用户名: 密码: 验证码:
杜仲MEP途径系列基因全长cDNA分离鉴定及序列特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杜仲(Eucommia ulmoides Oliv.)是我国特有的第三纪孑遗植物,也是优良的温带胶源树种和名贵药用树种。杜仲萜类化合物广泛应用于人们生产生活,其中最为重要的是杜仲胶和环烯醚萜类。2-甲基-D-赤藓醇-4-磷酸(2-C-methyl-D-erythritol-4-phosphate,MEP)途径是植物萜类生物合成上游重要的调控路径之一。本研究以杜仲叶片转录组测序数据为基础,分离鉴定MEP途径所有相关酶高表达水平基因的cDNA全长,并利用生物信息学方法对序列特征、结构特点及基因功能进行分析和预测,旨为潜在功能基因的筛选和挖掘,合成途径中限速步骤的深入探究以及为萜类代谢工程靶点的确定和基因改良育种提供基础信息。
     1-脱氧-D-木酮糖-5-磷酸合成酶DXS是MEP途径中的第一个关键酶,在杜仲中发现两个DXS酶基因家族成员,分别命名为EuDXS1和EuDXS2。EuDXS1基因cDNA全长2805bp,5’端非编码区长218bp,3’端非编码区长448bp,编码712个氨基酸,与美丽帽柱木DXS基因序列相似性最高,达81%;EuDXS2基因cDNA全长2552bp,5’端非编码区长73bp,3’端非编码区长337bp,编码713个氨基酸,与橡胶DXS基因序列相似性最高,达82%。推导EuDXS1与EuDXS2氨基酸序列中均包含转运肽序列(A1-A18;A1-A34)、TPP结合基序(A106-A360;A108-A362)、嘧啶结合基序(A397-A553;A399-A555)和转酮醇酶C末端基序(A571-A676;A573-A678)等植物DXS蛋白典型的保守基序与功能位点。推导EuDXS1与EuDXS2蛋白二级结构均以螺环结构为主,分别占48.74%和49.37%。推导EuDXS1和EuDXS2蛋白三级结构分别由两个亚单位组成。EuDXS1蛋白与蓖麻DXS1蛋白亲缘关系最为接近,EuDXS2蛋白与橡胶DXS2蛋白亲缘关系最为接近。
     1-脱氧-D-木酮糖-5-磷酸还原异构酶DXR是MEP途径中的第二个限速酶,在杜仲中分离鉴定出两个DXR酶基因家族成员,分别命名为EuDXR1和EuDXR2。EuDXR1基因cDNA全长1814bp,5’端非编码区长126bp,3’端非编码区长251bp,编码478个氨基酸,与毛果杨DXR基因序列的相似性最高,达81%;EuDXR2基因cDNA全长1779bp,5’端非编码区长163bp,3’端非编码区长251bp,编码472个氨基酸,与葡萄DXR基因序列的相似性最高,达81%。推导EuDXR1与EuDXR2氨基酸序列中均包含转运肽序列(A1-A51;A1-A43),具有2个DXR蛋白结合基序(A227-A236,A297-A307;A221-A230,A291-A301),2个NADPH结合基序(A88-A94,A113-A119;A82-A88,A107-A113)以及N端富脯氨酸基序(A61-A69;A55-A63)等植物DXR蛋白典型的保守基序与功能位点。推导EuDXR1与EuDXR2蛋白二级结构均以螺环结构为主,分别占47.91%和45.34%。推导EuDXR1和EuDXR2蛋白三级结构分别由两个亚单位组成,在空间上呈“V”字结构。EuDXR1蛋白与水稻DXR1蛋白亲缘关系最为接近,EuDXR2蛋白与玉米DXR2蛋白亲缘关系最为接近。
     2-甲基-D-赤藓醇-4-磷酸胞苷酰转移酶MCT催化MEP途径的第三步酶促反应,在杜仲中分离出一个MCT酶基因,命名为EuMCT。EuMCT基因cDNA全长1435bp,5’端非编码区长223bp,3’端非编码区长252bp,编码319个氨基酸,与葡萄MCT基因序列相似性最高,达82%。推导EuMCT氨基酸序列中包含转运肽序列(A1-A75)以及植物MCT蛋白多个保守的功能位点(A100,A102,A103,A104,A105,A106,A114,A170,A171,A173,A176,A195,A196,A198,A228,A244,A250,A252,A300)。EuMCT蛋白二级结构中α-螺旋占23.82%,β-折叠占18.18%,螺环结构占57.99%。EuMCT蛋白三级结构由两个亚单位组成,并且存在两个特殊的P-loop结构。EuMCT蛋白与葡萄MCT蛋白亲缘关系最为接近。
     4-(5’-焦磷酸胞苷)-2-C-甲基-D-赤藓醇激酶CMK催化MEP途径的羟基磷酸化反应,在杜仲中分离出一个CMK酶基因,命名为EuCMK。EuCMK基因cDNA全长1644bp,5’端非编码区长256bp,3’端非编码区长203bp,编码394个氨基酸,与番茄CMK基因序列相似性最高,达82%。EuCMK氨基酸序列中包含转运肽序列(A1-A57)以及植物CMK蛋白催化过程中所必需的ATP结合位点(A186-A202)。推导EuCMK结构α-螺旋占32.74%,β-折叠占19.29%,螺环结构占47.97%。推导EuCMK蛋白三级结构由两个不对称的亚基组成。EuCMK蛋白与葡萄CMK蛋白亲缘关系最为接近。
     2-甲基-D-赤藓醇-2,4-环焦磷酸合酶MDS催化MEP途径的第五步酶促反应,在杜仲中分离出一个MDS酶基因,命名为EuMDS。EuMDS基因cDNA全长976bp,5’端非编码区长119bp,3’端非编码区长146bp,编码236个氨基酸,与紫茎泽兰MDS基因序列相似性最高,达79%。EuMDS氨基酸序列中包含转运肽序列(A1-A56)以及多个植物MDS蛋白保守的功能位点(A84,A87,A89,A121, A213,A217,A221,A223,A228)。推导EuMDS蛋白二级结构中α-螺旋占40.25%,β-折叠占13.56%,螺环结构占46.19%。推导EuMDS蛋白三级结构由三个亚单位组成,并相互围绕形成一个分子内腔。EuMDS蛋白与啤酒花MDS蛋白亲缘关系最为接近。
     1-羟基-2-甲基-2-E-丁烯基-4-焦磷酸合酶HDS为MEP途径的第六个作用酶,在杜仲中分离出一个HDS酶基因,命名为EuHDS。EuHDS基因cDNA全长2786bp,5’端非编码区长171bp,3’端非编码区长383bp,编码743个氨基酸,与葡萄HDS基因序列相似性最高,达84%。推导EuHDS氨基酸序列中包含转运肽序列(A1-A30)、PSN基序(A58-A78)、PSI基序(A354-A620)以及植物HDS蛋白3个绝对保守的半胱氨酸位点(A644,A647,A678)。推导EuHDS蛋白二级结构α-螺旋占37.55%,β-折叠占19.25%,螺环结构占43.20%。推导EuHDS蛋白三级结构N端为一个属TIM-barrel超家族的八链β桶形结构,C端为一个两侧翼为螺旋结构的β折叠构造。EuHDS蛋白与葡萄HDS蛋白的亲缘关系最为接近。
     1-羟基-2-甲基-2-E-丁烯基-4-焦磷酸还原酶HDR是MEP途径中的第三个关键酶,在杜仲中分离出一个HDR酶基因,命名为EuHDR。EuHDR基因cDNA全长1653bp,5’端非编码区长82bp,3’端非编码区长188bp,编码460个氨基酸,与喜树HDR基因序列相似性最高,达82%。推导EuHDR氨基酸序列中包含转运肽序列(A1-A33)以及植物HDR蛋白多个保守的功能位点(A117,A208,A262,A345)。推导EuHDR蛋白二级结构α-螺旋占35.65%,β-折叠占19.78%,螺环结构占44.57%。推导EuHDR蛋白三级结构为单体形式,呈不规则的三叶草形状。EuHDR蛋白与葡萄HDR蛋白的亲缘关系最为接近。
     异戊烯基焦磷酸异构酶IPI催化IPP与DMAPP之间的可逆转化,是萜类代谢网络的一个枢纽,在杜仲中分离出一个IPI酶基因,命名为EuIPI。EuIPI基因cDNA全长1231bp,5’端非编码区长79bp,3’端非编码区长231bp,编码306个氨基酸,与喜树IPI基因序列相似性最高,达84%。推导EuIPI氨基酸序列包含转运肽序列(A1-A70)以及植物IPI蛋白典型的功能位点(A154、A175,A107、A119、A156、A196、A206、A208)。推导EuIPI蛋白二级结构α-螺旋占22.55%,β-折叠占13.40%,螺环结构占64.05%。EuIPI蛋白三级结构以单体形式存在。EuIPI蛋白与欧洲榛IPI蛋白的亲缘关系最为接近。
Eucommia ulmoides Oliv. is a tertiary relic species,which is endemic to China andtraditionally utilized as a rare medicinal and high quality temperate rubber-producing tree.Terpeniods in E. ulmoides represented by the iridoids and gutta-percha have been plenty ofeconomic value and widely used in industry as well as to people’s daily life. MEP pathway isone of the two elucidated upstream biosynthetic routes modulating the terpeniods biosynthesisin plant. Full length cDNA of high expression genes of completed set enzymes in MEPpathway were systematically isolated based on the transcriptome sequencing data of E.ulmoides leaves,afterwards the sequence structure and gene function were characterized andpredicted through bioinformatics techniques in the study,which will be conducive to dig uppotential key genes,excavate rate-limiting step in the pathway and to provide fundamentalinformation referring to metabolic engineering and gene improvement breeding of E. ulmoides.
     Two gene members coding the DXS enzyme which was identified as the first keyregulatory point in MEP pathway were separated from E. ulmoides leaves and designated asEuDXS1and EuDXS2. Respectively with highest gene sequence similarity to Mitragynaspeciosa (81%)and to Hevea brasiliensis(82%),EuDXS1full-length cDNA was2805bpincluding5’non-coding region of218bp and3’non-coding region of448bp and encoded712amino acids,EuDXS2was2552bp including5’non-coding region of73bp and3’non-codingregion of337bp and encoded713amino acids. Representative conserved motifs and functionalsites of plant DXS protein containing transit peptide sequence(A1-A18;A1-A34),TPP bindingmotif(A106-A360;A108-A362),pyrimidine binding motif (A397-A553;A399-A555)and TKC-terminal motif (A571-A676;A573-A678)were found in the deduced coding sequence ofEuDXS1and EuDXS2. Loop/coil mainly constituted the secondary structure of the predictedprotein with proportion of EuDXS1to48.74%and EuDXS2to49.37%. The calculated proteintertiary structure of EuDXS1and EuDXS2were both composed of two subunits. Evolutionary relationship of EuDXS1was closest to Ricinus communis DXS1protein,while EuDXS2toHevea brasiliensis DXS2protein.
     Two gene members coding the DXR enzyme which was identified as the secondrate-limiting step in MEP pathway were separated from E. ulmoides leaves and designated asEuDXR1and EuDXR2. Respectively with highest gene sequence similarity to Populustrichocarpa(81%)and to Vitis vinifera(81%),EuDXR1full-length cDNA was1814bpincluding5’non-coding region of126bp and3’non-coding region of478bp and encoded251amino acids, EuDXR2was1779bp including5’non-coding region of163bp and3’non-coding region of251bp and encoded472amino acids. Representative conserved motifsand functional sites of plant DXR proteins containing transit peptide sequence(A1-A51;A1-A43),two DXR binding moti(fA227-A236,A297-A307;A221-A230,A291-A301),two NADPH bindingmotif (A88-A94,A113-A119;A82-A88,A107-A113)and N terminal proline-rich motif (A61-A69;A55-A63)were discovered in the deduced coding sequence of EuDXR1and EuDXR2.Loop/coil mainly constituted the predicted protein secondary structure with proportion ofEuDXR1to47.91%and EuDXR2to45.34%. The calculated protein tertiary structure ofEuDXR1and EuDXR2were both composed of two subunits,which in space displaying“V”shape. Evolutionary relationship of EuDXR1was closest to Oryza latifolia DXR1protein,while EuDXR2protein to Zea mays DXR2protein.
     A gene coding the MCT enzyme which catalyzed the third enzymatic reaction in MEPpathway was separated from E. ulmoides leaves and designated as EuMCT. With highest genesequence similarity to Vitis vinifera(82%),the full-length cDNA of EuMCT was1435bpincluding5’non-coding region of223bp and3’non-coding region of252bp and encoded319amino acids. The transit peptide sequence(A1-A75)and multiple conserved functional sitesA100,A102,A103,A104,A105,A106,A114,A170,A171,A173,A176,A195,A196,A198,A228,A244,A250,A252,A300)of plant MCT protein were found in the deduced coding sequenceof EuMCT. Secondary structure of EuMCT protein was predicted with proportion of α-helix to23.82%,β-sheet to18.18%and loop/coil to57.99%.The calculated protein tertiary structure of EuMCT was composed of two subunits,which contained two special P-loop constitution.The evolutionary relationship of EuMCT protein was cloest to Vitis vinifera MCT protein.
     A gene coding the CMK enzyme which catalyzed the hydroxyl phosphorylate reaction inMEP pathway was separated from E. ulmoides leaves and designated as EuCMK. With highestgene sequence similarity to Lycopersicon esculentum(82%),the full-length cDNA of EuCMKwas1644bp including5’non-coding region of256bp and3’non-coding region of203bp andencoded394amino acids. The transit peptide sequence(A1-A57)and the essentialATP bindingsite (A186-A202)demanded in the catalytic process of plant CMK enzyme were found in thededuced coding sequence of EuCMK. Secondary structure of EuCMK protein was predictedwith proportion of α-helix to32.74%,β-sheet to19.29%and loop/coil to47.97%.Thecalculated protein tertiary structure of EuCMK was composed of two asymmetric subunits.Theevolutionary relationship of EuCMK protein was closest to Vitis vinifera CMK protein.
     A gene coding the MDS enzyme which catalyzed the fifth enzymatic reaction in MEPpathway was separated from E. ulmoides leaves and designated as EuMDS. With highest genesequence similarity(79%)to Ageratina adenophora,the full-length cDNA of EuMDS was976bp and encoded236amino acids with5’non-coding region of119bp and3’non-coding regionof146bp. The transit peptide sequence (A1-A56)and multiple conserved functional sites(A84,A87,A89,A121,A213,A217,A221,A223,A228)of plant MDS protein were found inthe deduced coding sequence of EuMDS. The secondary structure of EuMDS protein waspredicted with proportion of α-helix to40.25%,β-sheet to13.56%and loop/coil to46.19%.Three subunits which formed a molecular cavity composed of the calculated proteintertiary structure of EuMDS. The evolutionary relationship was more similar than other speciesbetween EuMDS protein and Humulus lupulus MDS protein.
     A gene coding the HDS enzyme which catalyzed the sixth enzymatic reaction in the MEPpathway was separated from E. ulmoides leaves and designated as EuHDS. With highest genesequence similarity to Vitis vinifera(84%),the full-length cDNA of EuHDS was2786bpincluding5’non-coding region of171bp and3’non-coding region of383bp and encoded743amino acids.The transit peptide sequenc(eA1-A30),PSN moti(fA58-A78),PSI moti(fA354-A620) and three absolutely conserved cysteine site(sA644,A647,A678)of plant HDS protein were foundin the deduced coding sequence of EuHDS. The secondary structure of EuHDS protein waspredicted with proportion of α-helix to37.55%,β-sheet to19.25%and loop/coil to43.20%.The N-terminal domain with an eight-stranded β barrel belonged to the large TIM-barrelsuperfamily and the C-terminal domain consisted of a β sheet flanked on both sides by heliceswere indicated in the calculated protein tertiary structure of EuHDS. The evolutionaryrelationship of EuHDS protein was closest to Vitis vinifera HDS protein.
     A gene coding the HDR enzyme which was identified as the third rate-limiting step inMEP pathway was separated from E. ulmoides leaves and designated as EuHDR. With highestgene sequence similarity to Camptotheca acuminata(82%), the full-length cDNA of EuHDRwas1653bp including5’non-coding region of82bp and3’non-coding region of188bp andencoded460amino acids. The transit peptide sequence(A1-A33) and multiple conservedfunctional sites(A117,A208,A262,A345)of plant HDR protein were found in the deduced codingsequence of EuHDR. The secondary structure of EuHDR protein was predicted with proportionof α-helix to35.65%,β-sheet to19.78%and loop/coil to44.57%.The calculated proteintertiary structure of EuHDR was composed of a monomer, which in space displayedasymmetrical shamrock-like shape.The evolutionary relationship of EuHDR protein wasclosest to Vitis vinifera HDR protein.
     A gene coding the IPI enzyme which catalyzed the reversible conversion between IPP andDMAPP and regarded as a hinge point in terpenoid metabolic networks was separated from E.ulmoides leaves and designated as EuIPI. With highest gene sequence similarity toCamptotheca acuminata(84%),the full-length cDNA of EuIPI was1231bp including5’non-coding region of79bp and3’non-coding region of231bp and encoded306amino acids.The transit peptide sequence(A1-A70)and other representative conserved motifs and functionalsites (A154、A175,A107、A119、A156、A196、A206、A208)of plant IPI proteins were found inthe deduced coding sequence of EuIPI. The secondary structure of EuIPI protein was predictedwith proportion of α-helix to22.55%,β-sheet to13.40%and loop/coil to64.05%. The calculated EuIPI protein tertiary structure was constituted by a monomer in space. Theevolutionary relationship of EuIPI protein was closest to Corylus avellana IPI protein.
引文
Aengus M.S., Roland L., Roberta P. M. F.,et al. The Crystal Structure of E. coli1-Deoxy-D-xylulose-5-phosphate Reductoisomerase in a Ternary Complex with the Antimalarial CompoundFosmidomycin and NADPH Reveals a Tight-binding Closed Enzyme Conformation. J. Mol. Biol.2005,345:115-127.
    Amanda C. B.,Matthias E.,Dean C. C.,et al. The Nonmevalonate Pathway of Isoprenoid Biosynthesis inMycobacterium tuberculosis Is Essential and Transcriptionally Regulated by DXS. J.Bacteriol.,2010,192(9):2424–2433.
    Andrea G.,Ina Z.,Nicolas B.,et al. Analysis of1-deoxy-D-xylulose5-Phosphte Synthase Activity in GreyPoplar Leaves Using Isotope Ratio Mass Spectrometry. Phytochem.,2010,71:918-922.
    Andréa H., Jean-Francois H., Odile M.,et al. Cross-talk between the Cytosolic Mevalonate and thePlastidialMethylerythritol Phosphate Pathways in Tobacco Bright Yellow-2Cells. The J.Biol.Chem.,2003,278(29):26666-26676.
    Annegret A.B., Karnjapan J., Juliusz A.W.,et al. Biosynthesis of Isoprene Units: Mss bauerSpectroscopy of Substrate and Inhibitor Binding to the [4Fe-4S] Cluster of the LytB/IspH Enzyme.Angew. Chem. Int. Ed.2011,-50:11976-11979.
    Asaph A., Maarten A. J., Tok-Yong K.,et al. Metabolic Engineering of Terpenoid Biosynthesis in Plants.Phytochem. Rev.,2006,5:49-58.
    Barbara M. C.,Jordi P.G.,Maria B.,et al. Biosynthesis of Isoprenoids in Plants:Structure of the2C-methyl-D-erithrytol2,4-cyclodiphosphate Synthase from Arabidopsis thaliana. Comparison with the BacterialEnzymes. Protein Sci.,2007,16:2082-2088.
    Bertrand V., Martine C., Audrey O.,et al. Cloning and Expression of cDNAs Encoding Two Enzymes ofthe MEP Pathway in Catharanthus roseus. Biochim. et Biophys. Acta,2000,1517(1):159-163.
    Bohlmann J, Keeling C.Terpenoid Biomaterials. Plant J.,2008,54:656-669.
    Bohlmann J,Meyer-Gauen G.,Croteau R. Plant Terpenoidsynthases:Molecular Biology and PhylogeneticAnalysis. Proc.Natl. Acad. Sci.1998,95,4126-4133.
    Bohlmann J., Croteau R. Diversity and Variability of Terpenoid Defences in Conifers: MolecularGenetics,Biochemistry and Evolution of the Terpene Synthase Gene Family in Grand Fir (Abiesgrandis).Novartis Found Symp.,1999,223:132-145.
    Buchanan B.B., Gruissem W.,Russell L. J.,et al. Biochemistry and Molecular Biology of Plants.Rockville:Am. Soc.Plant Physiologists,2000,1250-1318.
    Carla Q., María P., Ana M.G.,et al. DXS Expression in Morinda Citrifolia Cell Suspension Cultures forIncreasing Antrhaquinones Production. J. Biotech.,2008,136S: S232–S235.
    Carretero P. L., Cair A., Botella P. P.,et al. Enhanced Flux the Methylerythritol4-phosphate Pathway inArabidopsis Plants Overexpressing1-Deoxy-D-xylulose5-phosphate Reductoisomerase.Plant Mol.Biol.,2006,62:683-695.
    Chang S. A.,Hyun-Sook P. Physiological Function of IspE, a Plastid MEP Pathway Gene for IsoprenoidBiosynthesis, in Organelle Biogenesis and Cell Morphogenesis in Nicotiana benthamiana.Plant Mol.Biol.,2008,66:503-517.
    Chaykin S., Law J., Phillips A. H., et al.Phosphorylated Intermediates in the Synthesis ofSqualene..Proc.Natl. Acad. Sci.,1958,4(10):998-1004.
    Chen J.W., Liu W.H., Chen M.,et al. The HDR Gene Involved in the TIA Pathway from Rauvolfiaverticillata: Cloning, Characterization and Functional Identification. J Med.Plants Res.,2010,4(10):915-924.
    Cheng A.X., Lou Y.G., Mao Y.B.,et al. Plant Terpenoids: Biosynthesis and Ecological Functions.J.Integr.Plant Biol.,2007,49(2):179-186.
    Christie A.M. P., Guy W. S., Erik H. H.,et al. The Expression of1-Deoxy-D-xylulose Synthase andGeraniol-10-hydroxylase or Anthranilate Synthase Increases Terpenoid Indole Alkaloid Accumulationin Catharanthus Roseus Hairy Roots. Metab.Eng.,2011,13:234-240.
    Christoph A.S., Tanja R., Silvia S.,et al. Quantitative Assessment of Crosstalk between the TwoIsoprenoid Biosynthesis Pathways in Plants by NMR Spectroscopy. Phytochem. Rev.,2003,2:3-16.
    Christopher L., Kap L., John T.,et al. Structure of2C-Methyl-D-Erythrol-2,4-CyclodiphosphateSynthase From Haemophilus inf uenzae: Activation by Conformational Transition. Proteins:Structure, Function, and Genetics,2002,49:135-138.
    Daisuke M., Holger J.K., Yohei S.,et al. The Single Cellular Green Microalga Botryococcus Braunii,Race B Possesses Three Distinct1-Deoxy-D-xylulose5-phosphate Synthases. Plant Sci.,2012,185-186:309-320.
    Deng J.Y., Liu Y.F., Huang H.W. Development and Characterization of Microsatellite Markers inEucommia ulmoides Oliver (Eucommiaceae). Mol. Ecol. Notes,2006,6:496-498
    Dewick P.M. Medicinal Natural Products: A Biosynthetic Approach.England: John Wiley&Sons, Ltd,2002.
    Dewick P.M. The Biosynthesis of C5-C25Terpenoid Compounds. Nat. Prod. Rep.,1999,16:97-130.
    Duilio A.,Silvia S.,Christoph.,et al.Terpenoid Biosynthesis from1-Deoxy-D-xylulose in Higher Plantd byIntramolecular Skeletal Rearrangement.Proc.Natl.Acad.Sci.U.S.A.1997,94:10600-10605.
    Eisenreich W.,Bacher A.,Arigoni D.,et al. Biosynthesis of Isoprenoids Via the Non-mavalonate Pathway.Cell. Mol. Life Sci.2004,61:1401-1426.
    Elizabeth C., Mari S.,Patricia L. Unravelling the Regulatory Mechanisms that Modulate the MEP Pathwayin Higher Plants. J. Exp.Bot.,2009,60(10):2933-2943.
    Eric O.,Lin F.Y.. Terpene Biosynthesis:Modularity Rules. Angewandte Chemie,2012,51(5):1124-1137.
    Eubanks L.M.,PoulterC.D. Rhodobacter Capsulatus1-Deoxy-D-xylulose5-Phosphate Synthase:SteadyState Kinetics and Substrate Binding. Biochem.,2003,42,1140-1149.
    Ewa S., Witold D. Polyisoprenoids: Structure, Biosynthesis and Function. Prog. Lipid Res.2005,44:235-258.
    Felix R, Juraithip W., Wolfgang E., et al. Biosynthesis of Terpenoids:4-Diphosphocytidyl-2C-methyl-D-erythritol Synthase of Arabidopsis thaliana. PNAS.,2000,97(12):6451–6456.
    Guttiérrez-Nava M.L., Gillmor C.S., Jiménez L.F.,et al. Chloroplast Biogenesis Genes Act Cell andNon-cell Autonomously in Early Chloroplast Development.Plant Physiol.,2004,135:471-482.
    Hartmut K. L. The1-Deoxy-D-Xylulose-5-Phosphate Pathway of Isoprenoid Biosynthesis in Plants. Annu.Rev. Plant Physiol.,1999.50:47-65.
    Hartmut K. L., Michel R.,J rg S. Two Independent Biochemical Pathways for Isopentenyl Diphosphateand Isoprenoid Biosynthesis in Higher Plants.Physiol.Plant.,1997,101:643-652.
    Hsieh M.H., Chang C.Y., Hsu S.J.,et al. Chloroplast Localization of Methylerythritol4-phosphatePathway Enzymes and Regulation of Mitochondrial Genes in ispD and ispE Albino Mutants inArabidopsis. Plant Mol. Biol.,2008,66:663-673.
    Hsieh M.H., Howard M. G..Functional Evidence for the Involvement of Arabidopsis IspF Homolog in theNonmevalonate Pathway of Plastid Isoprenoid Biosynthesis. Planta,2006,223:779-784.
    Hyungjin E., Amanda C. B.,Lori B.,et al. Characterization of the Mycobacterium Tuberculosis4-Diphosphocytidyl-2-C-Methyl-d-Erythritol Synthase: Potential for Drug Development.J. Bacteriol.,2007,189(24):8922-8927.
    Ingo R.,Tsuyoshi N.,Jochen W.,et al. Structure of the E-1-Hydroxy-2-Methyl-But-2-Enyl-4-DiphosphateSynthase (GcpE) from Thermus thermophilus.FEBS Letters,2011,585(3):447-451.
    Ingrid S., Tobias G., Adelbert B.,et al. Crystal Structures of Mutant IspH Proteins Reveal a Rotation ofthe Substrate’s Hydroxymethyl Group during Catalysis. J. Mol. Biol.,2012,416:1-9.
    Jason Q.D.G., Ian E.W. α,β-Unsaturated Monoterpene Acid Glucose Esters: Structural Diversity,Bioactivities and Functional Roles. Phytochem.,2011,72,2259-2266.
    Jesus M.B., Isabel A., Roc R.,et al. Up-regulation of1-Deoxy-D-Xylulose-5-Phosphate SynthaseEnhances Production of Essential Oils in Transgenic Spike Lavender. Plant Physio.,2006,142:890-900.
    Jordi Q., Narciso., Santiago I.,et al. Functional Analysis of the Arabidopsis thaliana GCPE ProteinInvolved in Plastid Isoprenoid Biosynthesis. FEBS Letter.,2002,514:343-346.
    Julia K., Maxwell P., Kathryn M. F.,et al. Computational Analysis of the Evolution of the Structure andFunction of1-Deoxy-D-xylulose-5-Phosphate Synthase, a Key Regulator of theMevalonate-independent Pathway in Plants. Gene,2003,313:127-138.
    Julie A. B., B.Markus L. Metabolic Cross Talk between Cytosolic andPlastidial Pathways of IsoprenoidBiosynthesis: Unidirectional Transport of Intermediates Across the Chloroplast EnvelopeMembrane.Arch. Biochem.Biophys.,2003,415(2):146-154.
    Jung K.L., Deok K.O., Sang Y.K.. Cloning and Characterization of the DXS Gene, Encoding1-Deoxy-D-Xylulose5-Phosphate Synthase from Agrobacterium Tumefaciens, and its Overexpressionin Agrobacterium Tumefaciens. J.Biotechnol.,-2007,128,555-566.
    Karine B., Yannick E., Alain D.,et al. Isopentenyl Diphosphate Isomerase: A Checkpoint to IsoprenoidBiosynthesis. Biochimi.,2012,doi:10.1016/j.biochi.2012.03.021:1-14.
    Kesselmeier J., Staudt M. Biogenic volatile organic compounds(VOC): an overview on emission,physiology and ecology. J.Atmos Chem,1999,33:23–88.
    Khemvong S., Suvachittanont W. Molecular Cloning and Expression of a cDNA Encoding1-Deoxy-D-xylulose-5-phosphate Synthase from Oil Palm Elaeis Guineensis Jacq.Plant Sci,2005,169:571-578.
    Krueawan Y., Seiji T., Atiya R,et al. cDNA,from Hevea brasiliensis Latex,Encoding1-Deoxy-D-xylulose-5-phosphate Reductoisomerase. Plant Sci,2008,175:694-700.
    Laule O,Fürholz A.,Chang H.S.,et al. Crosstalk between Cytosolic and Plastidial Pathways of IsoprenoidBiosynthesis in Arabidopsis thaliana. Proc Natl. Acad. Sci. U.S.A.,2003,100:6866-6871.
    Lauris E. K., Charles S. B. William N. H. Structure of2C-methyl-D-Erythritol2,4-CyclodiphosphateSynthase:An Essential Enzyme for Isoprenoid Biosynthesis and Target for Antimicrobial DrugDevelopment. PNAS.,2002,99(10):6591-6596.
    Lindberg P., Park S., Melis A. Engineering a platform for photosynthetic isoprene production incyanobacteria, Using Synechocystis as the Model Organism. Metab. Eng.,2010,12:70-79.
    Liu Y.,Wang H.,Ye H.C.,et al. Advances in the Plant Isoprenoid Biosynthesis Pathway and Its MetabolicEngineering. J. Integ.Plant Biol.,2005,47(7):769-782.
    Lynen F.,Efferer H.,Henning U.,et al. Farnesyl-pyrophosphat und3-Methyl-Δ3-butenyl-1-pyrophosphat,Die Biologischen Vorstufen Des Squalens. Zur Biosynthese Der Terpene, III. Angewandte Chemi.,1958,70(24):738-742.
    Mads G.,Johannes K.,Felix R.,et al. The Crystal Structure of a Plant2C-methyl-D-erythritol4-phosphateCytidylyltransferase Exhibits a Distinct Quaternary Structure Compared to Bacterial Homologues and aPossible Role in Feedback Regulation for Cytidine Monophosphate. FEBS J.,2006,273:1065-1073.
    Mahmoud S.S., Croteau R.B. Metabolic Engineering of Essential Oil Yield and Composition in Mint byAltering Expression of Deoxyxylilose Phosphate Reductoisomeras and MenthofuranSynthase.Proc.Natl.Acad.Sci.,2001,98:8915-8920.
    Manuel R.C., Iván A., Ester D.J.,et al.1-Deoxy-D-xylulose5-phosphate Reductoisomerase and PlastidIsoprenoid Biosynthesis during Tomato Fruit Ripening. Plant J.,2001,27(3):213-222.
    Manuel R.C.,Jordi Q., Luisa M.L.,et al. Bioinformatic and Molecular analysis of HydroxymethylbutenylDiphosphate Synthase (GCPE) Gene Expression during Carotenoid Accumulation in RipeningTomato Fruit. Planta,2003,217:476-482.
    Matthias L., Tobi as G., Felix Q.,et al. Biosynthesis of Isoprenoids: Crystal Structure of the [4Fe-4S]Cluster Protein IspG. J. Mol. Biol.,2010,404,600-610.
    McCaskill D.,Croteau R. Some Caveats for Bioengineering Terpenoid Metabolism in Plants. TrendsBiotechnol.,1998,16,349-355.
    Michael A. P., Patricia L., Albert B.,et al. The Plastidial MEP Pathway:Unifed Nomenclature andResources. Trends Plant Sci.,2008.13(12):619-623.
    Michel R. The Discovery of a Mevalonate-Independent Pathway for Isoprenoid Biosynthesis in Bacteria,Algae and Higher Plants. Nat.Prod.Rep.1999,16:565-574.
    Miziorko H.M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch.Biochem. Biophys.,2011,505:131-143.
    Murielle W.,Myriam S., Bernadette T. S. B.,et al.Isoprenoid Biosynthesis via the MethylerythritolPhosphate pathway:the (E)-4-Hydroxy-3-Methylbut-2-Enyl Diphosphate Reductase (LytB/IspH)from Escherichia coli Is a [4Fe-4S] Protein. FEBS Lett.,2003,541:115-120.
    Mustafa K., Hu H.Y., Robert M. C.,et al. Structure and Mechanism of the Diterpene Cyclase ent-CopalylDiphosphate Synthase. Nat. Chem. Biol.,2012,7(7):431-433.
    Newman J.D., Chappell J. Isoprenoid Biosynthesis in Plant:Carbon Partitioning Within the CytoplasmicPathway. Crit. Rev. Biochem. Mol. Biol.,1999,34(2):95-106.
    Patricia B.P., Oscar B., Michael A. P.,et al. Regulation of Carotenoid Biosynthesis in Plants: Evidencefor a Key Role of Hydroxymethylbutenyl Diphosphate Reductase in Controlling the Supply ofPlastidial Isoprenoid Precursors. Plant J.,2004,40:188-199.
    Raphael D.,Jerome R., Virginie D.,et al. Overexpression, Physicochemical Characterization, andModeling of a Hyperthermophilic Pyrococcus Furiosus Type2IPP Isomerase. Proteins,2008,71:1699–1707.
    Rodriguez-Concepcion M., Ahumada I., Diez-Juez E., et al.1-Deoxy-D-Xylulose-5-PhosphateReductoisomerase and Plastid Isoprenoid Biosynthesis during Tomato Fruit Ripening. Plant J.,2001,27:213.
    Rosa T., Monica R.L., Federica M.. Biological and Pharmacological Activities of Iridoids:Recent Developments. Mini-Rev. Med. Chem.,2008,8,399-420.
    Sambrook J., Russell DW.著(黄培堂等.译)分子克隆实验指南.北京:科学出版社,2005.
    Sang-Min K,Soo-Un K. Characterization of1-Hydroxy-2-methyl-2(-E)-butenyl-4-diphosphate Synthase(HDS) Gene from Ginkgo biloba.Mol Biol Rep.,2010,37:973-979.
    Sang-Min K.,Tomohisa K.,Akio K.,et al.1-Hydroxy-2-methyl-2-(E)-Butenyl4-Diphosphate Reductase(IDS)is Encoded by Multicopy Genes in Gymnosperms Ginkgo biloba and Pinus taeda. Planta,2008,227:287-298.
    Sang-Min K.,Yeon-Bok K.,Tomohisa K.,et al. Two Copies of4-(Cytidine5-Diphospho)-2-C-methyl-D-erythritol kinase (CMK) Gene in Ginkgo biloba: Molecular Cloning and FunctionalCharacterization. Planta,2008,228:941-950.
    Sauret-Gueeto S., Ramos-Valdivia A., Ibanez E.,et al. Identification of Lethal Mutations in EscherichiaColi Genes Encoding Enzymes of the Methylerythritol Phosphate Pathway. Biochem. Biophys. Res.Commun.2003,307:408-415.
    Schwender J., Gemünden C., Lichtenthaler H.K. Chlorophyta Eclusivelyuse the1-Deoxyxylulose5-Phosphate-2-Cmethylerythritol4-Phosphate Pathway for the Biosynthesis of Isoprenoids. Planta,2001,212:416-423.
    Shimada T., Endo T., Fu jiiH,et al. Molecular Cloning and functional Characterization of FourMonoterpene Synthase Genes from Citrus unshiu Marc.Plant Sci.,2004,166(1):49-58.
    Song X., Gerlinde U., Gudrun.,et al. Crystal Structure of1-Deoxy-D-Xylulose5-Phosphate Synthase,A Crucial Enzyme for Isoprenoids Biosynthesis. J.Biol. Chem.,2007,282(4):2676-2682.
    Soo K.O., Hunseung K., Dong H.S.,et al. Molecular Cloning and Characterization of a Functional cDNAClone Encoding Isopentenyl Diphosphate Isomerase from Hevea brasiliensis. J. Plant Physiol.,2000,157:549-557.
    Steele C.L.,Crock J.,Bohlmann J.,et al. Sesquiterpene Synthases from Grand Fir(Abies grandis)-Comparison of Constitutive and Wound-induced Activities,and cDNA isolation,Characterization andBacterial Expression of Delta-selinene Synthase and Gamma-humulene Synthase. J.Biol.Chem.,1998,273(4):2078-2089.
    Stephanopoulos G. Challenges in Engineering Microbes for Biofuels Prod Sci.,2007,315:801-804.
    Takeshi B., Michiko M.,Koichirou G.,et al.Contribution of Mevalonate and Methylerythritol PhosphatePathways to Polyisoprenoid Biosynthesis in the Rubber-producing Plant Eucommia ulmoides Oliver.Zeitschrift fur Naturforschung.,2010,65(5/6):363-372.
    Tanja S., Magnus S. A., Stephanos G., et al. Characterization of Aquifex Aeolicus4-Diphosphocytidyl-2C-methyl-D-Erythritol Kinase-Ligand Recognition in a Template forAntimicrobial Drug Discovery. FEBS.,2008,275:2779-2794.
    Thulasiram H.V., Erickson H.K., Poulter C.D. A Common Mechanism for Branching,Cyclopropanation,and Cyclobutanation Reactions in the Isoprenoid Biosynthetic Pathway. J. Am.Chem. Soc.,2008,130(6):1966-1971.
    Tobias G., Ingrid S., Wolfgang E.,et al. Probing the Reaction Mechanism of IspH Protein by X-rayStructure Analysis. PNAS.,2010,107(3):1077-1081.
    Tobias G.,Michael G., Felix R.,et al. Biochemistry of the Non-mevalonate Isoprenoid Pathway. Cell. Mol.Life Sci.,2011,68:3797-3814.
    Tomohisa H., Shinya T., Shunsuke H.,et al. Overexpression of1-Deoxy-D-xylulose-5-phosphateReductoisomerase Gene in Chloroplast Contributes to Increment of Isoprenoid Production.J Biosci.Bioeng.,2008,105:518-526.
    Victor G.O.,óscar V.,Xavier F.B.,et al. Mimicking Direct Protein-Protein and Solvent-mediatedInteractions in the CDP-methylerythritol Kinase Homodimer:A Pharmacophore-directed VirtualScreening Approach. J.Mol.Model.,2009,15:997-1007.
    Wise M.L.,Savage T.J., Katahira E,et al. Monoterpene Synthases from CommonSage (Salviaofficinalis):cDNA Isolation, Characterization, and Functional Expression of (+)-SabineneSynthase,1,8-Cineole Synthase, and (+)-Bornyl Diphosphate Synthase. J.Biol.Chem.,1998,273(24):14891-14899.
    Yao H.Y., Gong Y.F., Zuo K.J.,et al. Molecular Cloning, Expression Profiling and Functional Analysisof a DXR Gene Encoding1-Deoxy-D-xylulose5-phosphate Reductoisomerase from CamptothecaAcuminate. J. Plant Physiol.,2008,165:203-213.
    Yortyot S.,Thomas D.S.,Wallie S. Molecular Cloning and Characterization of two cDNAs Encoding1-Deoxy-D-xylulose5-phosphate Reductoisomerase from Hevea brasiliensis.J Plant Physiol,2008,165:991-1002.
    Yoshihisa N., Takeshi B., Tuyoshi T.,et al. Production of Eucommia-rubber From Eucommia ulmoidesOliv.(Hardy Rubber Tree). Plant Biotechnol.,2009,26,71-79.
    Zhang M.,Li K.,Zhang C.H.,et al. Identifcation and Characterization of Class1DXS Gene Encoding1-Deoxy-D-Xylulose-5-Phosphate synthase, the First Committed Enzyme of the MEP Pathway fromSoybean. Mol. Biol. Rep.,2009,36:879-887.
    Zhao Y.R., Yang J.M., Qin B. Biosynthesis of Isoprene in Escherichia Coli Via MethylerythritolPhosphate (MEP) Pathway. Appl. Microbiol. Biotechnol.2011,90:1915-1922.
    Zheng W., Sun F., Mark B.,et al. The Crystal Structure of Human Isopentenyl Diphosphate Isomerase at1.7Resolution Reveals its Catalytic Mechanism in Isoprenoid Biosynthesis. J. Mol. Biol.2007,366:1447-1458.
    Zulak K.G.,Bohlmann J. Terpenoid Biosynthesis and Specialized Vascular Cells of Conifer Defense. J.Integr. Plant Biol.,2010,52(1):86-97.
    曹丹.白桦脂醇的纯化及其衍生物的研究.浙江大学硕士学位论文,2007,
    陈建.几种提取杜仲RNA方法的比较.林业科技开发,2007,21(5):19-21.
    陈业高.植物化学成分.北京:化学工业出版社,2004.
    陈增波.由杜仲叶或皮提取杜仲胶的方法.中国专利:86100216,1987-11-26.
    崔克明.杜仲研究的历史、现状和展望.西北林学院学报,1994,9(4):51-57.
    杜红岩,谢碧霞,邵松梅.杜仲胶的研究进展与发展前景.中南林学院学报,2008,23(4):95-99.
    杜红岩.杜仲活性成分与药理研究的新进展.经济林研究,2003,21(2):58-61.
    杜红岩.杜仲优质高产栽培.北京:中国林业出版社,1996.
    付佳,王洋,阎秀峰.萜类化合物的生理生态功能及经济价值.东北林业大学学报,2003,(31)6:59-62.
    高文运.同位素标记及未标记的1-脱氧-D-木酮糖-5-磷酸和2-甲基-D-赤藓糖醇-4-磷酸的合成方法.有机化学,2010,30(1):23-37.
    何秋艳,翁新楚.山楂活性成分对氧化低密度脂蛋白损伤人微血管内皮细胞的防治作用.上海大学学报:自然科学版,2007,6:751-756.
    何云飞,高伟,刘塔斯等.二萜合酶的研究进展.药学学报,2011,46(9):1019-1025.
    华会明,尹宏权,李宝强等.杜仲化学成分的研究.分子植物育种,2003,1(5):801-803.
    化文平,王喆之.向日葵异戊烯焦磷酸异构酶基因(ipi)的电子克隆和生物信息学分析.植物生理学通讯,2008,44(1):8l-86.
    黄雄,黄嬛.中药环烯醚萜成分的提取分离和药理作用研究.嘉兴学院学报,2009,21(3):70-73.
    黄俊峰,段鹏,吴文言.基于模板的蛋白质结构预测.生物物理学报,2011,27(1):28-37.
    黄致喜,王慧辰.萜类香料化学.北京:中国轻工业出版社,1999,71-132.
    金蓉,朱长青,徐昌杰.1-脱氧木酮糖-5-磷酸合成酶(DXS)及其编码基因.细胞生物学杂志,2007,29:706-712.
    金春爱,杨振堂,赵景辉等.杜仲叶片及愈伤组织无性系中杜仲胶含量测定.特产研究,1997,3:20-23.
    康桢,吴卫华,王俊杰等.桃叶珊瑚苷及其苷元的药理研究进展.中国中药杂志,2007,32(24):2585-2587.
    李虹,谢鹭.预测和鉴定蛋白质翻译后修饰的生物信息方法.现代生物医学进展,2008,8(9):1729-1735.
    李嵘,王喆之.植物萜类合成酶1-脱氧-D-木酮糖-5-磷酸还原异构酶的分子结构特征与功能预测分析.植物研究,2007,27(1):59-67.
    李宏杨,刘国民,刘飞等.熊果酸及五环三萜同类物的研究进展.湖南工业大学学报,2009,23(5):18-21,51.
    李军玲,罗晓东,赵沛基等.植物萜类生物合成中的后修饰酶.云南植物研究,2009,31(5):461-468.
    李少锋,苏晓华,张冰玉.林木基因克隆研究进展.植物学报,2011,46(1):79-107.
    李学锋,王刚,彭少贤.杜仲胶的溶剂-沉淀法提取.湖北化工,1997,(1):35-37.
    刘万宏.紫杉醇前体合成途径两个关键酶基因克隆和分析.西南大学硕士学位论文,2008,
    刘卫平,王敏杰,韩玉珍等.天然橡胶的生物合成机制.植物生理学通讯,2002,38(4):382-388.
    马柏林,王蓝,张康健等.杜仲胶实验室提取方法的研究.西北林学院学报,1994,9(4):67-69.
    马靓,丁鹏,杨广笑等.植物类萜生物合成途径及关键酶的研究进展.生物技术通报,2006,增刊:22-30.
    马泉芳,魏然,刘春林.拟南芥β-罗勒烯合成酶基因T-DNA插入突变体的鉴定.作物研究,2011,25(5):477-481.
    马养民,汪洋.植物环烯醚萜类化合物生物活性研究进展.中国实验方剂学杂志,2010,16(17):234-243.
    彭梅芳,阳义健,杨春贤等.银杏IspF基因的克隆与功能分析.林业科学,2008,44(10):49-54.
    彭少麟,南蓬,钟扬等.高等植物中的萜类化合物及其在生态系统中的作用.生态学杂志,2002,21(3):33-38
    申利群,莫洪波,尹笃林.几种单环单萜化合物的生物活性及其应用.林产化工通讯,2004,2:30-35.
    师彦平.单萜和倍半萜化学.北京:化学工业出版社,2008.
    史卉妍,何鑫,欧阳冬生等.京尼平普及其衍生物的药效学研究进展.中国药学杂志,2006,41(1):4-6.
    汤诗杰,贺善安,盛宁等.不同地理种源杜仲叶片中丁香脂素二糖甙和京尼平甙酸含量的分析.植物资源与环境学报,2004,13(2):58-59.
    汤诗杰,李和平,贺善安.杜仲研究的现状与展望.林业科技开发,2007,21(2):8-12.
    王宏,赵辉,李周岐等.杜仲RAPD反应体系的优化.西北林学院学报,2007,22(4):86-89.
    王宏.杜仲优良品种(无性系)DNA指纹图谱的构建.西北农林科技大学硕士学位论文,2007,
    王惠,赵德刚,韩玉珍.植物中的异戊烯基转移酶.植物生理学通讯,2005,41(5):684-690.
    王大玮,李煜,周玮等.杜仲AFLP反应体系的建立及优化.西北农林科技大学学报(自然科学版),2010,38(6):88-94.
    王丽楠,杨美华.中药杜仲的研究进展.天然产物研究与开发,2008,20:146-155.
    王玉萍,刘庆昌,翟红.植物类胡萝卜素生物合成相关基因的表达调控及其在植物基因工程中的应用.分子植物育种,2006,4(1):103-110.
    尉芹,马希汉,张康健.杜仲化学成分研究.西北林学院学报,1995,10(4)88-93.
    吴立军.实用天然有机产物化学.北京:人民卫生出版社,2007.
    徐静,高玲,谢永慧等.倍半萜内酯化合物药理作用.中国热带医学,2007,7(4):623-624.
    徐应文,吕季娟,吴卫等.植物单萜合酶研究进展.生态学报,2009,29(6):3188-3197.
    严瑞芳,薛兆弘,杨道安等.杜仲胶综合提取方法.中国专利:1054985,1991-10-02.
    严瑞芳,杨道安,蒋兆弘等.一种提取杜仲胶的方法.中国专利:1088508,1994-06-29.
    严瑞芳.杜仲胶研究进展及发展前景.化学进展,1995,7(1):65-71.
    严瑞芳.杜仲橡胶的开发及应用概况.橡胶科技市场,2010,10:9-13.
    杨蕊.杜仲遗传转化体系的建立及其毛状根结构与次生代谢物的研究.西南大学硕士学位论文,2008,
    杨涛,曾英.植物萜类合酶研究进展.云南植物研究,2005,27(1):1-10.
    杨宏健.天然药物化学.北京:科学出版社,2009
    杨振堂,臧埔,赵景辉.诱导杜仲愈伤组织并从中提取杜仲胶的方法.中国专利:1252215,2000-05-10.
    岳跃冲,范燕萍.植物萜类合成酶及其代谢调控的研究进展.园艺学报,2011,38(2):379–388.
    张雯,王玉亮,林娟等.银杏1-羟基-2-甲基-2-(E)-丁烯基-4-焦磷酸还原酶基因(hdr)转化银杏的研究.复旦学报,2008,47(5):598-602.
    张长波,孙红霞,巩中军等.植物萜类化合物的天然合成途径及其相关合酶.植物生理学通讯2007,43(4):779-786.
    赵丹.杜仲法尼基焦磷酸合成酶基因超量表达对含胶细胞的影响研究.贵州大学硕士学位论文,2009,
    赵丹,赵德刚,李岩. EuFPS基因表达载体构建及对杜仲遗传转化的研究.基因组学与应用生物学,2009,28(l):27-33.
    郑礼胜,刘向前.环烯醚萜类研究进展.天然产物研究与开,2009,21:702-711,725.
    周明兵,王红珍,赵德刚.杜仲叶和树皮总RNA的快速提取法.山地农业生物学报,2003,22(5):430-431.
    周明兵,肖月华,朱冬雪等.杜仲胶合成相关基因EuFPS的克隆及序列分析.分子育种,2003,1(1):66-71.
    朱平.萜类代谢途径及其代谢途径工程.2008全国药用真菌学术研讨会论文集,2008,3-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700