]Singh P M, Lewandowsk J J. Effects of treatment on stress corrosion cracking of a discontinuously reinforced aluminum (DRA) 7xxx alloy during slow strain rate testing[J]. Scripta Materialia,1995,33 (9):1393-1399.
    [100]Puiggali M, Zielinski A, Olive J M, Renauld M, Desjardins D, Cid M. Effect of microsttucture on stress corrosion cracking of an Al-Zn-Mg-Cu alloy[J]. Corrosion Science,1998,40 (4/5):805-819.
    [101]Conde A, Fernandez B J, de Damborenea J J, Characterization of the SCC behaviour of 8090 Al-Li alloy by means of the slow-strain-rate technique[J]. Corrosion Science,1998,40 (1):91-102.
    [102]Davo B, Conde A, Damborenea J. de. Stress corrosion cracking of B13, a new high strength aluminum lithium alloy[J]. Corrosion Science,2006,48: 4113-4126.
    [103]Oliveira A F, Barros D E, Cardoso K R, Travessa D N. The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys[J]. Materials Science and Engineering A,2004,379:321-326.
    [104]Park J K, Ardell A J. Microchemical analysis of precipitate free zones in 7075-A1 in the T6, T7 and RRA tempers[J]. Acta Metallurgica et Materialia, 1991,39(4):591-598.
    [105]Tsai T C, Chuang T H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys[J]. Materials Science and Engineering A,1997, A379: 135-144.
    [106]Song R G, Dietzel W, Zhang B J, Liu W J, Tseng M K, Atrens A. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia,2004,52 (16):4727-4743.
    [107]Song R G, Tseng M K, Zhang B J, Liu J, Jin Z H, Shin K S. Grain boundary segregation and hydrogen-induced fracture in 7050 aluminum alloy[J]. Acta Materialia,1996,44 (8):3241-3248.
    [108]Jing-Chen Lin, Hsueh-Lung Liao, Wern-Dare Jehng, Chih-Horng Chang, Sheng-Long Lee. Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution[J]. Corrosion Science, 2006,48:3139-3156.
    [109]Wang D, Ma Z Y. Effect of pre-strain on microstructure and stress corrosion cracking of over-aged 7050 aluminum alloy[J]. Journal of Alloys and Compounds,2009,469:445-450.
    [110]Qingjiang Meng, Frankle G S. Effect of Cu content on corrosion behaviour of 7 ×××series aluminum alloys[J]. Journal of the Electrochemical Society B, 2004,151 (5):271-283.
    [111]Andreatta F, Terryn H, Wit De. Corrosion behaviour of the different tempers of AA7050 aluminum alloy[J]. Electrochimica Acta,2004,49 (17-18):2851-2862.
    [112]Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys:An experimental survey and discussion[J]. Journal of the Electrochemical Society B,2005,152 (4):140-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700