用户名: 密码: 验证码:
西北旱区两种典型沙生植物对盐胁迫响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在西北干旱荒漠区营造防风固沙林,是遏制荒漠化进程,保障绿洲农业生产不受风沙危害的有效途径。但由于该地区天然降雨量少,仅依靠天然降雨很难满足幼龄人工林对水分的需求。为保证人工林的顺利成活,必须在人工林幼龄期进行补充灌溉。而该地区的淡水资源严重匮乏,补充灌溉只能依赖于地下苦咸水。由于苦咸水含有较高的盐分,利用苦咸水进行灌溉往往会对植物造成一定的生理伤害。要合理利用含有较高盐分的苦咸水进行幼龄林灌溉,首先就要研究盐胁迫条件下植物的耐盐机理。在深入认识盐胁迫对植物生理特性影响的基础上,才能进一步制定幼龄人工林灌溉方案,以提高林分成活率。
     为深入认识盐胁迫对典型沙生植物柠条与梭梭生理特性的影响,本论文对NaCl胁迫下柠条叶片、梭梭同化枝光合特性、离子积累、抗氧化酶活性、游离氨基酸代谢、内源激素含量进行了研究。并进一步对盐胁迫下非盐生植物柠条与盐生植物梭梭生理特性变化进行了比较,为揭示柠条与梭梭抗盐性差异提供了理论基础。
     本研究主要获得以下成果:
     1、轻度与中度NaCl胁迫下,柠条叶片gs降低。进入细胞间隙的CO2不能满足光合碳同化的需求,气孔因素成为降低柠条叶片Pn的主要原因。随着盐胁迫的加剧,300mM NaCl胁迫18d后,各种非气孔因素对光合碳同化的抑制能力增强,非气孔因素成为柠条Pn降低的主要原因。而整个试验过程中,梭梭同化枝Pn、gs与Ci同步降低,表明梭梭Pn降低的主要原因一直是气孔限制。
     2、NaCl处理导致柠条叶片与梭梭同化枝Na~+含量升高,但NaCl处理未降低柠条叶片与梭梭同化枝K~+含量。这种盐胁迫下柠条(梭梭)的K~+、Na~+吸收不相竞争现象证实了长期适应盐环境的沙生植物体内可能存在着独特的非竞争K~+的Na~+吸收通道。NaCl处理下柠条叶片Na~+/K~+超出了0.6(非盐生植物维持最佳代谢效率的阈值),表明长期高盐胁迫下柠条叶肉细胞生理代谢发生了严重紊乱。在整个试验过程中,柠条叶片Ca~(2+)、Mg~(2+)含量呈现降低趋势,而梭梭同化枝Ca~(2+)、Mg~(2+)含量维持稳定。
     3、盐胁迫导致柠条叶片与梭梭同化枝产生氧化损伤。柠条叶片O·2-产生速率、H2O2含量、以及膜质过氧化的产物MDA含量增加幅度明显高于梭梭同化枝。为降低盐胁迫造成的生理伤害,低浓度NaCl胁迫下,柠条叶片SOD、POD、CAT活性呈现升高趋势,这有利于清除过量自由基与活性氧;但高浓度NaCl长期胁迫时,柠条叶片酶活性降低;而整个试验过程中,梭梭同化枝SOD、POD、CAT活性随胁迫加剧持续升高,这表明梭梭较柠条具有更强的耐盐性。
     4、柠条叶片与梭梭同化枝17种单个游离氨基酸中,Pro、Ser、Glu、Asp、Ala与Thr等六种游离氨基酸在对照与胁迫叶片(同化枝)总游离氨基酸中占的比例最大,而其余11种仅占对照与胁迫叶片(同化枝)总游离氨基酸含量的20%左右。NaCl胁迫下,氨基酸含量升高总是发生在一定的胁迫阶段之后,这表明植物体内存在耐盐阈值。NaCl胁迫未达到耐盐阈值时,叶片(同化枝)游离氨基酸含量维持稳定;NaCl胁迫超过耐盐阈值后,叶片(同化枝)游离氨基酸大量积累。
     5、NaCl处理会导致柠条叶片与梭梭同化枝ABA含量不同程度的升高,但相同胁迫条件下梭梭同化枝ABA含量较柠条叶片稳定。伴随着盐胁迫的加剧,柠条叶片生长促进型激素表现为降低趋势;而梭梭同化枝IAA、GA与ZR含量维持稳定或显著升高。在整个试验过程中,柠条叶片IAA/ABA、GA/ABA、ZR/ABA以及(IAA+GA+ZR)/ABA的值随着盐胁迫加剧呈现降低趋势;而梭梭同化枝生长促进型激素与ABA的比值基本稳定。表明盐胁迫下梭梭能够更好地调节体内激素平衡,以适应不良盐环境。
Establishing sand break forest in arid areas of northwest China is an effective way tocurb the expansion of land desertification and protect oasis agriculture from the hazardsof sandstorm. Natural rainfall in the area is less and difficult to satisfy the demand of sandbreak forest for water. In order to ensure young sand break forest survival, Supplementaryirrigation with underground brackish water must be performed. However, the young sandbreak forest will be harmed by high salinity brackish water. So, mechanisms of salinitytolerance in plants must be studied firstly before the utility of brackish water irrigation.
     In order to understand effects of salinity on physiological traits of Caraganakorshinskii Kom and Haloxylon ammodendron Bunge, the two typical sand-fixing plants,in arid areas of northwest China. Leaf photosynthesis, ion content, antioxidant enzymeactivities, free amino acid and endogenous hormones in Caragana korshinskii Kom andHaloxylon ammodendron Bunge exposed to NaCl stress was studied in this paper.Furthermore, differences in physiological traits of Caragana korshinskii Kom andHaloxylon ammodendron Bunge under salt stress were compared. Theoretical basis wasprovided for differences in salt resistance of Caragana korshinskii Kom and Haloxylonammodendron Bunge.
     This study has obtained the following results.
     (1) Stomatal conducance of Caragana korshinskii Kom is significantly reduced dueto mild and moderate NaCl stress. CO2which entered cell gap could not satisfy thedemand of photosynthetic carbon assimilation, and stomatal limitation became the majorfactor in reducing the photosynthesis rate. At18days with300mM NaCl treatment, theinhibition of photosynthetic carbon assimilation increased due to non-stomatal factors,and non-stomatal limitation becomes the major factor in reducing the photosynthesis rate.During the entire experiment, photosynthesis rate, stomatal conductance and intercellularCO2concentration of Haloxylon ammodendron Bunge reduced synchronously, whichindicated stomatal limitation was the major factor in reducing the photosynthesis rate.
     (2) Salt stress increased Na~+content in leaves of Caragana korshinskii Kom andHaloxylon ammodendron Bunge, but had no effect on K~+content. The phenomenon of alack of competition between K~+and Na~+absorption confirms a unique pathway of Na~+ absorption in the plants which can grow well under salt environment. The ratio of Na~+toK~+in salt-treated leaves of Caragana korshinskii Kom was above0.6(Maximum for anoptimal metabolic efficiency in non-halophytic plants), suggesting the metabolicdisorders in leaves of Caragana korshinskii Kom occurred. During the entire experiment,Ca~(2+)and Mg~(2+)contents in leaves of Caragana korshinskii Kom reduced but Ca~(2+)andMg~(2+)contents in leaves of Haloxylon ammodendron Bunge was almost constant.
     (3) Oxidative damages to leaves of Caragana korshinskii Kom and Haloxylonammodendron Bunge were observed under salt stress. The increases of production rate ofsuperoxide radical, content of Hydrogen peroxide and content of Maloniedialdehyde inleaves of Caragana korshinskii Kom were significantly higher than Haloxylonammodendron Bunge. To reduce the physiological damages caused by salt stress, SOD,CAT and POD activity in leaves of Caragana korshinskii Kom increased with lowconcentrations of NaCl. It is helpful to eliminate excess free radicals and reactive oxygenspecies. However, with high concentrations of NaCl, enzyme activity in leaves ofCaragana korshinskii Kom reduced. SOD, CAT and POD activity in leaves of Haloxylonammodendron Bunge increased with salt stress. It indicated that Haloxylon ammodendronBunge has greater salt tolerance than Caragana korshinskii Kom.
     (4) In seventeen free amino acids of Caragana korshinskii Kom and Haloxylonammodendron Bunge leaves, proline, serine, glutamic acid, aspartic acid, alanine andthreonine are most abundant in both salt-treated and control leaves. The rest of elevenfree amino acids only accounting for20%of total amino acids. The increases of freeamino acid always happen after a certain stage of NaCl stress, which indicates theexistence of a critical salinity level in Caragana korshinskii Kom and Haloxylonammodendron Bunge. Free amino acids in salt-stressed leaves slowly accumulated belowthe critical salinity level, but rapidly accumulated when above the level.
     (5) NaCl treatment would lead to the accumulation of ABA in leaves of Caraganakorshinskii Kom and Haloxylon ammodendron Bunge. But ABA content in leaves ofHaloxylon ammodendron Bunge is more stable than Caragana korshinskii Kom.Endogenous hormones which are able to promote growth in leaves of Caraganakorshinskii Kom decreased with increased salinity, but contents of IAA, GA and ZR inleaves of Haloxylon ammodendron Bunge was constant or increased significantly. Duringthe entire experiment, the ratio of IAA/ABA, GA/ABA, ZR/ABA and (IAA+GA+ZR)/ABA in salt-treated leaves of Caragana korshinskii Kom decreased with the increase ofNaCl stress. While, the ratio of growth-promoting hormones to ABA in leaves ofHaloxylon ammodendron Bunge was constant. It is indicated that Haloxylon ammodendron Bunge could regulate the hormonal balance effectively to adapt theadverse salt environment.
引文
常红军,秦毓茜.2006.植物的盐胁迫生理.安阳师范学院学报,5:149~152
    陈洁,林栖凤.2003.植物耐盐生理及耐盐机理研究进展.海南大学学报,21(2):177~182
    陈阳,王贺,张福锁,郗金标,何奕昆.2010.新疆荒漠盐碱生境柽柳盐分分泌特点及其影响因子.生态学报,30(2):511~518
    程国栋.1998.西北水资源问题与对策.学会,1:17~19
    邓志军,宋松泉.2008. ABA对黑黄檀种子萌发的抑制作用以及其他植物激素对ABA的拮抗作用.云南植物研究,30(4):440~446
    丁菲,杨帆,张国武,李玉平,杜天真.2011. NaCl胁迫对构树幼苗叶片水势、光合作用及Na+、K+吸收和分配的影响.林业科学研究,22(3):428~433
    丁雷,王学臣.1993.干旱胁迫下ABA对气孔运动的作用机理.干旱地区农业研究,11(2):50~56
    董高峰,陈贻竹,蒋跃明.1999.植物叶黄素循环与非辐射能量耗散.植物生理学通讯,35(2):1~6
    杜秀敏,殷文璇,张慧,赵彦修.2003.超氧化物歧化酶(SOD)研究进展.中国生物工程杂志,23(1):48~50
    范晓蓉,沈其荣.2003. ABA、IAA对旱作水稻叶片气孔的调节作用.中国农业科学.36(12):1450~1455
    傅伟,王天铎.1994.一个气孔对环境因子响应的机理性数学模型.植物生理学报,20(3):277~284
    高海波,张富春.2008.藜科盐生植物的形态特征与耐盐分子机理研究进展.生物技术通报,4:22~26
    高俊凤.2006.植物生理学实验指导.北京:北京高等教育出版社
    高增贵,张宝艳,张小飞,庄敬华,赵辉.2011. ABA对黑黄檀种子萌发的抑制作用以及其他植物激素对ABA的拮抗作用.19(2):80~83
    戈良朋,王祖伟.2011.盐胁迫下3种滨海盐生植物的根系生长和分布.生态学报,31(5):1195~1202
    顾峰雪,潘晓玲.2002.中国西北干旱荒漠区盐生植物资源与开发利用.干旱区研究,19(4):17~20
    韩炜,海米提·依米提,李利,李生宇,郑婷婷.2011.胡杨和灰杨的叶绿素荧光参数及茎水势对塔克拉玛干沙漠腹地生境的响应.中国沙漠,31(6):1472~1478
    韩志平,郭世荣,尤秀娜,孙锦,段九菊.2011.盐胁迫对西瓜幼苗活性氧代谢和渗透调节物质含量的影响.西北植物学报,30(11):2210~2218
    侯振安,李品芳,龚元石.2000.激素对植物耐盐性影响的研究现状与展望.石河子大学学报(自然科学版),4(3):239~245
    胡萌.2010.干旱荒漠区两种典型沙生植物对水盐胁迫响应的机理与模拟.[博士论文].北京:中国农业大学
    胡以鸿,牛健康.2005.超氧化物歧化酶研究进展.生物学教学,30(1):2~3
    惠红霞,许兴,李守明.2004.盐胁迫抑制枸杞光合作用的可能机理.生态学杂志,23(1):5~9
    贾亚雄,孙蕾,何峰,万里强,袁庆华,李向林.2008.利用原子吸收光谱法分析盐胁迫对野生披碱草矿质元素吸收和积累的影响.光谱学与光谱分析,28(2):2984~2988
    姜国斌,丁丽娜,金华,萨娜,张薇,赵允鹏.2007.盐胁迫对杨树幼苗叶片光合特性及叶绿素荧光参数的影响.辽宁林业科技,1:20~23
    柯学莎.2005.沉水植物内源激素的变化与环境响应研究.[博士论文].北京:中国科学院研究生院
    柯玉琴,潘廷国.2002. NaCl胁迫对甘薯苗期生长、IAA代谢的影响及其与耐盐性的关系.应用生态学报,13(10):1303~1306
    孔令瑶,柏新富.2007.盐胁迫下三角滨蔡光合作用的气孔与非气孔限制.中国植物生理学会全国学术会议论文摘要汇编,154
    李会云,郭修武.2008.盐胁迫对葡萄砧木叶片保护酶活性和丙二醛含量的影响.果树学报,25(2):240~243
    李良勇,崔国贤.2002.营养胁迫下植物内源激素变化研究进展.作物研究,5:240~244
    李玲.1991.干旱条件下植物ABA积累对脯氨酸水平的影响.植物学通报,8(2):21~25
    李青云,2005.草莓对盐胁迫的反应及调控研究.[博士论文].保定:河北农业大学
    李青云,葛会波,胡淑明,陶秀娟,黄瑞虹.2008.盐胁迫下外源钙对草莓内源激素含量的影响.西北植物学报,28(3):517~522
    李青云,葛会波,胡淑明,王惠英.2006.钠盐和钙盐胁迫对草莓光合作用的影响.西北植物学报,26(8):1713~1717
    李晓萍,陈贻竹,郭俊彦.1996.叶绿体PSⅡ光能耗散机制的研究进展.生物化学与生物物理进展,23(2):145~149
    李圆圆.2005. KCl处理对盐地碱蓬液泡膜H+-ATPase和H+-PPase活性的影响.[硕士论文].济南:山东师范大学
    梁春波,石瑛,邸宏,陈伊里.2006.盐胁迫对马铃薯脯氨酸、叶绿素含量的影响.2006年中国作物学会马铃薯专业委员会年会暨学术研讨会论文集,156~161
    梁洁,严重玲,李裕红,张瑞峰,朱珠.2004. Ca(NO3)2对NaCl胁迫下木麻黄扦插苗生理特征的调控.生态学报,24(5):1073~1077
    梁雪莲,王引斌.2004.小麦生长发育进程中ABA等内源激素的变化与调节研究.种子,23(7):49~55
    廖祥儒.1997.玉米素对盐胁迫条件下葡萄叶片H2O2清除系统的影响.植物学报,39(7):641~646
    廖咏梅,王琼.2006.我国西部地区土地荒漠化及其生态防治措施.环境与可持续发展,3:44~47
    刘爱荣,赵可夫.2005.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分子生物学报,31(4):389~395
    龙海涛,李玲,万小荣.2004.ABA诱导基因及其与逆境胁迫的关系.亚热带植物科学,33(4):74~77
    卢静君,多立安,刘祥君.2004.盐胁迫下两草种SOD和POD及脯氨酸动态研究.植物研究,24(1):115~119
    卢巧梅,张兰,陈天文,卢明华,陈国南.2009.液相色谱-串联质谱分析盐胁迫下植物激素的含量变化.中国科学,39(8):785~792
    陆开形.2008.盐胁迫对大豆光合作用和抗氧化系统的影响及其调控机制.[博士论文].杭州:浙江大学
    罗文新,王韶唐.1991.天然生长抑制物质ABA与植物抗旱性.青海师范大学学报(自然科学版),4:46~50
    马焕成,陈绍良,王沙生.1998.脱落酸与胡杨抗盐性的关系,西南林学院学报,18(1):8~14
    米海莉,许兴,李树华,何军,张源沛,赵天成,马有明.2004.水分胁迫对牛心朴子、甘草叶片色素、可溶性糖、淀粉含量及碳氮比的影响.西北植物学报,24(10):1816~1821
    牛书丽,蒋高明,李永庚.2009. C3与C4植物的环境调控.生态学报,24(2):308~314
    屈艳萍.2006.石羊河流域三种典型人工种植防风固沙植物的耗水规律研究.[硕士论文].杨凌:西北农林科技大学
    任志彬,王志刚,聂庆娟,黄大庄,马向超.2011.盐胁迫对锦带花幼苗生长及不同部位Na+、K+、C2+、Mg2+离子质量分数的影响,东北林业大学学报,39(5):24~26
    商学芳.2007.不同基因型玉米对盐胁迫的敏感性及耐盐机理研究.[博士论文].泰安:山东农业大学
    申玉香,郭文善,周影,朱新开,封超年,彭永欣.2007.盐分胁迫对小麦花后剑叶衰老特性和产量的影响.扬州大学学报(农业与生命科学版),28(1):59~63
    沈黎明,王舰.1996.水分胁迫、盐胁迫和热激对林生山薰豆体内游离氨基酸含量的影响.中国农业大学学报,1(1):23~27
    石松利,王迎春,周健华,周红兵.2011.盐分生境下长叶红砂和红砂内源激素含量及其生境差异性,应用生态学报,22(2):350~356
    司继播,孙明,刘良云.2007.叶绿素荧光分析技术综述.2007年中国农业工程学会学术年会论文摘要集,123
    孙景波,孙广玉,刘晓东,胡彦波,赵雨森.2009.盐胁迫对桑树幼苗生长、叶片水分状况和离子分布的影响.应用生态学报,20(3):543~548
    孙兰芳,张营,宫永超.2008. ROS在ABA信号转导中的作用研究进展,现代农业科技,19:131
    汤章城.1984.逆境条件下植物脯氨酸的累积及其可能的意义.植物生理学通讯,(1):15~21
    陶晶,陈士刚,秦彩云,李岩,李铁,张考明.2005.盐碱胁迫对杨树各品种丙二醛及保护酶活性的影响.东北林业大学学报,33(3):13~15
    汪贵斌,曹福亮.2004.土壤盐分及水分含量对落羽杉幼苗生长的影响,应用生态学报,15(12):2396~2400
    王宝增.2010.盐生植物及其耐盐机理.生物学教学,35(6):8~9
    王得祥,杨改河.2003.西北地区林草植被及其生态环境建设策略.西北林学院学报,18(1):15~19
    王丽燕,赵可夫.2005.玉米幼苗对盐胁迫的生理响应.作物学报,31(2):264~266
    王丽燕.2005. NaCl胁迫对植物光合作用的影响.德州学院学报,21(4):12~14
    王仁雷,华春,罗庆云,刘友良.2002.盐胁迫下水稻叶绿体中Na+、Cl-积累导致叶片净光合速率下降.植物生理与分子生物学学报,28(5):385~390
    王素平,郭世荣,胡晓辉,李璟,焦彦生.2006.盐胁迫对黄瓜幼苗叶片光合色素含量的影响.江西农业大学学报,28(1):32~38
    王素平,郭世荣,李璟,胡晓辉,焦彦生.2006.盐胁迫对黄瓜幼苗根系生长和水分利用的影响.应用生态学报,17(10):1883~1888
    王锁民,朱兴运,赵银.1994.盐胁迫对拔节期碱茅游离氨基酸成分和脯氨酸含量的影响.草业学报,3(3):22~26
    王玮,李德全,杨兴洪,邹琦,周燮杨军.2000.水分胁迫下不同抗旱性小麦品种芽根生长过程中IAA、ABA含量的影响.作物学报,26(6):737~742
    王玮,李德全.2003.植物盐分胁迫与水分胁迫的异同.植物生理学通讯,5:491~492
    王文卿,林鹏.2000.不同盐胁迫时间下秋茄幼苗叶片膜脂过氧化作用的研究.海洋学报,22(3):54~54
    王兆华,李立科,赵二龙,洪晓强.2008.西北地区水资源利用的问题与对策.安徽农业科学,36(10):4202~4204
    王振宇,吕金印,徐炳成,李凤民.2006.断根对冬小麦荧光特性和产量的影响.西北植物学报,26(2):276~0281
    王忠.2000.植物生理学.北京:中国农业出版社
    魏爱丽,陈云昭.2002. IAA对盐胁迫下大豆幼苗膜伤害及抗盐力的影响.西北植物学报,20(3):410~414
    吴剑,宋宝安,胡德禹,杨松.2011.植物耐盐性的信号转导途径及相关基因研究进展.山地农业生物学报,30(5):443~447
    吴敏,薛立,李燕.2007.植物盐胁迫适应机制研究进展.林业科学,43(8):111~117
    吴永波,薛建辉.2002.盐胁迫对3种白蜡树幼苗生长与光合作用的影响.南京林业大学学报(自然科学版),26(3):19~22
    伍国强,王强龙,包爱科,王锁民.2008.液泡膜Na+/H+逆向转运蛋白与植物耐盐性.中国农业科技导报,10(2):13~21
    武维华.2008.植物生理学(第二版).北京:科技出版社
    许大全.2009.叶绿素含量的测定及其应用中的几个问题.植物生理学通讯,45(9):896~898
    薛延丰,刘兆普.2008.不同浓度NaCl和Na2CO3处理对菊芋幼苗光合及叶绿素荧光的影响.植物生态学报,32(1):161~167
    杨洪强,接玉玲.2001.高等植物脱落酸生物合成及其信号转导研究进展.华中农业大学学报,20(1):92~98
    杨涓,许兴.2003.盐胁迫下植物有机渗透调节物质积累的研究进展.宁夏农学院学报,24(4):86~91
    杨敏生,李艳华,梁海永,王进茂.2003.盐胁迫下白杨无性系苗木体内离子分配及比较.生态学报,23(2):271~277
    杨升,张华新,张丽.2010.植物耐盐生理生化指标及耐盐植物筛选综述.西北林学院学报,25(3):59~65
    杨庶,王江涛.2008.中国西北地区水资源的开发和利用.干旱环境监测,22(2):106~110
    杨晓慧,蒋卫杰,魏珉,余宏军.2006.植物对盐胁迫的反应及其抗盐机理研究进展,山东农业大学学报(自然科学版),37(2):302~305
    余利平,田立荣,张春雷,马霓,李俊.2008.低磷胁迫对油菜不同生育期叶片光合作用的影响.中国农学通报,24(12):232~236
    张继澍.2006.植物生理学.北京:高等教育出版社
    张金林,陈托兄,王锁民.2004.阿拉善荒漠区几种抗旱植物游离氨基酸和游离脯氨酸的分布特征.中国沙漠,24(4):493~499
    张娟,姜闯道,平吉成.2008.盐胁迫对植物光合作用影响的研究进展.农业科学研究,9:74~80
    张民侠.2009.防治西北地区荒漠化促进社会可持续发展.河北农业科学,13(1):52~56
    张敏,蔡瑞国,李慧芝,李建敏,戴忠民,王振林,尹燕枰.2008.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化.生态学报,28(1):310~320
    张敏.2007.不同小麦品种耐盐差异的生理生化机制研究.[硕士论文].泰安:山东农业大学
    张楠楠,徐香玲.2005.植物抗盐机理的研究.哈尔滨师范大学自然科学学报,21(1):65~68
    张幸福,韩栓,王伟,江静.2010. ABA和GA刺激的ROS代谢调节水稻幼根伸长分析.河南大学学报(自然科学版):40(1):62~66
    赵可夫,范海.2000.盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究.应用与环境生物学报,6(2):99~105
    赵可夫,范海.2005.盐生植物及其对盐渍生境的适应生理.北京:科学出版社
    赵可夫.1993.植物抗盐生理.北京:科学出版社,224~228
    赵丽英,邓西平,山仑.2005.活性氧清除系统对干旱胁迫的响应机制.西北植物学报,25(2):413~418
    郑国琦,许兴,徐兆桢,刘振荣.2002.盐胁迫对枸杞光合作用的气孔与非气孔限制.西北植物学报,22(6):1355~1359
    郑青松,刘玲,刘友良,刘兆普.2003.盐分和水分胁迫对芦荟幼苗渗透调节和渗调物质积累的影响.植物生理与分子生物学学报,29(6):585~588
    郑文菊,张承烈.1998.盐生与中生环境中宁枸杞叶显微和超显微结构的研究.草业科学,7(3):72~76
    周红兵,王迎春,石松利,周健华.2010. NaCl胁迫对盐生植物长叶红纱幼苗内源激素的影响.内蒙古大学学报(自然科学版),41(5):531~535
    周述波,林伟,萧浪涛,侯振安,李品方,龚元石.2005.激素对植物耐盐性影响的研究.琼州大学学报,12(2):27~30
    周述波,林伟,萧浪涛.2005.植物激素对植物盐胁迫的调控.琼州大学学报,12(2):27~30
    周宜君,刘玉,赵丹华,程文静,赵竹,张根发.2007.盐胁迫下盐芥和拟南芥内源激素质量分数变化的研究.北京师范大学学报(自然科学版):43(6):657~660
    朱虹,祖元刚,王文杰,阎永庆.2009.逆境胁迫条件下脯氨酸对植物生长的影响.东北林业大学学报,37(4):86~89
    朱永亮,吴贯明.1990.杨树芽休眠及解除过程中内源激素的动态分析.南京林业大学学报,14(1):7~15
    邹琦.2000.植物生理学实验指导.北京:中国农业出版社
    邹琦.2006.逆境光合研究中的叶绿素荧光动力学技术-原理、应用及问题.2006年中国植物逆境生理生态与分子生物学学术研讨会论文摘要汇编,9~10
    Apse M P, Aharon G S, Snedden G S, Blumwald E.1999. Salt tolerance conferred by over expression of avacuolar Na+/H+antiport in Arabidopsis. Science,285:1256~1258
    Aziz A, Martin-Tanguy J, Larher F.1999. Salt stress-induced proline accumulation and changes in tyramineand polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Science,145:83~91
    Barkla B J, Pantoja O.1996. Physiology of ion transport across the tonoplast of higher plants. Ann RevPlant Physiol Mol Biol,47:159~184
    Bilger W, Schreiber U, Bock M.1995. Determination of the quantum efficiency of photosystem II and ofnon-photochemical quenching of chlorophyll fluorescence in the field. Oecologia104:667~673
    Blumwald E, Aharon G S, Apse MP.2000. Sodium transport in plant cells. Biochimica et Biophysica Acta,1465:140~151
    Blumwald E.2000. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol,12:431~434
    Bongi G, Loreto F.1989. Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves. PlantPhysiology90:1408~1416
    Brugnoli E, Lauteri M.1991. Effects of salinity on stomatal conductance, photosynthetic capacity, andcarbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolusvulgaris L.) C3non-halophytes. Plant Physiol,95:628~635
    ChaParzadeh N, D’Amico M L, Khavari-Nejad R A, Izzo R, Navari-Izzo F.2004. Antioxidative responsesof Calendula officinalis under salinity condition. Plant Physiology and Biochemistry42:695~701
    Chen Q, Liu Y L.2000. Effect of glutathion on active oxygen scavenging system in leaves of barleyseedlings under salt stress. Acta Agronanica Sin,26(3):365~371
    Chen W, Cui P, Sun H, Guo W, Yang C, Jin H, Fang B, Shi D.2009. Comparative effects of salt and alkalistresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.).Ind Crop Prod,30:351~358
    Cramer G R, Lynch J, Lauchli A, Epstein E.1987. Influx of Na+, K+and Ca2+into roots of salt stressedcotton seedlings: effects of supplemental Ca2+. Plant Physiol.,79:171~176
    Cuartero J, Bolarin M C, Asins M J, Moreno V.2006. Increasing salt tolerance in the tomato. Journal ofExperimental Botany,57:1045~1058
    Da Silva E C, Nogueirab R J M C, De Araújoc F P, De Melo N F, De Azevedo Neto A D.2008.Physiological responses to salt stress in young umbu plants. Environmental and Experimental Botany,63:147~157
    De Lacerda C F, Cambraia J, Oliva M A, Ruiz H A, Prisco J T.2003. Solute accumulation and distributionduring shoot and leaf development in two sorghum genotypes under salt stress. Environmental andExperimental Botany,49:107~120
    Ding T L, Duan P, Wang B S.2006. Na+/K+selectivity of leaf sheath in wheat cultivars differing in salttolerance. Journal of Plant Physiology and Molecular Biology,32(1):123~126
    Dionisio-Sese ML, Tobita S.1998. Antioxidant responses of rice seedlings to salinity stress. Plant Science,135:1~9
    Downton, Loveys.1981. Abscisic acid content and ocmotic relations of salt stressed grapevine leanes. JPlant Physiol,8:443~453
    Du N, Guo W, Zhang X, Wang R.2010. Morphological and physiological responses of Vitex negundo L.var. heterophylla (Franch.) Rehd.to drought stress. Acta Physiologiae Plantarum,32:839~848
    Everard J D, Gucci R, Kann S C, Flore J A, Loescher W H.1994. Gas exchange and carbon partitioning inthe leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol,106:281~292
    Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S,Pérez-Alfocea F.2008. Hormonal changes during salinity-induced leaf senescence in tomato (Solanumlycopersicum L.). Journal of Experimental Botany59,3039~3050
    Giannopolitis C N, Ries S K.1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiology,59:309~314
    Gisbert C, Rus AM, Bolarín M C, L pez-Coronado J M, Arrillaga I, Montesinos C, Caro M, Serrano R,Moreno V.2000. The yeast HAL1gene improves salt tolerance of transgenic tomato. Plant Physiol,123:393~402
    Greenway H, Munns R.1980. Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol,31:149~190
    G mez-Cadenas A, Tadeo F R, Primo-Millo E, Talon M.1998. Involvement of abscisic acid and ethylenein the response of citrus seedlings to salt stock. Physiologia Plantarum,103:475~484
    Handa S, Handa A K, Hasegawa P M, Bressan R A.1986. Proline accumulation and the adaption ofcultured plant cells to water stress. Plant Physiol,80:938~945
    Hare P D, Cress W A.1997. Metabolic implications of stress-induced proline accumulation in plants. PlantGrowth Regulation,21:79~102
    Haro R, Ba uelos M A, Quintero F J, Rubio F, Rodríguez-Navarro A.1993. Genetic basis of sodiumexclusion and sodium tolerance in yeast. A model for plants. Physiologia Plantarum,89:868~874
    Hartzendorf T, Rolletschek H.2001. Effects of NaCl-salinity on amino acid and carbohydrate contents ofPhragmites australis. Aquatic Botany,69:195~208
    Havanx M, Greppin H, Strasser RJ.1991. Functioning of Photosystems I and II in pea leaves exposed toheat stress in the presence or absence of light. Planta,186:88~98
    Huner NPA, gist G, Sarhan F.1998. Energy balance and acclimation to liglt and cold. Trends in PlantScience,(3):224~230
    Itai C, Birnbaum H.1991. Synthesis of plant growth regulators by roots. In Waisel, Y., A. Eshel and U.Kafkafi eds., Plant Roots (The Hidden Half). Marcel Dekker, Inc., New York.163~177
    Jamil M, Rehman S, Lee K J, Kim J M, Kim H S, Rha E S.2007. Salinity reduced growth PS2photochemistry and chlorophyll content in radish. Scientia Agricola,64:111~118
    Jiang M Y, Zhang J H.2002a. Involvement of plasma membrane NADPH oxidase in abscisic acid andwater stress-induced anti-oxidant defense in leaves of maize seedling. Planta,215:1022~1030
    Jiang M Y, Zhang J H.2002b. Water stress induced abscisic acid accumulation triggers the increasedgeneration of reactive oxygen species and up regulates the activities of antioxidant enzymes in maizeleaves. Journal of Experimental Botany,53:2401~2410
    Johnson P R, Ecker J R.1998. The ethylene gas signal transduction pathway: a molecular perspective.Annual review of genetics, Annual Review of Genetics,32:227~254
    Kao W Y, Tsai T T, Tsai H C, Shih C N.2006. Response of three Glycine species to salt stress. Environ ExpBot,56:120~125
    Keutgen A J, Pawelzik E.2008. Contribution of amino acids to strawberry fruit quality and their relevanceas stress indicators under NaCl salinity. Food Chemistry,111:642~647
    Khavari-Nejad R A, Chaparzadeh N.1998. The effects of NaCI and CaC12on Photosynthesis and growthof alfalfa Plants. Photosynthetica,35:461~466
    Kitajima M, Bugler W.1975. Quenching of chlorophyll fluorescence and primary photochemistry inchloroplasts by dibromothymoquinone, Biochemical Biophysics Acta,376:105~115
    Kooten O, Snel J F H.1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology.Photosynthesis Research,25:147~150
    Kozlowski T T.1997. Responses of woody plants to flooding and salinity. Tree Physiology Monograph,1:1~29
    Krause G H, Weis E.1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant.Physiology. Plant. Mol. Biol.,42:313~349
    Krause G H.1988. Photoinhibition of photosynthesis. An evaluation of damaging and protectivemechanisms. Physiol Plantarum,74:566~574
    Larcher W, Wagner J, Thammathaworn A.1990. Effects of superimposed temperature stress on in vivochlorophyll fluorescence of Vigna unguiculata under saline stress. J. Plant Physiol.,136:92~102
    Lawlor D W, Cornic G.2002. Photosynthetic carbon assimilation and associated metabolism in relation towater deficits in higher plants. Plant Cell&Environment,25:275~294
    Lu C, Qiu N, Lu Q, Wang B, Kuang T.2002. Does salt stress lead to increased susceptibility ofphotosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyteSuaeda salsa grown outdoors? Plant Science,163:1063~1068
    Lu Z X, Wang Z G..1993. Pyrroline-5-Carboxylate reductase activity and free proline accumulation inleaves of Triticum aestivum seedlings under salt stress. Acta Photophysiologica Sinica,19(2):1111~1114
    Lutts S, Majerus V, Kinet J M.1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings.Physiologia Plantarum,105:450~458
    Maxwell K, Johnson G N.2000. Chlorophyll fluorescence-a practical guide. Journal of ExperimentalBotany,51(345):659~668
    McCree KJ.1986. Whole-plant carbon balance during osmotic adjustment to drought and salinity stress.Australian Journal of Plant Physiology,13:33~43
    McCue K F, Hanson A D.1990. Drought and salt tolerance: towards understanding and application. TrendsBiotech,8:358~362
    Mehta P, Jajoo A, Mathur S, Bharti S.2010. Chlorophyll a fluorescence study revealing effects of high saltstress on Photosystem II in wheat leaves. Plant Physiol Biochem48:16~20
    Meyer S, Kouchkovsky Y.1993. Electron transport, photosystem2reaction centers and chlorophyll proteincomplexes of thylakoids of drought resistant and sensitive lupin plants. Photosynth Res,37:49~60
    Mishra SK, Subrahmanyam D, Singhal G.S.1991. Interactionship between salt and light stress on theprimary process of photosynthesis. J. Plant Physiol.,138:92~96
    Munns R, Sharp R E.1993. Involvenent of abscisic acid in controlling plant growth in soils of low waterpotential. Aust J Plant Physiol,20:425~437
    Munns R, Termaat A.1986. Whole-plant response to salinity. Aust Plant Physiol,13(1):43~160
    Munns R, Tester M.2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology,59:651~681
    Munns R.2002. Comparative physiology of salt and water stress. Plant Cell&Environment,25:239~250
    Naumann J C, Young D R, Anderson J E.2008. Leaf chlorophyll fluorescence, reflectance, andphysiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera.Environmental and Experimental Botany,63:402~409
    Neill S, Desikan R, Haneoek J.2002. Hydrogen peroxide signalling. Current Opinion in Plant Biology,5:388~395
    Netondo G W, Onyango J C, Beck E.2004. Sorghum and salinity: II.Gas exchange and chlorophyllfluorescence of sorghum under salt stress. Crop Sci,44:806~811
    Parida A K, Das A B, Mitra B.2004. Effects of salt on growth, ion accumulation photosynthesis and leafanatomy of the mangrove, Bruguiera parviflora. Trees Structure and Function,18:167~174
    Petrusa L M, Winicol L.1997. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants inresponse to NaCl. Plant Physiol Biochem,35:303~310
    Popova L P, Tsonev T D, Vaklinova S G.1987. A possible role for abscisic acid in regulation ofphotosynthetic and photorespirtory carbon metabolism in barely leave. Plant Physiol,83:820~824
    Qiu N, Lu Q, Lu C.2003. Photosynthesis, photosystemⅡ efficiency and the xanthophyll cycle in thesalt-adapted halophyte Atriplex centralasiatica. New Phytologist,159:479~486
    Rai V K.2002. Role of amino acids in plant responses to stresses, Biologia Plantarum,45:481~487
    Satoh K, Smith C M, Fork D C.1983. Effect of salinity on primary processes of photosynthesis in the redalga porphyra perforata. Plant Physiol,73:643~647
    Scandalios J G.1993. Oxygen stress and superoxide dismutases. Plant Physiol,101:7~12
    Sheen J.1998. Mutational analysis of protein phosphatase2C involved in abscisic acid signal transductionin higher plants. Proc Natl Sci USA,95:975~980
    Shinozaki K, Yamaguchi S K.1997. Gene expression and signal trans-duction in water stress response.Plant Physiology,115:327~334
    Smimoff C,Thonke B,Popp M.1990. The compatibility of D-pinitol and ID-l-o-methl-mucoinositol withmalate dehydrogenase activity. Bot Acta.103:270~273
    Smirnoff N, Cumbes Q J.1989. Hydroxyl radical scavenging activity of compatible solutes.Phytochemistry,28:1057~1060
    Souza R P, Machado E C, Silva J A B, Lag a A M M A, Silverira J A G.2004. Photosynthetic gas exchange,chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata)during water stress and recovery. Environmental and Experimental Botany,51:45~56
    Sreenivasulu N,Grimm B,Wobus U,Wesehke W.2000. Differential response of antioxidant compoundsto salinity stress in salt tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica).Physiologia Plantarum,109:435~442
    Stewart G R, Lee J A.1974. The role of proline accumulation in halophytes. Planta,120:279~289
    Tester M, Davenport R.2003. Na+tolerance and Na+transport in higher plants. Annals of Botany,91:503~507
    Tezara W, Marín O, Rengifo E, Martínez D, Herrera A.2005, Phtosynthesis and photoinhibition in twoxerophytic shrubs during drought. Photosynthetica,43(1):37~45
    Wang Y, Nil N.2000. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betainecontent, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. The Journalof Horticultural Science and Biotechnology,75:623~627
    Willadino L G., Camara T R.2005. Aspectos fisiol gicos do estresse salino em plantas. In: Nogueira,R.J.M.C., Araújo, E.L., Willadino, L.G., Cavalcante, U.M.T.(Eds.), Estresses ambientais: danos ebenefícios emplantas.UFRPE, Imprensa Universitária, Recife, pp.118~126
    Yamamoto A, Shim I, Fujihara S, Yoneyama T, Usui K.2003. Physiochemical factors affecting the salttolerance of Echinochloa crus-galli Beauv. var. formosensis Ohwi. Weed Biology Management,3:98~104
    Yang Y, Yan C Q, Cao B H, Xu H X, Chen J P, Jiang D A.2007. Some photosynthsis responses to salinityresistance are transfer into the somatic hybrid descendants from the wild soybean Glydine cytolobaACC547. Physiologia Plantarum38:1~12
    Yu XW, Tang ZC.1998. Plant Physiology and Molecular Biology. Beijing: Science Publishing Company,7652~7691
    Zhao K, Munns, King.1998. Abscisic acid synthesis in NaCl-treated barely, cotton and slats bush. Aust JPlant Physiol,18:17~24
    Zhu J K.2001. Plant salt tolerance. Trends in Plant Science,6(2):66~71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700