用户名: 密码: 验证码:
粮食粉尘爆炸的实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉尘爆炸危害对众多涉及易燃粉体制备、使用和处理的行业一直构成持续的安全威胁。粮食行业是粉尘爆炸的多发行业,随着新技术的应用和生产规模的扩大,粉尘爆炸事故日益频繁。粉尘爆炸事故通常会造成严重的人员伤亡及财产损失,甚至导致灾难性的后果。因此,深入开展粮食粉尘爆炸的研究对于预防和控制此类工业灾害性事故具有重要的理论意义和工程价值。本文的特色和创新性工作成果如下:
     开发了一套基于以太网与OPC技术的多功能粉尘爆炸测定系统。采用LabVIEW虚拟仪器软件平台开发的数据采集与控制系统具有人机界面友好、操作方便安全,实验测试效率较高等优点,可实现实验过程控制、自动数据采集、曲线分析、数据库管理等功能;采用OPC接口技术实现测试计算机和控制箱之间的通讯,使测试系统具有良好的一致性、扩展性和可维护性;采用以太网技术将各子测试系统的控制系统连为一个整体,方便了实验数据的综合分析,保证了测试数据的完整性和一致性。开发了具有特色功能的20L球形爆炸测试装置,该装置是目前唯一支持液体分散的爆炸测试系统,可实现粉尘\气体\液体蒸汽的爆炸测试;该装置同时还集成了自主研发的大能量电火花发生系统,是目前唯一支持1OkJ大能量静电点火的粉尘爆炸测试装置。所开发的最小点火能测试装置集成了多种放电触发方式,用户可根据需要选择合适的触发方式。
     对大型管道相连容器系统中的粮食粉尘爆炸进行了实验分析,研究了复杂结构中粮食粉尘爆炸过程的基本规律和影响因素,所用实验粉尘为玉米淀粉和土豆淀粉。研究表明:粉尘反应性、点火位置、初始湍流和粉尘浓度等因素对爆炸发展过程均有重要影响。粉尘的反应性越强,爆炸的猛烈程度越强,火焰传播速度越快,二次爆炸的猛烈程度也越强;点火位置离泄爆口越远,初级容器中的最大泄爆压力Pred,max越高,爆炸通过管道传播后引发的二次爆炸越猛烈;初始湍流对粉尘的爆炸性参数特别是压力上升速率有重要影响,随着初始湍流度的增大,爆炸的猛烈程度增强,火焰和冲击波的传播速度加快;在合适的粉尘浓度条件下,粉尘爆炸程度较为猛烈,火焰传播导致的最终火焰速度和压力峰值均较大。对于管道互连装置,初始爆炸能够引起压力和火焰在连接管道中传播,火焰在管道中传播时会形成正反馈的加速机制,最终引发二次爆炸。本实验研究增进了对管道互连装置中粮食粉尘爆炸发展过程及其影响因素的理解,为粮食工业中复杂结构系统的粉尘爆炸安全防护和优化设计提供了有价值的信息,并为深入的数值模拟研究提供了宝贵的实验校验数据。
     建立了一个完备的描述淀粉爆炸过程的数学模型。采用了基于欧拉-拉格朗日方法的气固两相流模型,并采用随机轨道模型来描述粒子相,其主要优点是计算简单,当颗粒有较复杂的变化经历时,能较好的追踪颗粒的运动,数值计算时也不会产生伪扩散,并且考虑了气相湍流脉动对颗粒的影响。淀粉粒子的燃烧模型考虑了水分蒸发、挥发分分解、气相反应和颗粒表面反应。气相燃烧模型采用EBU-Arrhenius模型,解决了以往数值模型中不能合理地计算湍流燃烧反应速率的问题,提高了数值模拟的精度。所建立的数学模型是一种通用的有机粉尘爆炸模型,对粮食粉尘爆炸的研究具有重要的实用意义和理论价值。
     利用CFD软件FLUENT完成了所开发数学模型的计算机实现,对不同情况下的玉米淀粉粉尘爆炸进行了数值模拟研究,并利用实验数据对数值模型的有效性进行了校验。对1m3密闭容器粉尘爆炸的数值研究表明,数值模拟能够全面反映密闭容器中的粉尘爆炸过程,可对密闭空间粉尘爆炸危险性进行预测。对9.63m3容器泄爆过程的数值研究表明,数值模拟可以较好地反映出泄爆过程的流动和燃烧特性,计算结果模拟出了泄爆时的压力波动状况。研究还表明,点火位置对爆炸发展有明显影响,随着点火位置远离泄爆口,Pred,max逐渐增加。对管道中火焰传播的数值研究表明,数值模拟捕获了火焰在长管中传播的主要特征,在整个爆炸过程中,火焰始终是加速传播的,火焰前方的压力波幅值逐渐增强,且压力上升速率越来越快。模拟结果与实验结果符合得较好,说明了本论文建立的粉尘爆炸数学模型的适用性和准确性,应用该模型可以很好地对粮食粉尘爆炸过程进行模拟计算和数值分析。
     本论文的研究工作填补了国内粮食粉尘爆炸研究领域的空白。论文研究结果具有重要的实用价值,为粮食工业中粉尘爆炸灾害的研究、预防和控制提供了一定的理论基础和科学依据,并为后续的深入研究奠定了坚实的基础。
The dust explosion hazard continues to represent a constant threat to process industries that manufacture, use and/or handle powders and dusts of combustible materials. Grain industry is a high dust explosion probability industry. With the application of new technology and the expansion of production scale, dust explosion accidents occur frequently and would usually cause heavy casualties and loss of property, and even catastrophic effect. Thus, intensive research work on grain dust explosion has important theoretical significance and engineering value for prevent and control of such hazardous industrial disaster. The features and innovative work product of the thesis are as follwos:
     A multi-function dust explosion test system was developed based on Ethernet and OPC technique. The data acquisition and control system developed in Lab VIEW has advantages as user-friendly GUI, easy to operate, efficient work, and has functions of experimental process control, automatic data acquiring, curve analysis, database management, etc. The communication between test computer and control box was achieved by OPC technique, which gives the test system good consistency, extensibility and maintainability. The control system of sub-system was connected in LAN, which facilitates comprehensive analysis of experimental data and ensure the integrity and consistency of test data. The 20L spherical explosion test apparatus with certain specific functions was developed, which is by far the only apparatus that support liquid dispersing of similar products and can determine explosion characteristics of combustible dust, gas and vapor. It is also by far the only apparatus that support large energy electrostatic ignition in lOkJ with integrated home-grown large energy electrostatic spark generator of similar products. The developed dust cloud minimum ignition energy test apparatus has a spark generator that integrated several triggering modes and users can select suitable one as needed.
     The experimental analysis about grain dust explosion in large scale interconnected vessels was conducted to study the fundamental law and influencing factors of grain dust explosion in complex configuration. The test dust is maize and potato starch. Study shows that factors as dust reactivity, ignition location, initial turbulence and dust concentration have important influence on development process of dust explosion. The more explosible a dust tends to be, the more violent is the explosion, and the faster is flame propagating velocity, and the more violent is the secondary explosion. The farther the ignition location is away from vent, the higher is the maximum reduced overpressure Pred,max in primary vessel, and the more violent is the secondary explosion. Initial turbulence has an important influence on dust explosion characteristics and especially on pressure rise rate. With increasing initial turbulence level, the explosion become more violent and propagating velocity of flame and shock wave increase. With suitable dust concentration, the final flame velocity and peak pressure caused by flame propagation are both higher. For interconnected equipments, primary explosion can cause pressure and flame to propagate through pipe. A positive feedback acceleration mechanism can be formed during flame propagating along pipe and lead to a secondary explosion finally. The experimental investigation promote greater understanding of grain dust explosion process and its influencing factors, and provide valuable information for safety protection and optimal design of dust explosion in complex configuration in grain industry, and accumulate valuable experimental data which can be used for validation in further numerical simulation investigation.
     A comprehensive mathematical model that describes explosion process of starch dust is established. Eulerian-Lagrangian two phase flow model is adopted and the particle phase is modeled by discrete random walk (DRW) model. The DRW model has the following advantages:easy to calculate; the motion of particle can be tracked better when particle undergoing complex change; numerical calculation won't produce false diffusion; the effect of fluid's turbulent pulsation on particle can be accounted for. Combustion model of starch particle takes account into detail mechanisms of water vaporization, volatile decomposition, gas phase reaction and surface reaction of carbon. EBU- Arrhenius model is used to simulate the reaction of gas phase which can solve the problem of inaccuracy calculation of turbulent combustion rate and thus improving the precision of numerical simulation. The developed model is a general one for organic dust explosion and is of great theoretical value and practical significance for grain dust explosion investigation.
     Numerical simulation of different dust explosion case has been carried out by using CFD code FLUENT, and the validity of numerical model has been checked by experimental data. Simulation of dust explosion in 1m3 closed vessel showed that numerical simulation can fully reflect deveploment process of explosion and predict the hazards of dust explosion in closed space. Simulation of dust explosion in 9.63m3 vented vessel showed that numerical simulation is well able to reflect flow and combustion features of explosion venting process. The fluctuation of pressure druing venting can be modelled well. It also shows that igniton location has remarkable effect on explosion development process. Th farther the ignition location is away from vent, the higher is Prcd.max value. Simulation of flame propagation in pipe showed that numerical simulation has reflected main feature of flame propagation in long pipe. In the whole explosion process, flame velocity continued to accelarate, the magnitude of pressure wave ahead flame front increased gradually and pressure rise rate become steeper and steeper. It also indicated that dust concentration has important influence on development of flame propagation. The simulated results have relative good agreement with experimental results and that turns out the applicability and accuracy of the developed model and shows that it can be good in use of numerical simulation and analysis of dust explosion.
     The study of this thesis fills the gap of domestic investigation on grain dust explosion. The research results have important practical value, and provide certain theoretical foundation and scientific evidence for study, prevent and control of dust explosion hazard in grain industry, and lay a foundation for the further research
引文
1. Lunn G A, Holbrow P, Andrews S et al. Dust explosions in totally enclosed interconnected vessel systems[J], Journal of Loss Prevention in the Process Industries,1996,9(1):45-58.
    2. Holbrow P, Andrews S, Lunn G A. Dust explosions in interconnected vented vessels[J], Journal of Loss Prevention in the Process Industries,1996,9(1):91-103.
    3. Vijayaraghavan G. Impact assessment, modelling, and control of dust explosions in chemical process industries[D], Coimbatore(India):Coimbatore Institute of Technology,2004.
    4. Basu A. Dust explosion hazard analysis of fuel substitution in fossil fuel fired power plants[D], Halifax(Canada):Dalhousie University 2003
    5. Amyotte P R, Eckhoff R K. Dust explosion causation, prevention and mitigation:An overview[J], Journal of Chemical Health and Safety,2010,17(1):15-28.
    6. Eckhoff R K. Current status and expected future trends in dust explosion research[J], Journal of Loss Prevention in the Process Industries,2005,18(4/5/6):225-237.
    7. CSB. Investigation Report-Combustible Dust Hazard Study[R]. U.S. Chemical Safety and Hazard Investigation Board(CSB),2006.2006-H-1.
    8. Abbasi T, Abbasi S A. Dust explosions-Cases, causes, consequences, and control[J], Journal of Hazardous Materials,2007,140(1-2):7-44.
    9. Nifuku M, Matsuda T, Enomoto H. Recent development of standardization of testing methods for dust explosion in Japan[J], Journal of Loss Prevention in the Process Industries,2000,13(3-5):243-251.
    10. Theimer O F. Cause and prevention of dust explosions in grain elevators and flour mills[J], Powder Technology,1973, (8):137-147.
    11.卢寿慈(主编).粉体加工技术[M].北京:中国轻工业出版社,1994.
    12.张超光,蒋军成,郑志琴.粉尘爆炸事故模式及其预防措施[J],中国安全科学学报,2005,15(6):73-76.
    13. Eckhoff R K. Dust Explosions in the Process Industries[M]. Amsterdam:Gulf Professional Publishing, 2003,580-646.
    14. Palmer K N. Dust Explosions and Fire[M]. London: Chapman & Hall,1973.
    15. Kauffman C W, Hubbard R F. An Investigation of Fourteen Grain Elevator Explosions Occurring between January 1979 and April 1981[R]. Occupational Safety and Health Administration,1984.
    16. Eckhoff R K. Understanding dust explosions. The role of powder science and technology[J], Journal of Loss Prevention in the Process Industries,2009,22(1):105-116.
    17. Eckhoff R. Dust Explosion Prevention and Mitigation, Status and Developments in Basic Knowledge and in Practical Application[J], International Journal of Chemical Engineering,2009,2009.
    18. Zevenbergen J F. Report on turbulence measurements in the 20-litre sphere[R]. Report-Explosion Group, TU Delft, the Netherlands,2004.
    19. Development of a CFD-code for prediction of the potential consequences of dust explosions in complex geometries—Final Technical Report DESC Consortium[R]. Health and Safety Laboratory, 2006.
    20. Snoeys J, Going J, Johnson S. Flame speed and turbulence determination in contained dust explosions.[R]. Fike Corporation,2006.
    21. Snoeys J, Proust C, Going J. Experimental studies of turbulent flame speeds in dust clouds[C]. //Proceedings of the sixth ISHPMIE. Nova Scotia (Canada),2006:20pp.
    22. Holbrow P. DESC:Phase 2:Flame speed measurements[R]. HSL,2005
    23. Shi J, Arnold A, Vogl A et al. Dust concentration and turbulence in industrial environment[C]. //International ESMG symposium. Nurnberg, Germany,2005.
    24. Shi J, Arnold A, Vogl A et al. Final report of measurements of flow field and dust concentration[R]. FSA,2005.
    25. Hauert F, Vogl A, Radandt S. Dust cloud characterization and the influence on the pressure-time histories in silos[J], Process Safety Progress,1996,15(3):178-184.
    26. Dahoe A E, Hanjalic K, Scarlett B. Determination of the laminar burning velocity and the Markstein length of powder-air flames[J], Powder Technology,2002,122(2-3):222-238.
    27. Proust C. Assistance for the measurement of laminar and turbulent burning velocities for some dust-air mixtures[R].1NERIS,2004.
    28. Schneider H. Measurement of turbulent burning velocities by means of the open tube method[J], Journal of Loss Prevention in the Process Industries,2006,19(2-3):130-134.
    29. Schneider H, Proust C. Laminar and turbulent burning velocities of dust clouds[C].//International ESMG symposium. Nurnberg, Germany,2005:17pp.
    30. Zevenbergen J F. Report on turbulent burning velocity measurements in the 20-litre sphere[R]. Report-Explosion Group, TU Delft, the Netherlands,2004.
    31. Grosmann P, Taraldset O J, Skjold T et al. Experimental investigation of quenching conditions for dust flames propagating through an aperture[R]. GexCon,2005.
    32. Rzal-Rebiere F, Veyssiere B. Propagation mechanisms of starch particles-air flames[C].//Proceedings of the 6th International Colloquium on Dust Explosions. Shenyang,1994:186-200.
    33. Cashdollar K L, Zlochower I A. Explosion temperatures and pressures of metals and other elemental dust clouds[J], Journal of Loss Prevention in the Process Industries,2007,20(4-6):337-348.
    34. Siwek R, Glor M, Torreggiani T. Dust explosion venting at elevated initial pressure[C].//Proceedings of the 7th International Symposium Loss Prevention and Safety Promotion in the Process Industries. Roma, Italy,1992:57.1-57.15.
    35. Forcier T, Zalosh R. External pressures generated by vented gas and dust explosions[J], Journal of Loss Prevention in the Process Industries,2000,13(3-5):411-417.
    36. Harmanny A. Pressure effects from vented dust explosions[J], VDI-Berichte,2001, (1601):539-550.
    37. Holbrow P, Hawksworth S J, Tyldesley A. Thermal radiation from vented dust explosions[J], Journal of Loss Prevention in the Process Industries,2000,13(6):467-476.
    38. Ural E A. A simplified method for predicting the effect of ducts connected to explosion vents[J], Journal of Loss Prevention in the Process Industries,1993,6(1):3-10.
    39. Lunn G A. Institution of chemical engineers vent duct method applied to the VDI vent sizing technique[J], VDI Berichte,2001, (1601):513-526.
    40. Matusek Z, Stroch V. Problematik der Staubexplosionen und Massnahmen gegen Explosionsgefdxen in Grossraumbunker fur Schuttgut [J], Staub-Reinhalt. Luft,1980,40:503-510.
    41. Eckhoff R K, Fuhre K. Dust Explosion Experiments in a Vented 500 m3 Silo Cell[J], Journal of Occupational Accidents 1984,6:229-240.
    42. Eckhoff R K, Fuhre K, Pedersen G H. Dust explosion experiments in a vented 236 m3 silo cell[J], Journal of Occupational Accidents,1987,(9):161-175.
    43. van Wingerden K. Simulation of Dust Explosion Using a CFD code[C].//Proceedings of International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions and 7th International Colloquium on Dust Explosions. Bergen, Norway,1996:6.42-6.51.
    44. van Wingerden K, Arntzen B J, Kosinski P. Modelling of dust explosions[J], VDI-Berichte,2001, (1601):411-421.
    45. Siwek R, van Wingerden K, Hansen O R et al. Dust explosion venting and suppression of conventional spray driers[C].//In Eleventh international symposium on loss prevention. Prague,2004: 3326-3336.
    46. Liu Q, Li X, Bai C. Deflagration to detonation transition in aluminum dust-air mixture under weak ignition condition[J], COMBUSTION AND FLAME,2009,156(4):914-921.
    47. Sun J H, Dobashi R, Hirano T. Structure of flames propagating through aluminum particles cloud and combustion process of particles[J], Journal of Loss Prevention in the Process Industries,2006,19(6): 769-773.
    48. Chen Z H, Fan B C. Flame propagation through aluminum particle cloud in a combustion tube[J], Journal of Loss Prevention in the Process Industries,2005,18(1):13-19.
    49. Lu S X, Guo Z R, Li Y L et al. Experimental and theoretical analysis of acceleration of a gas flame propagating over a dust deposit[J], Proceedings of the Combustion Institute,2003,29:2839-2846.
    50.严楠,浦以康.封闭圆柱形粉尘爆炸罐内扬尘诱导湍流特性的确定[J],流体力学实验与测量,1999,13(3):59-64.
    51.陈志华,范宝春,刘庆明等.大型管中两相爆炸现象的实验研究[J1,流体力学实验与测量,1998, 12(1):45-62.
    52. Liu Q, Bai C, Jiang L et al. Deflagration-to-detonation transition in nitromethane mist/aluminum dust/air mixtures[J], COMBUSTION AND FLAME,2010,157(1):106-117.
    53. Liu Q, Bai C, Li X et al. Coal dust/air explosions in a large-scale tube[J], Fuel,2010,89(2):329-335.
    54. Pu Y K. Fundamental characteristics of laminar and turbulent flames in cornstarch dust-air mixtures[D], Montreal, Canada: McGill University,1988.
    55. Pu Y K, Jia F, Wang S F et al. Determination of the maximum effective burning velocity of dust-air mixtures in constant volume combustion[J], Journal of Loss Prevention in the Process Industries,2007, 20(4-6):462-469.
    56.王双峰,贾复,浦以康等.玉米粉火焰在开口垂直管道中的传播[J],燃烧科学与技术,2007,13(1):5-9.
    57.胡俊,万士昕,浦以康等.柱形容器开口泄爆过程中的火焰传播特性[J],爆炸与冲击,2004,24(4):330-336.
    58.李新光.粉尘云最小点火能测试方法的比较及研究[D],沈阳:东北大学,2000.
    59.谭迎新,薄涛.激波诱导下煤粉的爆炸压力测试[J],中国安全科学学报,2009,19(7):74-77.
    60. Li G, Yuan C, Chen B. Explosion risk evaluation during production of coating powder[J], Journal of Hazardous Materials,2007,149(2):515-517.
    61. Gang L, Chunmiao Y, Peihong Z et al. Experiment-based fire and explosion risk analysis for powdered magnesium production methods[J], Journal of Loss Prevention in the Process Industries, 2008,21(4):461-465.
    62.苑春苗.惰化条件下镁粉爆炸性参数的理论与实验研究[D],沈阳:东北大学,2009.
    63. Roser M, Vogl A, Radandt S et al. Investigations of flame front propagation between interconnected process vessels. Development of a new flame front propagation time prediction model[J], Journal of Loss Prevention in the Process Industries,1999,12(5):421-436.
    64. Holbrow P, Lunn G A, Tyldesley A. Dust explosion protection in linked vessels:guidance for containment and venting[J], Journal of Loss Prevention in the Process Industries,1999,12(3): 227-234.
    65. Lunn G, Crowhurst D, Hey M. The effect of vent ducts on the reduced explosion pressures of vented dust explosions[J], Journal of Loss Prevention in the Process Industries,1988,1(4):182-196.
    66. van Wingerden K, Pedersen G H, Teigland G H et al. Violence of dust explosions in integrated systems[C].//Proceedings of the 28th AIChE Annual Loss Prevention Symposium. Atlanta, Ga, USA: American Institute of Chemical Engineers,1995.
    67. Andrews S, Lunn G A. A report on some tests on the jet ignition of dust clouds[C].//2nd Internet Conference on Process Safety.2000.
    68. Holbrow P. Large scale explosions in vented coupled vessels[C].//International ESMG symposium. Nu rnberg, Germany,2005.
    69. Holbrow P. DESC:Interconnected vented explosion tests[R]. HSL,2004.
    70. Holbrow P. DESC:Phase 2:Interconnected vented explosion tests[R]. HSL,2005.
    71. Klein A J J, van der Voort M M, Versloot N. Large scale dust explosions in linked enclosed vessels[C]. //International ESMG symposium. Nu rnberg, Germany,2005:9pp.
    72. Klein A J J, van der Voort M M, van Zweden A et al. Validating CFD-code 'DESC':Large scale dust explosions in linked enclosed vessels[R]. TNO,2005.
    73. Vogl A, Radandt S. Explosions ubertragung durch dunne Rohrleitungen[J], VDI-Berichte,2001, (1601):575-594.
    74. Vogl A, Radandt S. Explosionsu bertragung durch dunne Rohrleitungen[R]. Forsch.gesellsch. angew. Systemsicherheit und Arbeitsmedizin,2005.
    75. Vogl A. Flame propagation in tubes of pneumatic conveying systems and exhaust equipment[C]. //29th Loss Prevention Symposium. New Orleans,1996:219-226.
    76. Kjaldman L. Numerical flow simulation of dust deflagrations[J], Powder Technology,1992,71(2): 163-169.
    77. Rose M, Roth P, Frolov S M et al. Modelling of turbulent gas/particle combustion by a Lagrangian PDF method[J], Combustion Science and Technology,1999,149(1-6):95-113.
    78. Smirnov N N, Nikitin V F, Legros J C. Ignition and combustion of turbulized dust-air mixtures[J], COMBUSTION AND FLAME,2000,123(1/2):46-67.
    79. Bielert U, Sichel M. Numerical simulation of dust explosions in pneumatic conveyors[J], Shock Waves,1999,9(2):125-139.
    80. Kosinski P, Klemens R, Wolanski P. Potential of mathematical modelling in large-scale dust explosions[J], Journal de Physique Ⅳ,2002,12(7):Pr7/125-Pr7/132.
    81. Di Benedetto A, Russo P. Thermo-kinetic modelling of dust explosions[J], Journal of Loss Prevention in the Process Industries,2007,20(4-6):303-309.
    82. Zhong S J. Modeling and Numerical Simulation of Coal Dust-Air Explosions[D], Warsaw:Warsaw University of Technology,2002.
    83. Zhong S J, Teodorczyk A, Deng X F et al. Modeling and simulation of coal dust explosions[J], Journal de Physique Ⅳ,2002,12(7):Pr7/141-Pr7/147.
    84. Zhong S J, Deng X F. Modeling of maize starch explosions in a 12 m3 silo[J], Journal of Loss Prevention in the Process Industries,2000,13(3/4/5):299-309.
    85. Dong G, Fan B C, Xie B et al., Experimental investigation and numerical validation of explosion suppression by inert particles in large-scale duct, in Proceedings of the Combustion Institute, Editor^Editors.2005. p.2361-2368.
    86.洪滔,秦承森.爆轰波管中铝粉尘爆轰的数值模拟[J],爆炸与冲击,2004,24(3):490-496.
    87. Kosinski P, Hoffmann A C. Dust explosions in connected vessels:Mathematical modelling[J], Powder Technology,2005,155(2):108-116.
    88. Kosinski P, Hoffmann A C. An investigation of the consequences of primary dust explosions in interconnected vessels[J], Journal of Hazardous Materials,2006,137(2):752-761.
    89. Krause U, Kasch T. The influence of flow and turbulence on flame propagation through dust-air mixtures[J], Journal of Loss Prevention in the Process Industries,2000,13(3-5):291-298.
    90.工志强.中二次风水平摆角对炉内气固流场影响的数值模拟[D],哈尔滨:哈尔滨工业大学,2003.
    91.王志强.地下气化煤气再燃还原NOx的研究[D],哈尔滨:哈尔滨工业大学,2007.
    92.王志荣.受限空间气体爆炸传播及其动力学过程研究[D],南京:南京工业大学,2005.
    93. Arntzen B J, Salvesen H C, Nordhaug H F et al. CFD-modelling of oil mist and dust explosion experiments[C].//Proceedings of the 4th International Seminar on Fire and Explosion Hazards. Londonderry, UK,2003:601-608.
    94. Hansen O R, Skjold T, Arntzen B J. DESC—a CFD tool for dust explosions[C].//Proceedings of the 3rd International ESMG Symposium on Process Safety and Industrial Explosion Protection. N'urnberg, Germany,2004.
    95. Siwek R, van Wingerden K, Hansen O R et al. Dust explosion venting and suppression of conventional spray dryers[C].//Proceedings of the 11th International Symposium Loss Prevention and Safety Promotion in the Process Industries. Praha, Czech Republic,2004.
    96. Skjold T, Arntzen B J, Hansen O R et al. Simulation of dust explosions in complex geometries with experimental input from standardized tests[J], Journal of Loss Prevention in the Process Industries, 2006,19(2-3):210-217.
    97. Skjold T, Arntzen B J, Hansen O R et al. Simulating dust explosions with the first version of DESC[J], Process Safety and Environmental Protection,2005,83(B2):151-160.
    98. Skjold T. Review of the DESC project[J], Journal of Loss Prevention in the Process Industries,2007, 20(4/5/6):291-302.
    99. Elliott C, Vijayakumar V, Zink W et al. National Instruments LabVIEW:A Programming Environment for Laboratory Automation and Measurement[J], Journal of the Association for Laboratory Automation,2007,12(1):17-24.
    100. Santos R A, Normey-Rico J E, Gomez A M et al. OPC based distributed real time simulation of complex continuous processes[J], Simulation Modelling Practice and Theory,2005,13(7):525-549.
    101. Sahin C, Bolat E D. Development of remote control and monitoring of web-based distributed OPC system[J], Computer Standards & Interfaces,2009,31(5):984-993.
    102. Ding Z Q, Aendenroomer A, He H et al. OPC based device management and communication in a distributed control application platform[C].//IEEE Industrial Informatics Conference Proceedings. 2003:107-111.
    103. Travis J, Kring J. LabVIEW for Everyone:Graphical Programming Made Easy and Fun[M]. Person Education, Inc,2007.
    104. Agarwal V V, Huddleston J. Beginning C# 2008 Databases:From Novice to Professional[M]. Berkeley, USA: Apress,2008.
    105. Amyotte P R, Eckhoff R K. Dust explosion causation, prevention and mitigation: An overview[J], Journal of Chemical Health and Safety,2009, In Press, Uncorrected Proof.
    106. ISO 6184/1, Determination of explosion indices of combustible dusts in air, International Organisation for Standardisation, in, Editor Editors.1985. p.
    107. Phylaktou H, Andrews G E. Gas explosions in linked vessels[C].//3th ICDERS Meeting. Japan,1991.
    108. Singh J. Gas explosions in interconnected vessels:pressure piling[C].//Presented at.iChem E Hazards X11 Svmoosium. UMIST, M&chester, UK,1994.
    109. Scheid M, Geissler A, Krause U. Experiments on the influence of pre-ignition turbulence on vented gas and dust explosions[J], Journal of Loss Prevention in the Process Industries,2006,19(2-3): 194-199.
    110. Pu Y K, Jarosinski J, Johnson V G et al. Turbulence effects on dust explosions in the 20-liter spherical vessel[C].//In Twenty-Third Symposium on Combustion. The Combustion Institute,1990:843-849.
    111. Eckhoff R K. Influence of initial and explosion-induced turbulence on dust explosions in closed and vented vessels research at CMI[J], Powder Technology,1992,71(2):181-187.
    112. Tamanini F, Ural E A. FMRC studies of parameters affecting the propagation of dust explosions[J], Powder Technology,1992,71(2):135-151.
    113. van der Wel P G J, van Veen J P W, Lemkowitz S M et al. An interpretation of dust explosion phenomena on the basis of time scales[J], Powder Technology,1992,71(2):207-215.
    114. Hauert F, Vogl A, Radandt S. Dust Cloud Characterisation and Its Influence on the Pressure-Time History in Silos[J], Process Safety Progress,1996,15(3):178-184.
    115. Zhen G, Leuckel W. Determination of dust-dispersion induced turbulence and its influence on dust explosions[J], Combustion Science and Technology,1996,113-114:629-639.
    116. Tamanini F. Scaling parameters for vented gas and dust explosions[J], Journal of Loss Prevention in the Process Industries,2001,14(6):455-461.
    117. Eckhoff R K. Prevention and mitigation of dust explosions in the process industries:A survey of recent research and development[J], Journal of Loss Prevention in the Process Industries,1996,9(1): 3-20.
    118. Tamanini F. The role of turbulence in dust explosions[J], Journal of Loss Prevention in the Process Industries,1998,11(1):1-10.
    119. Zhang F, Gronig H, Ven A v d. DDT and detonation waves in dust-air mixtures[J], Shock Waves, 2001,11:53-71.
    120.周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京,中国:科学出版社,1994.
    121.徐旭常,周力行.燃烧技术手册[M].北京,中国:化学工业出版社,2008.
    122. Badzioch S, Hawksley P G W, Peter C W. Kinetics of Thermal Decomposition of Pulverized Coal Particles[J], Ind. Eng. Chem. Process Design and Develp.,1970, (9):521-530.
    123.梁在潮.工程湍流[M].武汉:华中理工大学出版社,1999.
    124. Krishnamurty V S, Clutter J K, Shyy W. Study of Two-Equation Based Modeling For Compressible Turbulent Flows[R]. AIAA 1996.
    125. Shah T H, Liou W W, Shabbir A et al. A New κ-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows Model Development and Validation[J], Computers Fluids,1995,24(3):227-238.
    126. Launder B E. Second-Moment Closure: Present... and Future?[J], International Journal of Heat Fluid Flow,1979,10(4):282-300.
    127. Lauder B E, Spalding D B. The numerical computation of turbulent flows[J], Computer Methods in APPlied Mechanics and Engineering,1974, (3):269-289.
    128.王应时,范维澄,周力行等.燃烧过程数值计算[M].北京:科学出版社,1992.
    129. Spalding D, Mixing and chemical reaction in steady confined turbulent flames, in Thirteenth Symposium (International) on Combustion.Pittsburgh:The Combustion Institute, Editor Editors.1971. p.649-657.
    130. Magnussen B F, Hjertager B H. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion[C].//16th Symp. on Combustion. The Combustion Institute.1976.
    131. Magnussen B F. On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow[C].//Nineteeth AIAA Meeting. St. Louis,1981.
    132. Mason H B, Spalding D B. Prediction of Reaction Rates in Turbulent Premixed Boundary Layer Flows[C].//Proc. Eurpean Symp. on Combustion.1973:601.
    133. Abdel-Gayed R, Bradley D. Combustion regimes and the straining of turbulent premixed flames[J], COMBUSTION AND FLAME,1989,76:213-218.
    134. Yakhot V, Orsazg C, Thangam S et al. Development of turbulence models for shear flows by a double expansion technique[J], Physics fluids,1992,4(7):1510.
    135. Popat N R, Catlin C A, Arntzen B J et al. Investigations to improve and assess the accuracy of computational fluid dynamic based explosion models[J], Journal of Hazardous Materials,1996,45(1): 1-25.
    136. Catlin C A, Fairweather M, Ibrahim S S. Predictions of Turbulent, Premixed Flame Propagation in Explosion Tubes[J], COMBUSTION AND FLAME,1995,102(1-2):115-128.
    137. Fairweather M, Hargrave G K, Ibrahim S S et al. Studies of premixed flame propagation in explosion tubes[J], COMBUSTION AND FLAME,1999,116(4):504-518.
    138. Skjold T. Review of the DESC project[J], Journal of Loss Prevention in the Process Industries,2007, 20(4-6):291-302.
    139. Arntzen B J. Modeling of Turbulence and Combustion for Simulation of Gas Explosion in Complex Geometries.[D]:Norvegian University of Science and Technology,1998.
    140. Kosinski P, Klemens R, Wolanski P. Potential of mathematical modelling in large-scale dust explosions[J], Journal De Physique Iv,2002,12(7):125-132.
    141. McMurtry P, S M, AR K. Linear Eddy Modeling of Turbulent Combustion[J], Energy & Fuels,1993, 7:817-826.
    142. Poinsot T, Caadel S, Trouve A. Applications of direct numerical simulation to premixed turbulent combustion[J], Progress in Energy and Combustion Science,1995,21(6):531-576.
    143. Gamezo V N, Desbordes D, Oran E S. Two-dimensional reactive flow dynamics in cellular detonation waves[J], Shock Waves,1999,9(1):11-17.
    144. Luo W W. Numerical Modeling of 3-D Recirculating Turbulent Two-Phase Flows with Pulverized Coal Combustion[D]:Qinghua University,1994.
    145. Eaton A M, Smoot L D, Hill S C et al. Components, formulations, solutions, evaluation, and application of comprehensive combustion models[J], Progress in Energy and Combustion Science, 1999,25(4):387-436.
    146. Spalding D B. Mathematical Models of Continuous Combustion, Emisson from Continuous Combustion Systems.[M]. Plenum Press,1972.
    147. Soo S L. Dynamics of Charged Suspensions.[C].//Topics in Current Aerosol Research. Pergamon, 1971.
    148. Drew D A. Stud. Appl. Math.[M].1971,205.
    149. Crowe C T, P. S M, E. S D. The particle-source-in-cell (PSIC) method for gas-droplet flows[J], Jouranl of Fluid Engineering,1977,99(2):325-332.
    150. Hallmann M, Scheurlen M, Wittig S. Computation of Turbulent Evaporating Sprays, Eulerian Versus Lagrangian Approach[J], Journal of Engineering for A Gas Turbine and Power,1995,117:112.
    151. Smoot L D, Smith P J. Coal combustion and gasification[M]. New York: Plenum Press,1985.
    152. Abaas A S, Kousa S S, lockwood F C.//18th international Symposium on combustion.1981:1427.
    153. Boysan F, Ayers W H, Swithenbank J. A fundamental mathematical modelling approach to cyclone design[J], Trans. Inst. Chem. Eng.,1982,60(4):222-230.
    154. Gosman A D, E I.//AIAA 19th Aerospace Science Meeting.1981:81-323.
    155. Sirignano W. Numerical modeling in combustion[M]. Washington, DC:Taylor and Francis,1993, 457.
    156. Baxter L L, Smith P J. Turbulent Dispersion of Particles: The STP Model[J], Energy and Fuels,1993, (7):825-859.
    157. Hottel H C, Cohen E S. Radiation heat transfer in a gas-filled enclosure:allowance for non-uniformity of gas temperature.[J], Amer Inst of Chem Eng Journal,1958, (4):3-14.
    158. Khalil E E. Modeling of Furnaces and Combustors[M]. Abacus Press,1982.
    159.郭印诚,林文漪,周力行.三维煤粉燃烧全双流体模型的数值模拟[J],工程热物理学报,1998,19(]):117-120.
    160. Chandrasekhar S. Radiative Transfer[M]. New York:Dover Publications Inc.,1960.
    161. Lockwood F C, Shah N G. A new radiation solution method for incorporation in grneral combustion prediction procedures[C].//The 18th International Symposium on combustion.1980:1405-1414.
    162. (2006) Fluent 6.3 User Guide
    163. Fluent Inc.Fluent 6.3 User Guide.USA:Fluent Inc.2006.
    164.王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    165. Patanker S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. [J], Int J Heat Mass Transfer,1972,15:1787-1806.
    166. VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics-The finite volume method[M]. Essex, England:Longman Scientific & Technical,1995,188.
    167.郁志辉.高性能计算之并行编程技术—MPI并行程序设计[M].北京:清华大学出版社,2001.
    168.胡俊,浦以康,万士昕等.柱形容器开口泄爆过程中压力发展特性的实验研究[J],爆炸与冲击,2001,21(1):47-52.
    169. Yaws C L. Chemical properties Hnadbook[M]. Beijing:MeGrwa-Hill/世界图书出版公司,1999.
    170.《化学工程手册》编辑委员会.化学工程手册(第1篇化工基础数据)[M].北京:化学工业出版社,1980.
    171. McGee H A. Molecular Engineering[M]. New York: McGraw-Hill,1991.
    172. Hauert F, Vogl A, Radandt S. Meaurement of Turbulence and Dust Concentration in Silos and Vessels[C].//Proceedings of the 6th International Colloqiuim on Dust Explosions. Shenyang, China: Northeastern University Press,1994:71-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700