用户名: 密码: 验证码:
泄爆外流场的动力学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泄爆是工业上广泛采用的爆炸防治手段之一,它是指通过泄爆口,将内部空间的高压已燃和未燃气体或粉尘导出到外部空间中,使内部压力迅速降低,以防止爆炸灾害。因泄爆过程的复杂性和某些不确定性,在一定的条件下,内压力虽降低了,而外流场可能出现很高的压力峰值,甚至产生所谓的二次爆炸,这对毗邻的建筑物、设备及人员的安全构成威胁。因此,研究泄爆外流场的动力学特征以及二次爆炸的产生机理,具有重要的意义。
     本文利用自行设计的带导管的柱形泄爆装置,对不同泄爆条件(即泄爆压力、点火位置、泄爆面积和初始甲烷-空气预混气当量比)下向空气中泄爆的情形进行了实验,获得了内外流场的压力历史。并用YA-16高速阴影系统拍摄到了泄爆外流场清晰的时序阴影照片。而且,采用基于k-ε湍流模型和漩涡耗散湍流燃烧模型(“Eddy dissipation model”)的同位网格SIMPLE算法,对典型泄爆条件下的泄爆过程进行了数值模拟。根据计算结果和相关的计算流动技术(CFI),绘制了计算阴影图。
     基于实验结果、数值计算结果以及计算阴影图,本文对一般高压泄爆条件下,泄爆外流场的动力学特征(如射流火焰、湍流、漩涡以及可燃云团、波系特征等)进行了详细的系统的阐述,揭示了二次爆炸的产生机理。即在本文的泄爆条件下,泄爆后,首先产生的是引导激波,它由内外压差这个初始间断决定,因其传播速度较气流速度快,随波阵面的扩大而逐渐衰减为声波。随后,未燃气体从泄爆口泄出,并在外流场与空气混合形成可燃云团。由于高压(相对环境压力)气流在管口膨胀,形成欠膨胀射流。管口附近形成Prandtl—Meyer流稀释波低压区,而稀释波又在射流边界上反射并在轴线附近汇聚,形成压力相对较高的高压区,即悬吊激波高压区。这样,在火焰泄出前,外流场存在可燃云团、稀释波低压区和悬吊激波高压区,这些特征构成外流场的基本特征。当火焰从容器(低密度)进入导管(高密度),受导管壁面剪切层等的作用,火焰失稳,在湍流的作用下加速向导管口推进,于管口附近达到极大值,以射流形式泄出。当射流火焰进入高压区时,且外流场处于合适的条件,如高压区的超压强度、可燃气体的密度及其覆盖的区域等足够大时,引起外部可燃气体的剧烈燃烧,从而使得外部压力迅速上升,以致产生二次爆炸。实验获得的阴影图和计算阴影图,形象的说明了泄爆后火焰、漩涡、引导激波以及随后产生的二次爆炸波的特征和变化发展过程。
     文中还根据实验获得的不同泄爆条件下的外压力历史,分析了外部二次爆炸的影响因素,详细讨论了二次爆炸强度随泄爆条件的变化规律。即在其它泄爆条件不变时,而改变泄爆压力时,泄爆压力愈大,二次爆炸强度也愈大。同样,仅改变点火位置,而其它条件不变时,当泄爆压力较低时,二次爆炸强度随点火位置离泄爆口愈近,其值愈大;而当泄爆压力较大时,其变化规律与之相反。当其它条件不变而改变泄爆口障碍物的阻塞比时,二次爆炸强度随阻塞比的增大(即泄爆面积减小)而下降。当在改变初始甲烷-空气预混气的组分时,当量比小于1的情形,二次爆炸强度较当量比为1的情形小,而当量比大于1的情形,其值较大。
Explosion relief venting is one of the methods applied widely in industries to avoid internal explosion. Namely, it can vent the high pressure unburnt and burnt gas mixture or dust to the outside space (generally the ambient air) through a device of low pressure resistance opening, when the explosion is in development and the overpressure exceeds a certain safe threshold(i.e. failure pressure). Because of the complexity and uncertainty in venting process, the inner overpressure could decrease, while the outer overpressure increases rapidly under some suitable conditions, and even external secondary explosions can occur. This gives potential explosion damage to neighboring structure or equipment or personnel in the vicinity. Therefore, it is necessary to investigate the dynamics of the vented external flow field and the mechanism of the secondary explosions during venting.In this paper, with a cylindrical vented vessel connected to a duct, the experiments on the venting to air under different venting conditions (failure pressure, vent area, equivalent ratio of the methane-air gas mixture and the location of ignition source) were performed and the pressure-time profiles of the external flow field were obtained. Moreover, some visualization tests of the external flow field were implemented by using YA-16 high-speed shadowgraph imaging system, and the clear sequential shadowgraph images were also obtained in tests. In addition, the venting process under the typical venting condition was simulated numerically, by using the colocated grids SIMPLE algorithm based on the k turbulent model and 'Eddy dissipation model' turbulent combustion model. Furthermore, the computational shadowgraph images were plotted based on the numerical results and relevant computational flow imaging (CFI) methods.From the experimental and numerical results and computational shadowgraph images, the dynamic characteristics of the vented external flow field, namely,the jet flame, turbulence, vortex , flammable cloud and the structure of the pressure waves in the external flow field during venting, etc., were discussed systematically in detail. In the venting conditions covered in this paper, the leading shock wave generated due to the initial discontinuity of the pressure difference of the external and internal flow field, was firstly coming out of the vent. Then, the combustible gas rushed out and mixed with the oxygen of the air to form combustible cloud. The leading shock wave decayed to sound wave with its front expanding. The vented gas mixture jetted out under expansion for its higher pressure relative to ambient pressure, and the low pressure area near the exit was formed due to the rarefaction waves of the Prandtl-Meyer flow. And the high pressure area (also called 'Suspended shock wave'.) near the axis farther to the exit was also generated due to the convergence of those rarefaction waves reflected from the
    
    boundaries of the jet. The occurrence of the combustible cloud, low pressure area of the rarefaction waves and high pressure area of suspended shock were the basic characteristics in the external flow field before the flame spouted out. When the flame penetrated from the vessel(low density) into the duct(high density), it was accelerated due to instabilities occurring on its front and interaction of the shear layer of the duct wall, and its velocity near the exit was up to the maximum and then the jet flame rushed out. Under suitable conditions, for example suitable overpressure intensity and density in the high pressure area, and the area covered by the combustible in the external flow field, etc., the overpressure in the external flow field increased rapidly and even the secondary explosion occurred due to the violent combustion of the external combustible gas ignited by the jet flame. The characteristics of the flame, vortex, leading shock wave and secondary explosion generated later, were showed obviously from the clear sequential experimental shadowgraph images and computational shadowgraph images .In addition, the influenc
引文
1 赵云胜.许绛垣.世界职业灾害概述.灾害学.1995:10(1),80-83.
    2 谢波.可燃系统中爆炸抑制过程的实验与理论研究.博士论文.南京理工大学.2003.
    3 金磊.安全.生命,稳定,发展---20世纪中国工业事故思考.中国统计.1999:208(5),37-39.
    4 Richard Siwek. Explosion venting technology. Journal of loss prevention in process industries.1996:9(1),81-90.
    5 Paul Holbrow, Stuart J Hawksworth, Alan Tyldesley. Thermal radiation from vented dust explosions. Journal of Loss Prevention in the Process Industries. 2000:13,467-476.
    6 Harrison A J, Eyre A J. "External explosions" as a result of explosion venting[J].Combustion Science and Technology, 1987,52:91 - 106.
    7 Cooper M G, Fairweather M, Tite J E On the Mechanisms of Pressure Generation in Vented Explosions. Combustion and Flame. 1986,65:1-14.
    8 D.M. Razus, U. Krause. Comparison of empirical and semi-empirical calculation methods for venting of gas explosions, Fire Safety Journal. 2001,36:1-23.
    9 Ponizy B, Leyer J C. Flame Dynamics in a Vented Vessel Connected to a Duct: 1. Mechanism of Vessel-Duct Interaction.Combustion and Flame. 1999,116:259-271.
    10 Ponizy B, Leyer J C. Flame Dynamics in a Vented Vessel Connected to a Duct: 2. Influence of Ignition Site, Membrane Rupture, and Turbulence. Combustion and Flame. 1999, 116:272-281.
    11 胡俊,浦以康,万士昕,贾复.柱形容器开口泄爆过程中压力发展特性的实验研究.爆炸与冲击.2001,21(1):48-52
    12 B. Ponizy, B.Veyssiere. Mitigation of explosions in a vented vessel connected to a duct. Combustion science and technology.2000,158:167-182.
    13 Van Wingerden, K.& Wilkins,B. The influence of water sprays on gas explosions. Part 1: water-spray-generated turbulence. Journal of loss prevention in the process industries. 1995,8(2):53-59.
    14 Van Wingerden, K.& Wilkins,B. The influence of water sprays on gas explosions. Part 2: mitigation. Journal of loss prevention in the process industries. 1995,8(2):61-70.
    15 D.Dunn-Rankin, M.A.Mccann. Overpressures from nondetonating, baffie-accelerated turbulent flames in tubes. Combustion and flame.2000,120:504-514.
    16 范宝春,姜孝海,谢波.障碍物导致甲烷—氧气爆炸的三维数值模拟.煤炭学报:2002,27(4):37—373.
    17 谢波,范宝春,王克全,夏自柱。挡板障碍物加速火焰传播及其超压变化的实验研究。煤炭学报.
    18 A.J.Harrison, J.A.Eyre. The effect of obstacle arrays on the combustion of large premixed gas/air clouds. Combustion and flame. 1987,52:121-137.
    19 M.Fairweather, G.K.Hargrave,S.S.Ibrahim,D.G.Walker. Studies of premixed flame propagation in explosion tubes.Combustion and flame. 1999,116:504-518.
    20
    
    20 S.S.Ibrahim, A.R.Masri. The effects of obstructions on overpressure resulting from premixed flame deflagration. Journal of loss prevention in the process industries.2001, 14:213-221.
    21 S.Patel,S.S.Ibrahim,M.A.Yehia,G.K.Hargrave. Investigation of premixed turbulent combustion in a semi-confined explosion chamber. Experimental thermal and fluid science.2003(27):355-361.
    22 I.O.Moen,J.H.S.Lee,B.H.Hjertager, K.Fuhre,R.K.Eckhoff. Pressure development due to turbulent flame propagation in large-scale methane-air explosions. Combustion and flame. 1982, 47:31-52.
    23 A.Alexiou, G.E.Andrews,H.Phylaktou. Side-vented gas explosions in a long vessel: the effect of vent positon. 1996,9(5):351-356.
    24 D.Bradley, A.Mitcheson. The venting of gaseous explosions in spherical vessels,Ⅰ-Theory. Combustion and flame. 1978,32:221-236.
    25 M.Epstein,I.Swift, H.Fauske. Estimation of peak pressure for sonic-vented hydrocarbon explosions in spherical vessels. Combustion and flame. 1986,66:1-8.
    26 V.V.Molkov, R.Dobashi,M.Suzuki,T.Hirano.Modelling of vented hydrogen-air deflagrations and correlations for vent sizing. Journal of loss prevention in process industries. 1999,12:147-156.
    27 D.Bradley, A.Mitcheson. The venting of gaseous explosions in spherical vessels,Ⅱ-Theory and experiment. Combustion and flame. 1978,32:237-255.
    28 Francesco Tamanini. Scaling parameters for vented gas and dust explosions. Journal of loss prevention in process industries. 2001, 14:455-461.
    29 D.Crowhurst, S.A.Colwell, D.P.Hoare. The External Effects of Vented Dust Explosions[C]. Proceedings of the 6th International Colloquium on Dust Explosions. Shenyang: Northeastern University Press, 1994:510-525.
    30 Catlin C A. Scale effects on the external combustion caused by venting of a confined explosion[J].Combustion and Flame. 1991, 83:399-411.
    31 Wirkner-Bott I., Schumann S., Stock M. Dust explosion venting: investigation of the secondary explosion. In: 7th international symposium on loss prevention and safety promotion in the process industries. Taormina, Italy. 4-8 May 1992. Rome: SRP Partners. Volume Ⅰ. 58-1~20.
    32 D.P. J.McCann, G.O.Thomas, D.H.Edwards. Gasdynamics of vented explosions Part Ⅰ:Experimental Studies[J]. Combustion and Flame, 1985,59:233-250.
    33 李鸿志,崔东明,范宝春.连续介质中的激波.第1版.北京:兵器工业出版社.1995.
    34 Tom Forcier., Robert Zalosh. External pressures generated by vented gas and dust explosions.Journal of Loss Prevention in the Process Industries.2000,13:411-417.
    35 Palmer K.N.,Tonkin P. S. External pressures caused by venting agas explosion in a large chamber, in proceedings of the 3rd international loss prevention symposium.
    36 van Wingerden K. Prediction of pressure and flame effects in the direct surroundings of in stallations protected by dust explosion venting. Journal of loss prevention in the process industries.1993,6(4):241-249.
    37 Criwgyrst D., Colwell S.A.,Hoare D.P. The external explosion characteristics of vented dust explosions. In ICHEME symposium series No. 139.
    38 范洁川等.流动显示与测量.第一版.北京:机械工业出版社.1997.
    39 Goldstein R.J. Fluid mechanics measurement. New York: Hemisphere Publishing Corp, 1983.
    40 崔东明.驻定斜爆轰波特性的理论与实验研究.博士论文.南京理工大学.1999.
    
    41 R.W. Bilger. Future progress in turbulent combustion research. Progress in Energy and Combustion Science. 2000,26:367-380
    42 DENIS VEYNANTE.LUC VERVISCH. Turbulent combustion modeling. Progress in Energy and Combustion science .2002, 28:193-266
    43 Givi P. Model free simulations of turbulent reactive flows. Progress in energy and combustion science. 1989,15:1-107.
    44 Poinsot T,Candel S,Trouve A. Applications of direct numerical simulation of premixed turbulence combustion. Progress in Energy and Combustion science. 1996,21:531-576.
    45 M.Tanahashi, Y.Yu, T.Miyauchi. Effects of turbulence intensity on the structure of hydrogen-air turbulent premixed flame. Proc.3rd inter. Symp. On turbulence. Heat and mass transfer. Nagoya, Aichi Shuppan,2000,847-854.
    46 Pope S.B. Computations of turbulent combustion: progress and challenges. In:23rd symposium(int) on combustion, 1990:591-612.
    47 Candel S.M, Poinsot T.J. Flame stretch and the balance equation for the flame area. Combustion science and technology. 1990:70,1-15.
    48 Dopazo C. Recent developments in PDF methods. In: Libby P A,Williams F.A,ed. Turbulent reacting flows. Academic press, 1993:375-474.
    49 Klimenko A Yu.Multicomponent diffusion of various admixtures in turbulent flows. Fluid dyn. 1990,25:327-343.
    50 Bilger R W. Conditional moment closure for turbulent reacting flow.Phys fuids. 1993,A5(2):436-473.
    51 Bray K N C,Peters N. Laminar flamelets in turbulent flames. In.Libby P.A, Williams F.A.ed. Turbulent reacting flows. Acdemic press. 1993:63-114.
    52 Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in energy and combustion science. 1984,10:319-339.
    53 Bray K N C,Libby P A. Recent developments in the BML model of premixed turbulent combustion. In: Libby P A,Williams F A,ed. Turbulent reacting flows. Academic press. 1993,115-152.
    54 Pratt D T. Mixing and chemical reaction in continuous combustion. Progress in energy and combustion science. 1976,1:73-86.
    55 Spalding D B. Mathematical models of turbulent flames: a review. Combustion science and technology, i 976,13:3-25.
    56 Spalding D B. Mixing and chemical reaction in steady confined turbulent flames. In: 13th symposium(int) on combustion. The combustion institute,Pittsburgh, 1971,649-67.
    57 Spalding D B. A general theory of turbulent combustion. A1AA Paper 77-141,AIAA 151'1 aerospace meeting, Los angeles, January, 1977.
    58 Spalding D B. The influence of laminar transport and chemical kinetics on the time-mean reaction rate in a turbulent flow. In : 17th symposium(int) on combustion, 1978,431-440.
    59 S.candel,D.Thevenin,N.Darabiha,D.Veynante. Progress in Numerical Combustion. Combustion science and technology. 1999,149:297-337
    60 Borghi R. On the structure and morphology of turbulent premixed flames. In C.Cssci, Recent advances in the aerospace sciences. New York: plenum publishing. 1985,117-138.
    61 C.A.Catlin,M.Fairweather,S.S.Ibrahim. Predictrions of turbulent, premixed flame propagation in explosion tubes. Combustion and flame. 1995,102:115-128.
    
    62 Hjertager B H. Simulation of transient compressible turbulent reactive flows[J].Combustion Science and Technology. 1982,27:159-170.
    63 B.H.Hjertager, Influence of turbulence on gas explosions. J.Hazardous Mater. 1984,9:315-346.
    64 J.S.Puttock, M.R.Yardley, T.M.Cresswell. Prediction of vapour cloud explosions using the SCOPE model. Journal of loss prevention in the process industries.2000,13:419-431.
    65 J.K.Clutter, J.Mathis. Computational modeling of vapour cloud explosions in off-shore rigs using a flame-speed based combustion model. Journal of loss prevention in the process industries.2002,15:391-401.
    66 Francesco Tamanini.The role of turbulence in dust explosions. Journal of loss prevention in the process industries. 1998,11:1-10.
    67 Launder B E, Spalding DB. The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering. 1974, 3:269-289
    68 B. F. Magnussen and B. H. Hjertager. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. In 16th Symp. (Int.) on Combustion. The Combustion Institute, Pittsburg(1976),719-729.
    69 帕坦卡,S.V.著,张政译,传热与流体流动的数值模拟,北京:科学出版社,1984
    70 M.Peric,R.Kessler, G.Scheuerep. Comparison of finite-volume numericalmethods with staggered and collocated grids. Computers&fluids, 1988,16:389-403.
    71 A.W.Date. Solution of Navier-Stokes equations on non-staggered grid. International journal of heat and mass transfer. 1993,36(7): 1913-1922.
    72 陶文铨.数值传热学.第一版.西安:西安交通大学出版社,1988.
    73 陶文铨.计算传热学的近代进展.北京:科学出版社,2000.
    74 George Havener. Computational flow imaging:fundamentals and history. 18th AIAA Aerospace ground testing conference. 1994-2615.
    75 周璐,乐嘉陵,李晓梅.计算流动显示——概念、原理及实现.计算机工程与科学.2000,22(1):7-9.
    76 龚雪晶,谢剑薇.对计算流动显示光线投射算法的改进.装备指挥技术学院学报.2002,13(5):71-75.
    77 曹裕华,方德润,杨祖清.数值计算数据的流动显示模拟.流体力学实验与测量.1997,11(4):66-70.
    78 E.M.Schmidt., D.D.Shear. Optical measurements of muzzle blast.AIAA.J. 1975, 3:1088-1093.
    79 肖衍繁,李文斌.物理化学.第1版.天津:天津大学出版社.1997.
    80 范维澄,万跃鹏.流动及燃烧的模型与计算.合肥:中国科学技术大学.1992.
    81 Launder, B. E., and Spalding, D. B. Mathematical Models of Turbulence. London: Academic Press. 1972.
    82 Hjertager, B.H., Numerical simulation of turbulent flame and pressure development in gas explosions. Fuel-air explosions,SM Study No. 16.University of waterloo press, Ontario,Canada(1982),407-426
    83 Lauder B.E. Numberical computational of covective heat transfer in complex turbulent flows: time of abandon wall function, Int.J.Heat Mass Transfer, 1984,27:1485-1491.
    84 王继海.二维非定常流和激波.第一版.北京:科学出版社,1994
    85 Krishnamurty VS. Effect of compressibility on the turbulence structure, its modeling. PhD Dissertation.University of Florida, Gainesville, 1996
    86 Valenino M, Kauffman CW, Sichel M. Experimental study of the mixing of reactive gases at their interface behind a shock wave. AIAA paper 1998:98-2507
    87 Shyy W, Thakur S, Ouang H, Liu J, Blosch E. Computational techniques for complex transport phenomena. Cambridge, England: Cambridge University press, 1997
    
    88 G.Abate, W. Shyy. Dynamic structure of confined shocks undergoing sudden expansion. Progress in Aerospace Science, 2002(38):23-42
    89 张兆顺,崔桂香.流体力学.第一版:北京:清华大学出版社,1999。
    90 Daniel Allgood, Ephraim Gutmark.et.al. Computational and experimental studies of pulse detonation engines.41st Aerospace Sciences Meeting and Exhibit 6-9 January 2003, Reno, Nevada. AIAA 2003-889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700