用户名: 密码: 验证码:
大容积全多层高压储氢容器及氢在金属中的富集特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能以其来源丰富、无污染、燃烧效率高、可再生等优点成为新世纪最具发展前景的二次能源。氢能可储存和输送,是能量密度低、难储存、稳定性差的可再生能源利用的重要桥梁,是人类战略能源的发展方向。
     经济、安全、可靠的储氢是氢能规模化利用的关键之一。高压储氢具有设备结构简单、压缩氢气制备能耗低、充放速度快等优点,是目前占绝对主导地位的储氢方式。高压储氢容器是高压储氢系统的关键设备。
     随着高压氢系统从应用示范向工业应用转变进程的加快,对高压储氢的规模和安全性的要求将越来越高,与之相适应高压储氢容器将继续朝着大容积、高压力、高可靠性的方向发展,随之而来的大容积高压储氢容器结构强度优化设计和金属材料高压氢脆问题,也将越来越突出。
     在国家高技术研究发展计划(“863计划”)项目“高压容器储氢技术和装备”(项目编号:2006AA05Z143)和“70MPa高压氢气储存加注系统关键技术及装置研究”(项目编号:2009AA05Z118)的支持下,针对浙江大学发明的大容积全多层高压储氢容器结构,本文围绕容器筒体等强度优化设计、封头与筒体连接结构强度、容器安全性及氢在金属中的富集特性等关键问题开展研究,完成的主要工作有:
     (1)基于带宽方向有效正应力和切应力模型,推导出考虑钢带层间摩擦力的缠绕预应力及工作状态下应力分析方法,完善和发展了钢带错绕筒体弹性应力分析方法,在此基础上,建立了一种基于逆向递推思想的钢带缠绕预拉应力计算方法,开发了大容积全多层高压储氢容器优化设计软件(登记号为:2011SR060577),并以自主研制的75MPa、2.5m3大容积全多层高压储氢容器为例,将本文建立的钢带缠绕预拉应力确定方法与前人提出的低应力内筒法及未考虑摩擦力的等切应力缠绕法进行比较,本文建立的方法既实现了钢带层沿壁厚方向的等强度,又将内筒应力控制在较低的水平,具有显著的优点。
     (2)以自主研制的75MPa、2.5m3高压储氢容器为对象,开展了大容积全多层高压储氢容器封头和筒体连接结构强度试验研究,获得了加强箍、封头及其连接部位应力随内压的变化情况。建立了精度较高的大容积全多层高压储氢容器封头和筒体连接结构弹塑性有限元分析模型。基于该模型,对封头和筒体连接结构在容器超压过程中的变形特征,及封头与加强箍配合面形成裂纹尖端在多次加载时的稳定性进行了分析,验证了加强箍结构经验设计方法的合理性。
     (3)从介质、设备、环境、操作与管理等方面,对大容积全多层高压储氢容器可能面临的风险进行了辨识,并提出了相应的风险控制措施。结合大容积全多层高压储氢容器自身的结构特点,从设计要点、实践基础和标准制定等方面对保障容器安全性的措施进行了分析。利用大容积全多层高压储氢容器封头和筒体均为多层结构的特点及其“只漏不爆”的失效特性,开发了容器泄漏监控系统,实现了容器安全状态的远程实时监测。
     (4)基于弹塑性断裂力学理论和广义扩散定律,建立了局部应力场作用下氢在金属中扩散行为的顺序耦合分析模型。基于该模型,揭示了裂纹尖端应力应变场、温度和材料界面等因素对氢的扩散行为与富集特性的影响规律,并在此基础上提出了防止氢在局部富集的措施。
Hydrogen for its advantages of non-polluting, high combustion efficiency and renewable, has become the most promising secondary energy of the new century. Hydrogen can be obtained from other renewable energies which are of low energy density or poor stability, or difficult to store, therefore bridge up the gap for these energies' direct usage.
     Economic, safe and reliable hydrogen storage is one of the key technologies for hydrogen industrialization. High pressure gaseous hydrogen storage, primarily for its technical simplicity and fast filling-releasing rate, has become the most popular and mature method. High pressure hydrogen storage vessel is the key for high pressure hydrogen storage system.
     The process for hydrogen changing from demonstration to industrialization is speeding up day by day. And high pressure storage vessels with larger volume, higher pressure and reliability are needed. Therefore, more and more attention should be paid on the issues such as optimal design of large volume high pressure hydrogen storage vessel and high pressure hydrogen embrittlement of metal.
     This research is supported by the National High Technology Research and Development Program of China (863Program)"Technology and equipment of high pressure hydrogen storage vessels"(No.2006AA05Z143) and "Key technology and equipment for70MPa high-pressure hydrogen storage and refueling system"(No.2009AA05Z118). For large volume layered high-pressure hydrogen vessels, problems such as the optimal design of the cylinder, the strength of the joint structure for head and reinforce ring, safety of the vessel and hydrogen accumulation characteristic in metal, are studied in this thesis. The main contents and conclusions are as follows:
     (1) Based on the effective normal stress in the ribbon wide direction and shear stress model, an elastic stress analysis method is developed in which the friction between ribbon layers are fully considered. Then, a calculation method for the pre-tension stress of the ribbon is established based on reverse recursive thinking, and the optimum design software (Registration No:2011SR060577) for large volume layered high-pressure hydrogen vessels is developed. Taken the self-developed hydrogen storage vessel with the design pressure of75MPa and the volume of2.5m3for example, compared with other methods, the pre-tension stress calculation method established in this thesis can fulfill equal strength along the vessel's thickness direction, and at the same time keeps the inner shell with low-stress level, therefore with obvious advantage.
     (2) Experimental study has been taken on the strength of the joint structure for the vessel's head and reinforce ring which is of the design pressure of75MPa and the volume of2.5m3. And the stress distribution around the area of the head, reinforce ring and their joint is obtained from experimental study. A finite element analysis model was established to study the deformation characteristics of the joint structures for the head and reinforce ring. Based on this model, the deformation characteristics of the joint structures for the cylinder and the head during over-pressure process, and the stability of the crack tips which is formed by the weld between the head and reinforce ring during cyclic loading process is studied. The results showed that the joint structures is of enough strength, so the empirical design method is fit for the reinforce ring's design.
     (3) Various hazardous factors are indentified systematically through five aspects-medium, equipment, environment, operation and management, and some risk control policies are put forward accordingly. Considering the structural characteristics of the large volume layered high-pressure hydrogen vessels, the safety of the vessel is analyzed from the viewpoint of the key points of the design, the experience in the use and the development of standard. Based on the unique multi-layered structure characteristics and failure characteristics which is only leak but never burst, the leakage monitoring system is developed which can realize real time remote monitoring of the vessel's safety status.
     (4) Based on the elastic-plastic fracture mechanics theory and the general law of diffusion, a sequentially coupled mass diffusion analysis method for hydrogen diffusion in metals under local stress fields has been established, and the influence of stress intensity factor, material interface and temperature on hydrogen diffusion and accumulation behaviors has been studied by this numerical analysis method. The mechanism of hydrogen accumulation at the interface of different materials has been revealed. And the reason why hydrogen will not accumulated at the interface of clad steel plate during working conditions has been analyzed. On the basis of above results, measures to prevent hydrogen accumulation in local areas have been proposed.
引文
[1]毛宗强.氢能-21世纪的绿色能源[M].北京:化学工业出版社,2005.
    [2]毛宗强.氢能将成低碳时代“新能源宠儿”[J].WTO经济导刊,2010,(2):40-42.
    [3]JY Zheng, XX Liu, P Xu, PF Liu, YZ Zhao, J Yang. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy, 2012,37(1):1048-1057.
    [4]毛宗强.无碳能源:太阳氢[M].北京:化学工业出版社,2010.
    [5]袁建丽,金红光,林汝谋,隋军.太阳能甲醇重整制氢-发电联产系统[J].工程热物理学报,2007,28(3):365-368.
    [6]郭烈锦,刘涛,纪军,赵亮,郝小红,延卫.利用太阳能规模制氢[J].科技导报,2005,23(2):29-33.
    [7]郭烈锦,赵亮,敬登伟,吕友军,张西民.太阳能高效低成本规模转化制氢研究[J].工厂动力,2010,(2):36-47.
    [8]ZX Liu, ZM Qiu, Y Luo, ZQ Mao, C Wang. Operation of first solar-hydrogen system in China[J]. International Journal of Hydrogen Energy,2010,35(7):2762-2766.
    [9]A Steinfeld. Solar thermochemical production of hydrogen—a review[J]. Solar Energy, 2005,78(5):603-615.
    [10]J Nowotny, CC Sorrell, LR Sheppard, T Bak. Solar-hydrogen:Environmentally safe fuel for the future[J]. International Journal of Hydrogen Energy,2005,30(5):521-544.
    [11]徐哗,陈晓宁.风氢互补发电系统构建初探[J].中国工程科学,2010,12(11):83-88.
    [12]斯蒂普,张立霞.氢能源为风力发电发展带来新的机遇[J].风力发电,2003,19(4):26-28.
    [13]D Honnery, P Moriarty. Energy availability problems with rapid deployment of wind-hydrogen systems[J]. International Journal of Hydrogen Energy,2011,36(5): 3283-3289.
    [14]M Gutierrez, D Confente, I Guerra. Management of variable electricity loads in wind- Hydrogen systems:The case of a Spanish wind farm[J]. International Journal of Hydrogen Energy,2010,35(14):7329-7336.
    [15]毛宗强.世界各国加快氢能源市场化步伐——记第18届世界氢能大会(WHEC2010)[.J].中外能源,2010,(7):29-34.
    [16]毛宗强.漫谈CO2减排与氢能源[J].现代物理知识,2010,(5):41-45.
    [17]CJ Winter. Hydrogen energy—Abundant, efficient, clean:A debate over the energy-system-of-change[J]. International Journal of Hydrogen Energy,2009,34(14, Supplement 1):S1-S52.
    [18]NH Afgan, MG Carvalho. Sustainability assessment of hydrogen energy systems[J]. International Journal of Hydrogen Energy,2004,29(13):1327-1342.
    [19]E Tzimas, C Filiou, SD Peteves, JB Veyret. Hydrogen storage:State-of-the-art and future perspective[R]. Institute for Energy, Directorate General Joint Research Centre, The Netherlands.
    [20]J Andrews, B Shabani. Re-envisioning the role of hydrogen in a sustainable energy economy[J]. International Journal of Hydrogen Energy,2012,37(2):1184-1203.
    [21]N Afgan, A Veziroglu. Sustainable resilience of hydrogen energy system[J]. International Journal of Hydrogen Energy,2012,37(7):5461-5467.
    [22]RB Jeffrey, BP Michael, OK Norman. An economic survey of hydrogen production from conventional and alternative energy sources[J]. International Journal of Hydrogen Energy,2010,35(16):8371-8384.
    [23]毛宗强.我国发展氢能的战略建议——从“浅绿”到“深绿”(下)[J].太阳能,2009,(2):6-9.
    [24]毛宗强.我国发展氢能的战略建议——从“浅绿”到“深绿”(上)[J].太阳能,2009,(1):6-8.
    [25]顾钢.国外氢能技术路线图及对我国的启示[J].国际技术经济研究,2004,4(7):34-37.
    [26]Hydrogen and fuel cell budget [OL]. http://www.hydrogen.energy.gov/budget.html.
    [28]2011 budget submission to the government of Canada[R]. Canadian Hydrogen and Fuel Cell Association.2010.
    [29]刘春娜.氢能—绿色能源的未来[J].电源技术, 2010,34(6):535-538.
    [30]毛宗强.氢能,最理想的车用能源[J].绿叶,2009,(6):80-85.
    [31]D Mori, K Hirose. Recent challenges of hydrogen storage technologies for fuel cell vehicles[J]. International Journal of Hydrogen Energy,2009,34(10):4569-4574.
    [32]郑津洋,傅强,开方明,陈长聘.轻质高压贮氢容器的现状及发展趋势[J].太阳能学报,2004,25(5):576-581.
    [33]郑津洋,陈瑞,李磊,张立芳,俞群,徐平,开方明,朱国辉,叶晓茹,魏春华,楼桦东,朱玉娟.多功能全多层高压氢气储罐[J].压力容器,2005,22(12):25-28.
    [34]郑津洋,开方明,刘仲强,陈瑞,陈长聘.高压氢气储运设备及其风险评价[J].太阳能学报,2006,27(11):1168-1174.
    [35]Fuel Cells 2000 Resources[OL]. http://www.fuelcells.org/resources/charts/.
    [36]C Thomas, F Nony, S Villalonga, P Mazabraud, MC Lafarie, M Bertin, D Bertheau. Research and development towards new generations of full composite tanks dedicated to 70MPa gaseous hydrogen storage[C]. Wichita, KS, United states:Soc. for the Advancement of Material and Process Engineering.2009. SAMPE New Jersey Chapter; SAMPE Wichita Chapter.
    [37]ASME Boiler and Pressure Vessel Committee. ASME BPVC-X, Fiber-Reinforced Plastic Pressure Vessels[S], New York:ASME,2010.
    [38]ASME Boiler and Pressure Vessel Committee. ASME BPVC Section VIII Division 1, Rules for Construction of Pressure Vessels[S], New York:ASME,2010.
    [39]黄宁.钢制无缝高压容器的设计和制造[J].压力容器,1999,16(4):55-57.
    [40]International Organization for Standardization. ISO 9809-1,2, Gas Cylinders Refillable Seamless Steel Gas Cylinders-Design, Construction and Testing[S], Switzerland:ISO,2010.
    [41]CPI Products[OL]. http://www.cp-industries.com/products.htm.
    [42]陈瑞,郑津洋,徐平,开方明,刘鹏飞.金属材料常温高压氢脆研究进展[J].太阳能学报,2008,29(4):502-508.
    [43]E Yamada, S Watanabe, AK Hayashi, N Tsuboi. Numerical analysis on auto-ignition of a high pressure hydrogen jet spouting from a tube[J]. Proceedings of the Combustion Institute,2009,32(2):2363-2369.
    [44]RW Schefer, WG Houf, TC Williams, B Bourne, J Colton. Characterization of high-pressure, underexpanded hydrogen-jet flames [J]. International Journal of Hydrogen Energy,2007,32(12):2081-2093.
    [45]JX Wen, VC Madhav, VHY Tam. Numerical study of hydrogen explosions in a refuelling environment and in a model storage room[J]. International Journal of Hydrogen Energy,2010,35(1):385-394.
    [46]P Middha, OR Hansen, J Grune, A Kotchourko. CFD calculations of gas leak dispersion and subsequent gas explosions:Validation against ignited impinging hydrogen jet experiments [J]. Journal of Hazardous Materials,2010,179(1-3):84-94.
    [47]GM Makhviladze, SE Yakush. large-seal unconfined fires and explosion[J]. Proceedings of the Combustion Institute,2002,29:195-210.
    [48]P Xu, JY Zheng, PF Liu, R Chen, FM Kai, L Li. Risk identification and control of stationary high-pressure hydrogen storage vessels[J]. J Loss Prevent Proc,2009,22(6): 950-953.
    [49]US Department of Transportation. DOT FRP-1 Standard Basic Requirements for Fiber Reinforced Plastic Composite Cylinder[S],1987.
    [50]US Department of Transportation. DOT CFFC Standard, Basic Requirements for Fully Wrapped Carbon Fiber Reinforced Aluminum Lined Cylinder[S],2000.
    [51]Compressed Gas Association. CGA C-19, FRP-3, Guidelines for Filament-Wound Composite Cylinders with Nonload-sharing Liners[S],2002.
    [52]H Tero. Technical Review and Economic Aspects of Hydrogen Storage Technologies[D]. Helsinki University of Technology,2001.
    [53]Lincoln Composites Products[OL]. http://lincolncomposites.com/products/.
    [54]Dynetek Industries Products Overview[OL]. http://www.dynetek.com/products.php
    [55]AH Weisberg, SM Aceves, LF Espinosa, OE Ledesma, B Myers. Delivery of cold hydrogen in glass fiber composite pressure vessels[J]. International Journal of Hydrogen Energy,2009,34(24):9773-9780.
    [56]W Andrew, A Salvador, M Blake, R Tim. Inexpensive Delivery of Cold Hydrogen in High Performance Glass Fiber Composite Pressure Vessels[R]. Lawrence Livermore National Laboratory.2009.
    [57]朱国辉,郑津洋.新型绕带式压力容器[M].北京:机械工业出版社,1995.
    [58]陈企国.扁平绕带容器的轴向强度和优化设计分析[D].杭州:浙江大学,1985.
    [59]施钢,朱国辉,黄载生.扁平绕带式压力容器的基本弹性应力分析[J].化工机械,1992,19(6):336-340.
    [60]施钢,朱国辉,黄载生.扁平绕带式压力容器的极限承载能力[J].化工机械,1995, 22(6):23-29.
    [61]郑津洋,朱国辉,黄载生.螺旋错绕式高压容器的应力分析[J].机械强度,1993,15(3):28-31.
    [62]朱国辉,李一华.倾角错绕扁平钢带高压容器的结构特性和强度设计[J].化工设备与管道,1979,(1):1-23.
    [63]CX Zheng, SH Lei. Optimal winding conditions of flat steel ribbon wound presssure vessels with controllable stresses[J]. Journal of Applied Mechanics,2008,75(4): 041009-1-6.
    [64]CX Zheng, SH Lei. Stresses Controllable Analysis and Optimal Design of Unique High Pressure Vessel Applied in Hydrogen Charge Station[J]. International Journal of Hydrogen Energy,2007,32(10):3508-3515.
    [65]郑津洋,朱国辉,黄载生.扁平绕带容器预应力的研究[J].石油化工设备,1992,21(1):6-8.
    [66]郑津洋,朱国辉,黄载生.绕带式压力容器采用适应性随机搜索法的优化设计(I)[J].浙江大学学报(自然科学版),1991,25(6):673-680.
    [67]RP Jewett, RJ Walter, WT Cbandler, RP Frobmerg. NASA CR-2163 Hydrogen Environment Embrittlement of Metals[R].1973.
    [68]TP Groeneveld, EE Fletcher, AR Elsea. NAS 8-2-20029 Review of Literature on Hydrogen Embrittlement[R].1966.
    [69]Y Murakami, T Kanezaki, Y Mine. Hydrogen effect against hydrogen embrittlement[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2010,41 A(10):2548-2562.
    [70]M Dadfarnia, P Novak, DC Ahn, JB Liu, P Sofronis, DD Johnson, IM Robertson. Recent advances in the study of structural materials compatibility with hydrogen[J]. Advanced Materials,2010,22(10):1128-1135.
    [71]VV Panasyuk, OY Andreykiv, OV Gembara. Hydrogen degradation of materials under long-term operation of technological equipment[J]. International Journal of Hydrogen Energy,2000,25(1):67-74.
    [72]褚武扬,肖纪美,李世琼.钢中氢致裂纹机理研究[J].金属学报,1981,17(1):10-17.
    [73]孙亮.氢陷阱与氢致开裂关系的理论综述[J].石油化工腐蚀与防护,1989,(3):17-19.
    [74]HH Johnson. Hydrogen embrittlement[J]. Science,1973,179(4070):228-230.
    [75]RA Oriani. Hydrogen embrittlement of steels[J]. Annual Review of Materials Science, 1978, (8):327-358.
    [76]P Sofronis, Y Liang, N Aravas. Hydrogen induced shear localization of the plastic flow in metals and alloys[J]. European Journal of Mechanics-A/Solids,2001,20(6): 857-872.
    [77]D Ahn, P Sofronis, R Dodds. Modeling of hydrogen-assisted ductile crack propagation in metals and alloys[J]. International Journal of Fracture,2007,145(2):135-157.
    [78]A Taha, P Sofronis. A micromechanics approach to the study of hydrogen transport and embrittlement[J]. Engineering Fracture Mechanics,2001,68(6):803-837.
    [79]HK Birnbaum, P Sofronis. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture[J]. Materials Science and Engineering:A,1994,176(1-2): 191-202.
    [80]S Bechtle, M Kumar, BP Somerday, ME Launey, RO Ritchie. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Materialia,2009,57(14):4148-4157.
    [81]TC Lee, DK Dewald, JA Eades, IM Robertson, HK Birnbaum. An environmental cell transmission electron microscope[J]. Review of Scientific Instruments,1991,62(6): 1438-1444.
    [82]P Sofronis, IM Robertson, D Johnson. Hydrogen embrittlement of pipeline steels: causes and remediation[R]. University of Illinois at Urbana-Champaign.2005.
    [83]IM Robertson. The effect of hydrogen on dislocation dynamics[J]. Engineering Fracture Mechanics,2001,68(6):671-692.
    [84]Y Liang, DC Ahn, P Sofronis, JRH Dodds, D Bammann. Effect of hydrogen trapping on void growth and coalescence in metals and alloys[J]. Mechanics of Materials,2008, 40(3):115-132.
    [85]DC Ahn, P Sofronis, RH Dodds. On hydrogen-induced plastic flow localization during void growth and coalescence[J]. International Journal of Hydrogen Energy,2007, 32(16):3734-3742.
    [86]Y Liang, P Sofronis, R Dodds. Interaction of hydrogen with crack-tip plasticity:effects of constraint on void growth[J]. Materials Science and Engineering:A,2004.366(2): 397-411.
    [87]M Dadfarnia, P Sofronis, T Neeraj. Hydrogen interaction with multiple traps:Can it be used to mitigate embrittlement?[J]. International Journal of Hydrogen Energy,2011, 36(16):10141-10148.
    [88]褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂[M].北京:科学出版社,2000.
    [89]L Zhang, M Wen, ZY Li, JY Zheng, XX Liu, YZ Zhao, CL Zhou. Materials safety for hydrogen gas embrittlement of metals in high-pressure hydrogen storage for fuel cell vehicles[A]. Proceedings of the ASME 2012 Pressure Vessels & Piping Conference[C]. Toronto, Ontario, CANADA, July 15-19,2012.
    [90]H Barthelemy. Effects of pressure and purity on the hydrogen embrittlement of steels[J]. International Journal of Hydrogen Energy,2011,36(3):2750-2758.
    [91]T Michler, J Naumann. Coatings to reduce hydrogen environment embrittlement of 304 austenitic stainless steel[J]. Surface and Coatings Technology,2009,203(13): 1819-1828.
    [92]Y Liang, P Sofronis, N Aravas. On the effect of hydrogen on plastic instabilities in metals[J]. Acta Materialia,2003,51(9):2717-2730.
    [93]ET Gutelmacher, D Eliezer, E Abramov. Thermal desorption spectroscopy (TDS)— Application in quantitative study of hydrogen evolution and trapping in crystalline and non-crystalline materials[J]. Materials Science and Engineering A,2007, (445-446): 625-631.
    [94]DC Ahn, P Sofronis, M Kumar, J Belak, R Minich. Void growth by dislocation-loop emission[J]. Journal of Applied Physics,2007,101(6):063514-6.
    [95]P Sofronis. IM Robertson. Transmission electron microscopy observations and micromechanical/continuum models for the effects of hydrogen on the mechanical behavior of metals[J]. Philosophical Magazine A,2002,82(9):3405-3413.
    [96]M Dadfarnia, BP Somerday., P Sofronis, IM Robertson, D Stalheim. Interaction of hydrogen transport and material elastoplasticity in pipeline steels[J]. Journal of Pressure Vessel Technology,2009,131(4):041404-13.
    [97]YJ Li, J Wang, XQ Shen. FEM calculation and effect of diffusion hydrogen distribution in the fusion zone of super-high strength steel[J]. Computational Materials Science,2004,31(1-2):57-66.
    [98]WC Jiang, JM Gong, JQ Tang, H Chen, ST Tu.3-D finite element analysis of the effect of welding residual stress on hydrogen diffusion in hydrogen contained environment[J]. Acta Metallurgica Sinica 2007,20(5):347-354.
    [99]K Takayama, R Matsumoto, S Taketomi, N Miyazaki. Hydrogen diffusion analyses of a cracked steel pipe under internal pressure [J]. International Journal of Hydrogen Energy,2011,36(1):1037-1045.
    [100]P Sofronis, RM Mcmeeking. Numerical analysis of hydrogen transport near a blunting crack tip[J]. Journal of the Mechanics and Physics of Solids,1989,37(3): 317-350.
    [101]JT Yokobori, T Uesugi, M Sendoh, M Shibata. The effect of stress wave form on corrosion fatigue crack growth rate on the basis of hydrogen diffusion theory [J]. Strength Fracture and Complexity,2003,1(4):187-204.
    [102]H Kotake, R Matsumoto, S Taketomi, N Miyazaki. Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading[J]. International Journal of Pressure Vessels and Piping,2008,85(8):540-549.
    [103]R Miresmaeili, M Ogino, T Nakagawa, H Kanayama. A coupled elastoplastic-transient hydrogen diffusion analysis to simulate the onset of necking in tension by using the finite element method [J]. International Journal of Hydrogen Energy,2010, 35(3):1506-1514.
    [104]M Dadfarnia, P Sofronis, BP Somerday, DK Balch, P Schembri, R Melcher. On the environmental similitude for fracture in the SENT specimen and a cracked hydrogen gas pipeline[J]. Engineering Fracture Mechanics,2011,78(12):2429-2438.
    [105]JC Sobotka, JRH Dodds, P Sofronis. Effects of hydrogen on steady, ductile crack growth:Computational studies[J]. International Journal of Solids and Structures,2009, 46(22-23):4095-4106.
    [106]CL Fu, GS Painter. First principles investigation of hydrogen embrittlement in FeAl[J]. Journal of Materials Research,1991, (6):719-723.
    [107]MS Daw, MI Baskes. Chemistry and Physics of Fracture[M].Dordrecht:Martinus Nijhoff Publishers,1987.
    [108]DF Johnson, EA Carter. First-principles assessment of hydrogen absorption into FeAl and Fe3Si:Towards prevention of steel embrittlement[J]. Acta Materialia,2010,58(2): 638-648.
    [109]T Michler, J Naumann. Hydrogen embrittlement of Cr-Mn-N-austenitic stainless steels [J]. International Journal of Hydrogen Energy,2010,35(3):1485-1492.
    [110]K Yokoyama, M Tomita, J Sakai. Hydrogen embrittlement behavior induced by dynamic martensite transformation of Ni-Ti superelastic alloy[J]. Acta Materialia, 2009,57(6):1875-1885.
    [111]X Tang, GH Schiroky, CS Marchi, BP Somerday. Hydrogen-assisted fracture of welded AISI 316 austenitic stainless steel[C]. Jackson, WY, United states:ASM International.2009.147-154.
    [112]KA Nibur, BP Somerday, DK Balch, CS Marchi. The role of localized deformation in hydrogen-assisted crack propagation in 21Cr-6Ni-9Mn stainless steel[J]. Acta Materialia,2009,57(13):3795-3809.
    [113]R Matsumoto, S Taketomi, N Miyazaki, Y Inoue. Estimation of hydrogen distribution around dislocations based on first principles calculations [A]. Proceedings of the 2008 International Hydrogen Conference[C]. Wyoming, USA, ASM International, September 7-10,2008.
    [114]李正邦,田志凌,梁东图,乔利杰,褚武扬.奥氏体不锈钢焊缝金属的氢致马氏体相变[J].焊接学报,2002,23(2):83-88.
    [115]T Zhang, YA Yao, WY Chu, LJ Qiao. Relationship between hydrogen-induced additive stress and threshold cracking stress for a pipeline steel [J]. Acta Metallurgica Sinica,2002,38(8):844-848.
    [116]NASA TR-451 Hydrogen embrittlement tests of pressurized cylindrical and tensile specimens including conventional tensile tests on ASTM A-302-B, nickel modified[R]. JOHN F. KENNEDY SPACE CENTER.1966.
    [117]BP Somerday, A Burns, hydrogen embrittlement mechanisms in metals[R]. Sandia National Laboratories.2007.
    [118]S Fukuyama, M Imade, T Iijima, K Yokogawa. Development of new material testing apparatus in 230MPa hydrogen and evaluation of hydrogen embrittlement of metals [A]. Proceedings of 2008 ASME Pressure Vessels and Piping Division conference[C]. Chicago, Illinois, USA, July 27-31,2008.
    [119]Y Wada, R Ishigaki. Evaluation of meterials for hydrogen fuel station[A]. Proceeding of international conferance on hydrogen safety[C]. Pisa, Italy, September 8-10,2005.
    [120]真锅康夫,宫下泰秀.100MPa级高压水素試驗機の開凳[J].神户製鋼技報,2008,58(2):19-24.
    [121]O Tomohiko, M Mitsuo, S Hiroyuki, I Masaaki, H Hiroyuki. Evaluation of hydrogen environment embrittlement and fatigue properties of stainless steels in high pressure gaseous hydrogen[A]. Proceedings of 2007 ASME Pressure Vessels and Piping Division Conference[C]. San Antonio, Texas USA, July 22-26,2007.
    [122]T Michler, AA Yukhimchuk, J Naumann. Hydrogen environment embrittlement testing at low temperatures and high pressures[J]. Corrosion Science,2008,50(12): 3519-3526.
    [123]L Zhang, M Wen, M Imade, S Fukuyama, K Yokogawa. Efffect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures[J]. Acta Materialia,2008,56(14):3414-3421.
    [124]SC Marchi, BP Somerday, X Tang, GH Schiroky. Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels[J]. International Journal of Hydrogen Energy,2008,33(2):889-904.
    [125]Y Murakami, T Kanezaki, Y Mine, S Matsuoka. Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2008,39(6):1327-1339.
    [126]JM Michael. Hydrogen efffects on the fracture toughness properties of forged stainless steels[A].2008 ASME Pressure Vessels and Piping Division Conference[C]. Chicago, Illinois USA, July 27-31,2008.
    [127]郑津洋,朱国辉,王乐勤,黄载生.新型绕带式压力容器的设计准则[J].浙江大学学报(自然科学版),1993,27(3):324-333.
    [129]CS Marchi, BP Somerday. Technical Referance on Hydrogen Compatibility of Materials[R]. Sandia National Laboratories.2008.
    [130]RJ Walter, WT Chandler. Influence of hydrogen pressure and notch severity on hydrogen-environment embrittlement at ambient temperatures[J]. Materials Science and Engineering,1971,8(2):90-97.
    [132]N Hideki. Effect of high pressure gaseous hydrogen on the tensile properties of four types of stainless steels[A], Proceedings of 2007 ASME Pressure Vessels and Piping Division Conference[C]. San Antonio, Texas USA, July 22-26,2007.
    [133]S Ohmiya, H Fujii. Mechanical properties of cold worked type 316L stainless steel in high pressure gaseous hydrogen[A]. Proceedings of 2007 ASME Pressure Vessels and Piping Division Conference[C]. San antonio,Texas USA, July 22-26,2007.
    [134]D Abraham, C Altstetter. Hydrogen-enhanced localization of plasticity in an austenitic stainless steel[J]. Metallurgical and Materials Transactions A,1995,26(11): 2859-2871.
    [135]VN Shivanyuk, J Foct, VG Gavriljuk. On a role of hydrogen-induced ε-martensite in embrittlement of stable austenitic steel[J]. Scripta Materialia,2003,49(6):601-606.
    [136]C Pan, WY Chu, ZB Li, DT Liang, YJ Su, KW Gao, LJ Qiao. Hydrogen embrittlement induced by atomic hydrogen and hydrogen-induced martensites in type 304L stainless steel[J]. Materials Science and Engineering A,2003,351(1-2):293-298.
    [137]M Hoelzel, SA Danilkin, H Ehrenberg, DM Toebbens, TJ Udovic, H Fuess, H Wipf. Effects of high-pressure hydrogen charging on the structure of austenitic stainless steels[J]. Materials Science and Engineering A,2004,384(1-2):255-261.
    [139]G Han, J He, S Fukuyama, K Yokogawa. Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures[J]. Acta Materialia,1998,46(13):4559-4570.
    [140]CS Marchi, BP Somerday, SL Robinson. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures[J]. International Journal of Hydrogen Energy,2007,32(1):100-116.
    [141]V Olden, C Thaulow, R Johnsen. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J]. Materials & Design,2008,29(10):1934-1948.
    [142]温吉利,严祯荣.裂纹尖端氢扩散的有限元分析[J].化工装备技术,2009,30(2):65-68.
    [143]AJ Kumnick, HH Johnson. Hydrogen transport through annealed and deformed Armco iron[J], Metallurgical and Materials Transactions B,1974,5(5):1199-1206.
    [144]IW Kang, SI Pyun, KT Kim. The effects of dislocations on the trapping and transport of hydrogen in 3.3Ni-1.6Cr steel during plastic deformation[J]. Scripta Metallurgica, 1989,23(2):223-226.
    [145]HW Liu. Stress-Corrosion Cracking and the interaction between crack-tip stress field and solute atoms[J]. Trans ASME J Basic Eng,1970,92(3):633-638.
    [146]RA Oriani. The diffusion and trapping of hydrogen in steel[J]. Acta Metallurgica, 1970,18(1):33-39.
    [147]AJ Kumnick, HH Johnson. Deep trapping states for hydrogen in deformed iron[J]. Acta Metallurgica,1980,28(1):33-39.
    [148]WW Gerberich, T Livne, XF Chen, M Kaczorowski. Crack growth from internal hydrogentemperature and microstructural effects in 4340 steel[J]. Metallurgical and Materials Transactions A,1988, (19A):1319-1334.
    [149]K Kazuhisa, I Hidenobu. Characteristics for hydrogen diffusion of transition zone metals between stainless steel weld overlay an Cr-Mo steel base metal[C],"Current Solutions to Hydrogen Problems in. Steel," Proc.1st Int. Conf. Metals Park, Ohio 1982. 369-375.
    [150]S Tadamichi, A Kiyoshi. Hydrogen induced disbanding of weld overlay in pressure vessel and its prevention[C]. Metals Park, Ohio1982.340-348.
    [151]T Fujii, T Nazama, H Makajima, R Horita. A safety analysis on overlay disbonding of pressure vessels for hydrogen service[C]. Metals Park, Ohio 1982.361-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700