用户名: 密码: 验证码:
AL6XN超级奥氏体不锈钢循环形变及损伤行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AL6XN超级奥氏体不锈钢作为一种应用背景广阔、性能优异的新型不锈钢材料,使用过程中必然要承受各种单向、循环等类型的载荷,有关它的力学性能以及疲劳行为的研究具有重要的实际意义。但是目前此方面的系统研究仍未开展。本论文选取AL6XN合金作为研究对象,考察了其在不同应变速率下的单向变形与损伤行为,并着重研究了此材料在恒应力幅控制和恒塑性应变幅控制下的循环形变及损伤行为。
     AL6XN不锈钢的单向变形行为的应变速率敏感性较低。单向变形均以位错滑移为主要变形特征。不同应变速率下的拉伸断口均由纤维区和剪切唇组成,纤维区由具有大小两相尺寸的韧窝组成。压缩屈服强度与拉伸屈服强度基本相近。
     AL6XN不锈钢的应力幅-疲劳寿命曲线满足Basquin关系,而塑性应变幅-疲劳寿命曲线满足Coffin-Manson关系。AL6XN不锈钢在较低塑性应变幅下材料表现出了持续的循环软化行为;当塑性应变幅达到5×10-3以上时,材料表现出了先循环硬化而后循环软化的特点,但均未发现明显的应力饱和现象。
     对于应力幅控制下的疲劳变形,当外加应力幅小于其拉伸屈服强度时,表面变形特征主要表现为在晶粒内或孪晶内的滑移以及连续穿越晶粒和孪晶的“之”字形滑移等;当外加应力幅稍大于其拉伸屈服强度时,还观察到形态各异的二次裂纹,有穿晶裂纹、沿晶裂纹、穿晶/沿晶混合裂纹等。对于塑性应变幅控制下的低周疲劳变形,二次裂纹的特征随应变幅的增加而呈现出一定的规律:在较低应变幅下表面裂纹以穿晶裂纹为主,裂纹沿滑移带方向扩展;中等应变幅下裂纹的扩展路径较为复杂,主要为沿晶-穿晶混合型裂纹。较高应变幅下的二次裂纹以沿晶为主要扩展特征。另外,当塑性应变幅高于3×10-3时,沿孪晶界萌生裂纹现象也变得明显。
     恒应力幅控制下的AL6XN不锈钢的疲劳断口形貌特征与外加应力幅有一定的关系。随应力幅从低于屈服强变化到高于屈服强度,疲劳源区的微观特征从脆性的解理台阶和脆性疲劳条纹逐渐转变为规则的塑性疲劳条带和二次裂纹的形成;裂纹扩展区均表现为塑性疲劳条纹的形成,而最终瞬时断裂区的特征均表现为韧窝的形成。恒应变幅控制下的AL6XN不锈钢的疲劳断口形貌呈现出类似的特征。
     利用SEM-ECC和TEM技术对低周疲劳样品表面位错组态进行观察发现,随着应变幅的增加,位错组态特征逐步由平面滑移型位错结构(如平面滑移带)向波状滑移型位错结构(如脉络、位错胞、PSB楼梯等)发生演变。一些变形集中区还有二次孪晶出现。另外,利用SEM-ECC技术对裂纹尖端位错组态进行了观察,发现在裂纹尖端及附近区域晶粒内形成了近似沿裂纹扩展方向发展的拉长的位错胞结构。
As a kind of newly-developed stainless steel materials with a broad application background and excellent performance, the A16XN super-austenitic stainless steel would be inevitably subjected to uniaxial or cyclic loads during the actual service. Therefore, studies on its mechanical and fatigue behavior are of particular importance for its further development and practical applications. But until now, no systematical investigation in this area has yet been performed. In light of this, the A16XN super-austenitic stainless steel was selected in the present work as the target material to examine its uniaxial deformation and damage behavior at different strain rates, stressing upon the cyclic deformation and damage behavior under constant stress amplitude control and constant plastic strain amplitude control.
     A16XN stainless steel shows a low strain rate sensitivity of its uniaxial deformation behavior, and dislocation slip is the main uniaxial deformation feature. All fracture surfaces induced by tensile deformation at different strain rates can be divided into two parts, i.e., fibrous zone and shear lip zone. The fibrous zone consists of dimples with a bimodal size. It is noted that the compressive yield strength and tensile yield strength are basically comparable.
     The curve of fatigue life versus stress amplitude of the AL6XN stainless steel meets the Basquin relationship, while the curve of fatigue life versus plastic strain amplitude follows the Coffin-Manson relationship. This material exhibits monotonically sustained cyclic softening behavior at low plastic strain amplitudes. However, when the plastic strain amplitude is as high as 5×10-3s-1, the stress response curve of this material enters into an striking softening stage just after an initial hardening stage. No obvious stress saturation phenomenon appears.
     For the fatigue deformation under constant stress amplitude control, as the applied stress amplitude is below the tensile yield strength, the surface deformation feature is primarily manifested by slips in gains and twins, and zigzag slips crossing some grains and twins, and etc. However, when the applied stress amplitude is slightly higher than its tensile yield strength, the secondary cracks with different patterns are also found, such as transgranular cracks, intergranular cracks, transgranular/intergranular mixed-model cracks and so on. For the low-cycle fatigue deformation under constant plastic strain amplitude control, the secondary crack features exhibit a certain varying rule with increasing strain amplitude. At low strain amplitudes, the majority of cracks are transgranular ones, strictly propagating along the slip bands. At moderate strain amplitudes, the crack growth path is more complicated, and cracks are mainly intergranular/transgranular mixed-model ones. As the plastic strain amplitude is raised up to high level, secondary cracks extend mainly along the grain boundaries. In addition, when the plastic strain amplitude is higher than 3×10-3, the cracks initiating along twin boundaries also become apparent.
     The fatigue fracture features of the AL6XN steel under constant stress amplitude control are more or less related with the applied stress amplitude. As the stress amplitude changes from lower values than the yield strength to ones higher than the yield strength, the micro-features with brittle cleavage steps and brittle fatigue striations in the fatigue crack source zone changes gradually into features with regular fatigue striations and the formation of secondary cracks. The micro-characteristics in the fatigue crack growth zone are basically featured by the formation of ductile fatigue striations, and the micro-features in the final rapid fracture area for all samples correspond to the formation of dimples. The fatigue fracture features of the AL6XN steel under constant plastic strain amplitude control present quite similar situation.
     The low-cycle fatigue dislocation arrangements have also been observed using the electron channeling contrast (ECC) technique in scanning electron microscopy (SEM) and a transmission electron microscopy (TEM). It is found that with increasing strain amplitude, the dislocation structures with planar slip type (e.g. planar slip bands) are evolved gradually into those with wavy slip type (e.g. veins, dislocation cells and persistent slip band ladders and etc.). Secondary twins form in some deformation concentration areas. Furthermore, the dislocation at the crack tip has been detected by SEM-ECC. It is found that the major microstructural features around the crack (tip) are dominated by the elongated dislocation cells, which form in great number in the grains near the crack (tip). These elongated cells seemingly tend to develop away from the crack but towards the crack growth direction.
引文
1.肖纪美著。不锈钢的金属学问题[M],北京:冶金工业出版社,2006.
    2.王晓齐。中国钢铁工业现状和发展动向[J],冶金信息导刊,2000,6:3-9.
    3.李创新。中国钢铁工业结构调整及对原材料需求展望[J],中国废钢铁,2002,6:2-17.
    4.田志凌。中国钢铁工业现状及发展[J],焊接,2002,8:4-7.
    5.吴玖等著,双相不锈钢[M],北京:冶金工业出版社,1999.
    6. Nemat-Nasser S, Guo W, Kihl D P. Theromechanical response of AL6XN stainless steel over a wide range of strain rates and temperatures [J], J Mech Phys Solids,2001,49: 1823-1846.
    7. Suresh著,王中光等译。材料的疲劳[M],北京:国防工业出版社,1999.
    8.束德林著。金属力学性能[M],北京:机械工业出版社,1987.
    9.戈康达S著,颜鸣皋,刘才穆译。金属的疲劳与断裂[M],上海科学技术出版社,1983.
    10. Albert W A J. (Uber Treibseile am Harz.) Archive fur Mineralogie [M], Geognosie, Bergbau und Huttenkunde,1838,10:215-234.
    11. Rankine W J M. On the causes of unexpected breakage of the journals of railway axles and the means of preventing such accidents by observing the law of continuity in their construction [C]. Proceedings of the Institute of Civil Engineers, London 2,1843, 105-108.
    12. Ewing J A, and Humfrey J C. The fracture of metals under rapid alterations of stress [J]. Phil. Trans. R. Soc.,1903, A200:241-250.
    13. Zappfe C A, and Worden C O. Fractographic registrations of fatigue [J], Trans. Am. Soc. Metals,1951,43:958-969.
    14. Thompson N, Wadsworth N J, and Louat N. The origin of fatigue fracture in copper [J], Phil. Mag.,1956,1(2):113-126.
    15. Forsyth, P. J. E., and Ryder, D. A., Fatigue fracture [J], Aircraft Engineering,1960,32: 96-99.
    16. Hall E O. Twinning and diffusions in metals [M], Butterworth&Co., Ltd., London,1954.
    17.曾春华著,奇妙的疲劳现象[M]。科学出版社,1986
    18. Mughrabi H. The cyclic hardening and saturation behaviour of copper single crystals [J], Mater. Sci. Eng.,1978,33(2):207-223.
    19. Winter A T. A model for the fatigue of copper at low plastic strain amplitudes [J]. Phil. Mag.,1974,30(4):719-738.
    20. Cheng A S, and Laird C. The high cycle fatigue life of copper single crystals tested under plastic-strain-controlled conditions [J], Mater. Sci. Eng.,1981,51:55-60.
    21.金能韫.面心立方晶体的循环形变及其位错反应模型:ⅠCu晶体的循环形变[J],金属学报,1988,A24(5):299-310.
    22.金能韫.面心立方晶体的循环形变及其位错反应模型:Ⅱ循环形变的位错反应模型[J],金属学报,1988,A24(5):311-316.
    23. Bhat S P, and Laird C. The cyclic stress-strain curves in monocrystalline and polycrystalline metals [J], Scripta Metall.,1978,12(8):687-692.
    24. Mughrabi H. Plateaus in the cyclic stress-strain curves of single-and polycrystalline metals [J], Scripta Metall.,1979,13(6):479-484.
    25. Lukas P, and Kunz L. Is there a plateau in the cyclic stress-strain curves of polycrystalline copper [J], Mater. Sci. Eng.,1985,74:L1-L5.
    26. Glage A, Weidner A, Richter T, et al. Low cycle fatigue behavior and microstructure of a high alloyed metastable austenitic cast TRIP-steel [J], Esomat,2009,10:1051-1059.
    27. Cho H, Kim B K, Kima I S, et al. Low cycle fatigue behaviors of type 316LN austenitic stainless steel in 310℃ deaerated water-fatigue life and dislocation structure evelopment [J], Materials Science and Engineering A,2008,476:248-256.
    28. Hancock J R, and Grosskreutz J C. Mechanisms of fatigue hardening in copper single crystals [J], Acta Metall.,1969,17(2):77-97.
    29. Basinski S J, Basinski S J, and Howie A. Early stages of fatigue in copper single crystal [J], Phil. Mag.,1969,19(161):899-924.
    30. Li S X, Li Y, Li G Y, Yang J H, Wang Z G, and Lu K. The early stages of fatigue and evolution of persistent slip bands in a copper single crystal [J], Phil. Mag. A.,2002,82: 867-883.
    31.朱荣,李守新,李勇,李明扬,晁月盛.Cu单晶体驻留滑移带的形成与消失[J],金属学报,2004,40:467-470.
    32. Laufer E E, and Roberts W N. Dislocations and persistent slip bands in fatigued copper [J], Phil. Mag.,1966,14:67-78.
    33. Watt D F, Embury J D, and Ham R K. The relation between surface and interior structures in low-amplitude fatigue [J], Phil. Mag.,1968,17:199-203.
    34. Woods P J. Low-amplitude fatigue of copper and copper-5 at.% aluminium single crystals [J], Phil. Mag.,1973,28:155-191.
    35. Coates D G. Kikuchi-like reflection patterns obtained with the scanning electron microscope [J], Philos. Mag.,1967,16(144):1179-1184.
    36. Stickler R, Hughes C W, and Booker G R. Proc. Of 4th Annual scanning electron microscope symposium [C], Chicago IIT Research Institute, USA,1971, p.473-480.
    37. Joy D C, Booker G R. Pro. Of 6th Annual scanning electron microscope symposium [C], Chicago IIT Research Institute, USA,1973, p.138-143.
    38. Zauter R, Petry F, Bayerlein M, Semmer C, Christ H J, and Mughrabi M. Electron channelling contrast as a supplementary method for microstructural investigations in deformed metals [J], Phil. Mag. A.,1992,66:425-436.
    39. Schwab A, Bretschneider J, Buque C, Blochwitz B, and Holste C. Application of electron channelling contrast to the investigation of strain localization effects in cyclically deformed fee crystals [J], Phil. Mag. Lett.,1996,74:449-454.
    40. Chen D L, Melisova D, Weiss B, and Stickler R. The electron channeling contrast technique applied to the characterization of dislocation structures in the vicinity of a fatigue crack [J], Fat. Fract. Engng. Mater. Struct.,1997,20:1551-1561.
    41. Zhang Z F, and Wang Z G. Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries [J], Acta Mater.,2003,51(2): 347-364.
    42.胡运明,陈道伦,苏会和,王中光.直接观察位错结构的扫描电镜电子通道衬度技术[J],材料研究学报,1997,11:240-243.
    43.李小武.铜单晶体循环形变行为的取向效应[D],沈阳:中国科学院金属研究所,1998.
    44. Hamada A S, Karjalainen L P, Puustinen J. Fatigue behavior of high-Mn TWIP steels [J], Mater. Sci. Eng. A,2009,517:68-77.
    45. Kaneko Y, Fukui K, Hashimoto S. Electron channeling contrast imaging of dislocation structures in fatigued austenitic stainless steels [J], Mater. Sci. Eng. A,2005,400-401: 413-417.
    46. Petersmeier T, Martin U, Eifler D, et al. Cyclic fatigue loading and characterization of dislocation evolution in the ferritic steel X22CrMoV121 [J], Inter. J. Fatigue.,1998, 20(3):251-255.
    47. Curtin W A, Deshpande V S, Needleman A, et al. Hybrid discrete dislocation models for fatigue crack growth [J], Inter. J. Fatigue,2010,32:1511-1520.
    48. Bjerkeen C, Melin S. A tool to model short crack fatigue growth using a discrete dislocation formulation [J], Inter. J. Fatigue,2003,25:559-566.
    49. Pippan R, Weinhandl H. Discrete dislocation modelling of near threshold fatigue crack propagation [J], Inter. J. Fatigue,2010,32:1503-1510.
    50. Hansson P, Melin S. Influence of fatigue load range on the growth of a microstructurally short edge crack simulated by a discrete dislocation formulation [J], Inter. J. Fatigue, 2006,28:714-721.
    51. Hansson P, Melin S. Dislocation-based modelling of the growth of a microstructurally short crack by single shear due to fatigue loading [J], Inter. J. Fatigue,2005,27:347-356.
    52. Bjerken C, Melin S. Growth of a short fatigue crack-A long term simulation using a dislocation technique [J], Inter. J. Soli. Struct.,2009,46:1196-1204.
    53. Hansson P, Melin S, Persson C. Computationally efficient modelling of short fatigue crack growth using dislocation formulations [J], Eng. Fract. Mech.,2008,75:3189-3205.
    54. Brinckmann S, Giessen E V. A discrete dislocation dynamics study aiming at understanding fatigue crack initiation [J], Mater. Sc. Eng. A,2004,387-389:461-464.
    55. Kenderian S, Berndt T P, Green R E, et al. Ultrasonic monitoring of dislocations during fatigue of pearlitic rail steel [J], Mater. Sci. Eng. A,2003,348:90-99.
    56. Deshpande V S, Needleman A, Giessen E V. Scaling of discrete dislocation predictions for near-threshold fatigue crack growth [J], Acta Mater.,2003,51:4637-4651.
    57. Konovalov S V, Atroshkina A A, Ivanov Y F, et al. Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment [J], Mater. Sci. Eng. A,2010,527:3040-3043.
    58. Qu R, Patankar R, Rao M D. Stochastic modeling of fatigue crack propagation by collective motion of dislocations [J], Inter. J. Fatigue,2007,29:181-191.
    59. Huang H L. A study of dislocation evolution in polycrystalline copper during low cycle fatigue at low strain amplitudes [J], Mater. Sci. Eng. A,2003,342:38-43.
    60. Gromova A V, Ivanov Y F, Vorobyov S V, et al. Ways of the dislocation substructure evolution in austenite steel under low and multicycle fatigue [J], Procedia Eng.,2010,2: 83-90.
    61. Robertson C, Fivel M C, Fissolo A. Dislocation substructure in 316L stainless steel under thermal fatigue up to 650 K [J], Mater. Sci.Eng. A,2001,315:47-57.
    62. Shih C C, Ho N J, Huang H L. Cyclic hardening behavior for interstitial-free steel [J], J. Mater. Sci.,2009,44:212-220.
    63. Kang T H, Li, D M, Lee Y D, et al. Alloying and aging effects on the fatigue crack growth of duplex stainless steels [J], Mater. Sci. Eng. A,1998,251:1992-1999.
    64. Puzzolante J L, Scibetta M, Chaouadi R, et al. Tensile and low-cycle fatigue properties of solution annealed type 316L stainless steel plate and TIG-weld exposed to 5 dpa at low-temperature (42℃) [J], J. Nucl. Mater.,2000,283-287:428-434.
    65. Stolarz J, Baffle N, Magnin T. Fatigue short crack behaviour in metastable austenitic stainless steels with different grain sizes [J], Mater. Sci. Eng. A,2001,319-321:521-526.
    66. Kruml T, Polak J. Fatigue softening of X10CrA124 ferritic steel [J], Mater. Sci. Eng. A, 2001,319-321:564-568.
    67. Byun T S, Farrell K, Lee E H. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation [J], J. Nucl. Mater.,2001, 298:269-279.
    68. Villechaise P, Sabatier L, Girard J C. On slip band features and crack initiation in fatigued 316L austenitic stainless steel:Part 1:Analysis by electron back-scattered diffraction and atomic force microscopy [J], Mater. Sci. Eng. A,2002,323:377-385.
    69. Bosansky J, Smida T. Deformation twins—probable inherent nuclei of cleavage fracture in ferritic steels [J], Mater. Sci. Eng. A,2002,323:198-205.
    70. Aubin V, Quaegebeur P, Degallaix S. Cyclic plasticity of a duplex stainless steel under non-proportional loading [J], Mater. Sci. Eng. A,2003,346:208-215.
    71. Blochwitz C, Tirschler W. Influence of texture on twin boundary cracks in fatigued austenitic stainless steel [J], Mater. Sci. Eng. A,2003,339:318-327.
    72. Byun T S, Hashimoto N, Farrell K. Temperature dependence of strain hardening and plastic in stability behaviors in austenitic stainless steels [J], Acta Mater.,2004,52: 389-399.
    73. Tokaji K, Kohyama K, Akita M. Fatigue behaviour and fracture mechanism of a 316 stainless steel hardened by carburizing [J], Inter. J. Fatigue,2004,26:543-551.
    74. Agarwal N, Kahn H, Avishai A, et al. Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization [J]. Acta Mater., 2007,55:5572-5580.
    75. Menthe E, Rie K-T. Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding [J], Surf. Coat. Tech.,1999,116-119:199-204.
    76. Wu D, Li Z. A New Pb-Free Machinable Austenitic Stainless Steel [J], Inter. J. Iron Steel Res.,2010,17(1):59-63.
    77. Shi F, Wang L J, Cui W F, et al. Precipitation Kinetics of Cr, N in High Nitrogen Austenitic Stainless Steel [J], Inter. J.Iron Steel Res.,2008,15(6):72-77.
    78. Li H B, Jiang Z H, Zhang Z R, et al. Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel [J], Inter. J. Iron Steel Res.,2009, 16(1):58-61.
    79. Byun T S. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J], Acta Mater.,2003,51:3063-3071.
    80. Zielinski W, Abduluyahed A A, Kurzydlowski K J. TEM studies of dislocation substructure in 316 austenitic stainless steel strained after annealing in various environments [J], Mater. Sci. Eng. A,1998,249:91-96.
    81. Pilloni G, Quadrini E, Spigarelli S. Interpretation of the role of forest dislocations and precipitates in high-temperature creep in a Nb-stabilised austenitic stainless steel [J], Mater. Sci. Eng. A,2000,279:52-60.
    82. Gerland M, Alain R, AitSaadi B, et al. Low cycle fatigue behaviour in vacuum of a 316L-type austenitic stainless steel between 20 and 600℃ Part II:dislocation structure evolution and correlation with cyclic behaviour [J], Mater. Sci. Eng. A,1997,229:68-86.
    83. Lee T H, Oh C S, Kim S J, et al. Deformation twinning in high-nitrogen austenitic stainless steel [J], Acta Mater.,2007,55:3649-3662.
    84. Frechard S, Redjaimia A, Lach E, et al. Mechanical behaviour of nitrogen-alloyed austenitic stainless steel hardened by warm rolling [J], Mater. Sci. Eng. A,2006,415: 219-224.
    85. Cui Y, Lundin Carl D. Creep behavior of austenitic stainless steel weld metals as a function of ferrite content [J]. Mater. Sci. Eng. A,2007,452-453:284-291.
    86. Marinelli M C, Degallaix S, Alvarez-Armas I. Dislocation structure developed in the austenitic-phase of SAF 2507 duplex stainless steel [J]. Mater. Sci. Eng. A,2006, 435-436:305-308.
    87. Mayama T, Sasaki K, Kuroda M. Quantitative evaluations for strain amplitude dependent organization of dislocation structures due to cyclic plasticity in austenitic stainless steel 316L [J], Acta Mater.,2008,56:2735-2743.
    88. Evrard P, Alvarez-Armas I, Aubin V, Degallaix S. Polycrystalline modeling of the cyclic hardening/softening behavior of an austenitic-ferritic stainless steel [J], Mech. Mater., 2010,42:395-404.
    89. Nibur K A, Bahr D F, Somerday B P. Hydrogen effects on dislocation activity in austenitic stainless steel [J], Acta Mater.,2006,54:2677-2684.
    90. Bagliona L D, Mendeza J. Low cycle fatigue behavior of a type 304L austenitic stainless steel in air or in vacuum at 20℃ or at 300℃:relative effect of strain rate and environment [J], Procedia Eng.,2010,2:2171-2179.
    91. Mu P, Aubin V. Microcrack initiation in low-cycle fatigue of an austenitic stainless steel [J], Procedia Eng.,2010,2:1951-1960.
    92. Lewis A C, Suh C, Stukowski M. Tracking correlations between mechanical response and Microstructure in three-dimensional reconstructions of a commercial stainless steel [J], Scripta Mater.,2008,58:575-578.
    93. Terada M, Hupalo M F. Effect of alpha prime due to 475℃ aging on fracture behavior and corrosion resistance of DIN 1.4575 and MA 956 high performance ferritic stainless steels [J], J. Mater. Sci.,2008,43:425-433.
    94. Huang Y L, Oguocha I N A, Yannacopoulos S. The corrosion wear behavior of selected stainless steels in potash brine [J], Wear,2005,258:1357-1363.
    95. Anderko A, Sridhar N, Yang L, et al. Validation of loclized corrosion model using real time corrosion monitoring in a chemical plant [J], Corros. Eng. Sci. Tech.,2005,40: 33-42.
    96. Zhang L, Han E, Zhang Z, et al. The corrosion of stainless steel and nickel base alloys in subcritical water condition [J], Acta Metall Sinica,2003,39:649-54.
    97. Lewis Z C, Bingert J F, Rowenhorst D J, et al. Two-and Three-dimensional microstructural charaterization of a super-austenitic stainless steel [J], Mater. Sci. Eng. A, 2006,418:11-18.
    98. Metrovich B, Fisher J W, Yen B T, et al. Fatigue strength of A16XN superaustenitic stainless steel [C], In:Proceedings of the 11th (2001) international offshore and polar engineering conference, Stavanger, Norway, June 17-22,2001.
    99. Abed F H, Voyiadjis G Z. Plastic deformation modeling of AL6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals [J], Inter. J. Plast.,2005,21:1618-1639.
    100. Dawson P L, Boyce D E, Rogge R B. Correlation of diffraction peak broadening to crystal strengthening in finite element simulations [J], Mater. Sci. Eng. A,2005,399: 13-25.
    101. Cote F, Fleck N A, Deshpande V S. Fatigue performance of sandwich beams with a pyramidal core [J], Inter. J. Fatigue,2007,29:1402-1412.
    102. Dawson P R, Boyce D E, Hale R, et al. An isoparametric piecewise representation of the anisotropic strength of polycrystalline solids [J], Inter. J. Plast.,2005,21:251-283.
    103. Marin T, Dawson P R, Gharghouri M A, et al. Diffraction measurements of elastic strains in stainless steel subjected to in situ biaxial loading [J], Acta Mater.,2008, 56:4183-4199.
    104. Spanos G, Geltmacher A B, Lewis A C, et al. A methodology to aid in the design of naval steels:Linking first principles calculations to mesoscale modeling [J], Mater. Sci. Eng. A,2007,452-453:558-568.
    105. Kalnaus S, Fan F, Jiang Y Y, et al. A experimental investigation of fatigue crack growth of stainless steel 304L [J], Inter. J. Fatigue,2009,31:840-849.
    106. Farrell K, Byun T S. Tensile properties of candidate SNS target container materials after proton and neutron irradiation in the LANSCE accelerator [J], J. Nucl. Mater.,2001,296: 129-138.
    107. Anderko A, Sridhar N, Jakab M A, et al. A general model for the repassivation potential as a function of multiple aqueous species.2. Effect of oxyanions on localized corrosion of Fe-Ni-Cr-Mo-W-N alloys [J], Corros. Sci.,2008,50:3629-3647.
    108. Gregory Sawyer W, Blanchet T A. Lubrication of Mo, W, and their Alloys with H2S gas admixtures to room temperature air [J], Wear,1999,225-229:581-586.
    109. Byun T S, Farrell K, Li M M. Deformation in metals after low-temperature irradiation: Part I-Mapping macroscipic deformation modes on true stress-dose plane [J], Acta Mater., 2008,56:1044-1055.
    110. Byun T S, Farrell K. Irradiation hardening behavior of polycrystalline metals after low temperature irradiation [J], J. Nucl. Mater.,2004,326:86-96.
    111. Byun T S, Farrell K, Li M M. Deformation in metals after low-temperature irradiation: Part I-Irradiation hardening, strain hardening, and stress ratios [J], Acta Mater.,2008,56: 1056-1064.
    112. Byun T S, Farrell K. Plastic instability in polycrystalline metals after low temperature irradiation [J], Acta Mater.,2004,52:1597-1608.
    113. Clayton C R, Halada G P, Kearns J R. Passivity of high-nitrogen stainless alloys:the role of metal oxyanions and salt films [J], Mater. Sci. Eng. A,1995,198:135-144.
    114. Cote F, Deshpande V S, Fleck N A. Shear fatigue strength of a prismatic diamond sandwich core [J], Scripta Mater.,2007,56:585-588.
    115. Fritz J D, Gerlock R J. Chloride stress corrosion cracking resistance of 6% Mo stainless steel alloy (UNS N08367) [J], Desalination,2001,135:93-97.
    116. Fleming K N, Lydell B O Y. Database development and uncertainty treatment for estimating pipe failure rates and rupture frequencies [J], Reliab. Eng. Syst. Safety,2004, 86:227-246.
    117. Budinski K G, Budinski M K, Kohler M S. A galling-resistant substitute for silicon nickel [J], Wear,2003,255:489-497.
    118. Deshpande V S, McMeeking R M, Wadley H NG, et al. Constitutive model for predicting dynamic interactions between soilejecta and structural panels[J]. J. Mech. Phys. Soli.,2009,57:1139-1164.
    119. Ericsson B, Hallmans B. Treatment of saline wastewater for zero discharge at the Debiensko coal mines in Poland [J], Desalination,1996,105:115-123.
    120. Cote F, Deshpande V S, Fleck N A, et al. The compressive and shear responses of corrugated and diamond lattice materials [J]. Inter. J. Soli. Struct.,2006,43:6220-6242.
    121. Cote F, Deshpande V S, Fleck N A, et al. The out-of-plane compressive behavior of metallic honeycombs [J], Mater. Sci. Eng. A,2004,380:272-280.
    122. Queheillalt D T, Wadley H N G. Titanium alloy lattice truss structures [J], Mater. Design, 2009,30:1966-1975.
    123. Fan F F, Kalnaus S, Jiang Y Y. Modeling of fatigue crack growth of stainless steel 304L [J], Mech. Mater.,2008,40:961-973.
    124. Jiang Y Y, Zhang J X. Benchmark experiments and characteristic cyclic plasticity deformation [J], Inter. J. Plast.,2008,24:1481-1515.
    125. Kalnaus S, Fan F, Vasudevan A K. An experimental investigation on fatigue crack growth[J]. Eng. Fract. Mech.,2008,75:2002-2019.
    126. Kalnaus S, Jiang Y Y. Fatigue of A16XN stainless steel [J], J. Eng. Mater. Technol,2008, 130(3):1-12.
    127. Meng L J, Sun J, Xing H, et al. Serrated flow behavior in AL6XN austenitic stainless steel [J], J. Nucl. Mater.,2009,394:34-38.
    128.孟丽君,邢辉,庞淦文等。AL6XN超级奥氏体钢高温拉伸时的动态应变时效,材料热处理学报,31(4):50-54.
    129.孟丽君,邢辉,庞淦文等。AL6XN超级奥氏体钢的高温蠕变及疲劳行为研究,原子能科学技术,2009,43(6):509-513.
    130.钟群鹏,赵子华,断口学[M],北京:高等教育出版社,2006.
    131. Park J K and Ardell A J. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers [J], Metall. Trans. A,1983,14 A:1957-1965.
    132. You C P, Thompson A W, Ductile I M. Ductile fracture processes in 7075 aluminum alloy [J], Metall. Mater. Trans. A,1995,26 A:407-415.
    133. Narayana G V, Sharma V M J, Diwakar V, et al. Fracture behaviour of aluminum alloy 2219-T87 welded plates [J], Sci. Tech. Weld. Join.,2004,9:121-130.
    134. Basquin O H. The exponential law of endurance tests [C], Proceedings of the American Society for Testing and Materials,1910,10:625-630.
    135. Blochwitz C, Tirschler W. Twin boundaries as crack nucleation sites [J], Cryst. Res. Technol.,2005,40:32-41.
    136. Li X W, Wu X M, Wang Z G, et al. Orientation dependence of dislocation structures in cyclically deformed Cu-16at.%Al alloy single crystals [J], Metall. Mater. Trans. A,2003, 34A:307-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700