用户名: 密码: 验证码:
法尼基焦磷酸合成酶在血管紧张素Ⅱ诱导心肌肥厚中研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分抑制法尼基焦磷酸合成酶改善血管紧张素Ⅱ诱导心肌细胞肥厚
     研究背景:
     心肌肥厚作为一种常见疾病,可被许多体液因子如血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)诱导。各种细胞通路参与了AngⅡ诱导的心肌肥厚,其中包括RhoA/ROCK通路。
     以往研究发现阿伦磷酸钠(alendronate)重要机制主要是通过抑制甲羟戊酸途径中的一种关键酶-法尼基焦磷酸合成酶(farnesyl pyrophosphate synthase, FPPS),从而抑制类异戊烯化包括了法尼基化和牻牛儿牻牛基儿化进而减少类异戊二烯化产物的产生包括法尼基焦磷酸(farnesylpyrophosphate, FPP)和牻牛儿牻牛儿焦磷酸(geranylgeranylpyrophosphate, GGPP).而GGPP对于RhoA的牻牛儿牻牛儿焦磷酸化和活化非常重要。
     目的:
     本研究主要探索alendronate抑制FPPS可否影响AngⅡ诱导的心肌肥厚,同时研究该作用是否与RhoA/ROCK通路相关。
     方法:
     (1)加入3~30 (μM alendronate先孵育30 min然后加入AngⅡ(1μM)共同作用48h,加药前细胞在无血清培养基DMEM中孵育24h。检测肥厚指标包括细胞面积,细胞蛋白合成和基因BNP mRNA水平改变等。
     (2)在心肌细胞中加入30μM alendronate及相同浓度的GGOH先孵育30 min,然后与AngⅡ(1μM)共同孵育48h,加药前细胞在无血清培养基DMEM中孵育24 h。检测肥厚指标包括细胞面积,细胞蛋白合成和基因(?)NP mRNA水平改变。
     (3)在心肌细胞中加入alendronate, RhoA/ROCK通路抑制剂包括牻牛儿牻牛儿基转移酶抑制剂GGTI-286, Rho的抑制剂C3 exoenzyme或ROCK的抑制剂Y-27632先孵育30 min,然后与AngⅡ(1μM)共同孵育48 h,加药前细胞在无血清培养基DMEM中孵育24 h。检测肥厚指标包括细胞面积,细胞蛋白合成和基因BNP mRNA水平改变。
     (4)在心肌细胞中加入30μM alendronate及相同浓度的GGOH或加入GGTI-286孵育48 h,然后加入AngⅡ(1μM)共同孵育15 min,用商业化pull down试剂盒和western-blot技术检测了RhoA活性和RhoA总量的改变。
     结果:
     (1) Alendronate作为FPPS抑制剂可剂量依赖性抑制Ang II诱导的乳鼠心肌细胞面积增大,细胞蛋白合成量的增加及基因BNP表达的上调。
     (2)同浓度GGOH部分逆转了30μM alendronate的抗心肌肥厚反应。
     (3) Rho/ROCK通路抑制剂GGTI-286, C3 exoenzyme以及Y-27632可抑制Ang II诱导的心肌细胞肥厚反应。
     (4) 30μM alendronate抑制了AngⅡ诱导增加的RhoA活性,该作用可被相同浓度GGOH部分逆转。牻牛儿牻牛儿基化过程抑制剂GGTI-286也抑制了Ang II对RhoA激活。
     结论:
     本研究实验结果表明alendronate通过抑制FPPS可以有效逆转AngⅡ诱导心肌细胞肥厚反应,这种作用与抑制RhoA的牻牛儿牻牛儿化过程从而降低RhoA的活性相关。
     第二部分RNA干扰技术沉默法尼基焦磷酸合成酶基因改善血管紧张素Ⅱ诱导心肌肥厚
     研究背景:
     第一部分实验结果表明抑制法尼基焦磷酸合成酶(Farnesylpyrophosphate synthase, FPPS)可以逆转血管紧张素Ⅱ(angiotensinⅡ, Ang II)诱导的心肌细胞肥厚发生,提示FPPS作为AngⅡ介导的心肌肥厚发生的重要治疗靶点。
     我们实验组前期高通量RNA阵列技术(RNA array)结果表明FPPS的mRNA水平在18周自发高血压大鼠(spontaneously hypertensive rats, SHR)肥厚心脏组织比同周龄WKY大鼠(Wistar-Kyoto rats, WKY)高。而18周SHR的心肌肥厚与其局部RAS系统激活Ang II含量升高相关。
     上述所有证据都表明FPPS在Ang II介导心肌肥厚中可能的重要性。
     目的:
     本实验探究了FPPS水平是否在Ang II介导的心肌肥厚模型有所改变,同时在此基础上研究通过RNA干扰技术沉默FPPS基因的表达,观察是否影响到心肌肥厚的发生,并进一步研究FPPS下游主要细胞通路的改变。
     方法:
     (1)使用real-time PCR和western-blot技术检测Ang II介导的心肌肥厚模型中FPPS的转录和翻译水平。
     (2)设计并构建针对四个不同靶序列FPPS干扰质粒载体PGC-sh-FPPS和带有绿色荧光蛋白的FPPS融合蛋白质粒(FPPS-GFP).通过外源表达系统在HEK-293 T细胞共表达,以免疫荧光和western-blot险测GFP表达判断最有效靶序列。
     (3)选择最有效靶序列构建和扩增FPPS干扰重组慢病毒载体,转染乳鼠心肌细胞观察FPPS的下调是否影响β-肌球蛋白重链(β-myosin heavy chain,β-MHC)和B-型脑钠肽(brain natriuretic peptide, BNP)基因及细胞表面积的改变。慢病毒颗粒注射7周SHR大鼠心肌,11周后称重并进行心脏超声学检查。心脏称重获得心脏重/体重比(heart weight/body weight, HW/BW)和左室重/体重比(left ventricular weight/body weight, LVW/BW),并检测左室β-MHC和BNP的改变。
     (4)在细胞水平进一步研究FPPS基因沉默后下游主要通路的改变。使用pull down试剂盒和western-blot方法检测RhoA的活性和表达量改变,用细胞免疫荧光激光共聚焦技术检测RhoA的定位,用western-blot检测JNK和P38 MAPK (mitogen-activated protein kinases)的活性。
     结果:
     (1) AngⅡ(1μM)在诱导心肌细胞肥厚同时上调了FPPS的水平,18周龄SHR肥厚心脏中FPPS的转录和翻译水平也上调。
     (2)成功构建FPPS干扰重组慢病毒载体沉默FPPS水平的同时可以明显抑制Ang II诱导的心肌细胞表面积及β-MHC和BNP的mRNA水平。活体实验表明FPPS下调的同时,肥厚指标包括HW/BW和LVW/BW的减少,肥厚标记基因β-MHC和BNP水平的下调。心超结果显示SHR干扰组舒张期室间隔壁厚度(interventricular septum wall thickness at diastolic phase, IVSd)部分逆转,同时左室短轴缩短率(fraction shortening, FS)和射血分数(ejection fraction, EF)均有部分改善。
     (3) FPPS基因干扰有效抑制了心肌细胞中AngⅡ诱导的RhoA活性和易位,并逆转了Ang II激活的P-38和JNKMAPK通路。
     结论:
     FPPS水平在Ang II介导的心肌肥厚上调,提示FPPS在Ang II诱导心肌肥厚中的重要性。同时FPPS调控的RhoA/P-38/JNK MAPK在Ang II介导的心肌肥厚中扮演着重要作用。
     第三部分阿伦磷酸钠对血管紧张素Ⅱ诱导心肌成纤维细胞的增殖分化和胶原形成的影响
     研究背景:
     含氮类双磷酸盐(N-BPs)广泛用于骨骼相关性疾病和肿瘤中。第一部分研究发现阿伦磷酸钠(alendronate),一种权威的N-BPs能有效逆转血管紧张素Ⅱ(angiotensinⅡ, AngⅡ)诱导的心肌细胞肥厚反应。以往研究也报道alendronate可以有效抑制自发性高血压大鼠的心肌肥厚及心肌纤维化。
     目的:
     本实验为进一步观察alendronate是否可以调节AngⅡ诱导的新生鼠心肌成纤维细胞的增殖、分化及胶原生成。
     方法:
     予以新生wistar鼠心肌成纤维细胞原代培养,传代第二到四代予以使用。细胞增殖用细胞数目试剂盒(原理是water-soluble tetrazolium, WST-1)进行检测。利用免疫印迹(western blot)方法检测成纤维细胞的分化标志物α-肌动蛋白(a-smooth muscle actin,α-SMA)的表达。胶原合成采用实时定量PCR (real-time polymerase chain reaction, qRT-PCR)技术检测Ⅰ型和Ⅲ型胶原前体的mRNA水平,同时使用商业化试剂盒检测胶原蛋白羟脯氨酸的合成。另外转录生长因子-β1(transforming growth factorβ1, TGF-β1)的含量和和P38促细胞分裂剂激活性蛋白激酶激酶(P38MAPK, P38 mitogen-activated protein kinase)的活性分别用酶联免疫吸附技术(enzyme linked immunosorbent assay, ELISA)和免疫印迹(western blot)技术进行检测。
     结果:
     Alendronate可以抑制AngⅡ诱导的成纤维细胞的增殖分化及随后的胶原的形
     成。同时TGF-β1蛋白的表达和分泌及P38 MAPK的活性都得以被alendronate逆转。结论:
     本研究提示alendronate对AngⅡ诱导的细胞增殖,细胞分化及胶原形成可有效抑制。这种作用可能与TGF-β1水平下调,P38 MAPK活性的抑制相关。
Part 1 Inhibition of farnesylpyrophosphate synthase prevents angiotensin II-induced hypertrophic responses in rat neonatal cardiomyocytes:involvement of the RhoA/Rho kinase pathway
     Background:
     Cardiac hypertophy can be induced by humal factors such as angiotensinⅡ(AngⅡ). Various pathways are involved in AngⅡ-induced hypertrophic response of cardiomyocytes including the RhoA/ROCK signaling.
     Experimental study has shown that alendronate inhibits farnesylpyrophosphate (FPP) synthase, a key enzyme in the mevalonate pathway, through inhibition of isoprenylation including farnesylation and geranylgeranylation with consecutively decreases of the formation of isoprenoid lipids such as farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP). The latter one is essential for geranylgeranylation and activation of RhoA.
     Aim:
     We undertook our research to explore whether inhibition of FPP synthase by alendronate could interfere with the hypertrophic responses induced by AngⅡin cultured neonatal ventricular myocytes, and whether it involves RhoA/ROCK pathway.
     Methods:
     Cardiomyocyte were in serum-free medium (SFM) for 24 h before incubation with various agents with indicated time. Hypertrophy markers including cell surface area and protein content were assayed while gene expression of BNP was measured by quantitative real-time polymerase chain reaction (qRT-PCR).
     (1) Myocytes were pre-incubated with 3-30μM alendronate alone or with AngⅡ(1μM) for 48 h.
     (2) Myocytes were pre-incubated with 30μM alendronate alone or in combination with equal GGOH in the addition of AngⅡ(1μM) for 48 h.
     (3) Myocytes were pre-incubated with alendronate, GGTI-286, C3 exoenzyme or Y-27632 in the addition of AngⅡ(1μM) for 48 h
     (4) Myocytes were pre-incubated with 30μM alendronate alone or in combination with equal GGOH for 48 h before incubation with AngⅡfor 15 min. Pull down assay and western blot analysis for RhoA activity and expression were performed.
     Results:
     (1) Alendronate at 3 to 30μM prevented hypertrophy responses induced by AngⅡ(1μM).
     (2) The anti-hypertrophic effects of inhibition of FPP synthase with alendronate in Ang II-cultured neonatal cardiomyocytes hypertrophy were partially reversed by comparative geranylgeranyol (GGOH).
     (3) The anti-hypertrophic effects of inhibition of FPP synthase with alendronate could be mimicked by GGTI-286, a geranylgeranyltransferase-I inhibitor, C3 exoenzyme, an inhibitor of Rho or Y-27632, an inhibitor of ROCK.
     (4) Pull-down assay showed alendronate reduced-active RhoA by Ang II was also partially antagonized by GGOH.GGTI-286 also abolished the activated RhoA by AngⅡ.
     Conlusions:
     This study reveals the inhibition of FPP synthase by alendronte reduces RhoA activation by diminishing geranylgeranylation which prevents AngⅡ-induced hypertrophic response of neonatal cardiomyocytes.
     Part 2 Konckdown of farnesylpyrophosphate synthase by RNA interference prevents angiotensin II-induced cardiac hypertrophy
     Background:
     Our first part experimental research suggests inhibition of farnesylpyrophosphate synthase (FPPS) enzyme could reverse cardiac hypertrophy induced by angiotensinⅡ(AngⅡ), which indicates FPPS gene as the therapeutic target involved in AngⅡ-induced cardiac hypertrophy.
     The data of our previous RNA array study reported the up-regulation of FPPS mRNA in hypertrophy myocardium of 18-week spontaneously hypertensive rats (SHR) associated with local activated renin-angiotensin system (RAS) and higher AngⅡcontent than the age-matched Wistar-Kyoto rats (WKY).
     Collectively, this evidence strongly suggests the probable essential role of FPPS in the development of cardiac hypertrophy by Ang II.
     Aim:
     The aim of our study was designed to investigate whether the mRNA and protein expression of FPPS are increased in AngⅡ-mediated cardiac hypertrophy, then whether silencing FPPS modulates these hypertrophic responses, and furthermore studied FPPS-related signaling.
     Methods:
     (1) FPPS expression was measured in cardiac hypertrophy models by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot.
     (2) The four different sequences of short interference RNA duplexes (siRNAs) targeting the rat FPPS gene were constructed into shRNA vectors and the FPPS fusion protein was generated by insertion of rat FPPS cDNA into the pEGFP-C1 vector. HEK293 T cells were co-transfected with the rat FPPS fusion protein plus different shRNAs against FPPS or scrambled shRNA using lipofectamine 2000 and then the most active shRNA against rat FPPS was established by observation of GFP expression by immunofluorescence and western blot.
     (3) The most active FPPS siRNA was established, synthesized and then incorporated into a lentiviral vector with scrambled shRNA control for lentivirus production in vitro and in vivo gene transfer experiment. Hypertrophy makers in vitro include cell surface area and the mRNA expression of P-myosin heavy chain (β-MHC) and brain natriuretic peptide (BNP) by qRT-PCR. Hypertrophic responses in vivo indexed by heart weight/body weight (HW/BW), left ventricular weight/body weight (LVW/BW) and echocardiography were measured as well as expression ofβ-MHC and BNP mRNA by qRT-PCR.
     (4) The involvement of FPPS in Ang II-activated hypertrophic responses was furthered by investigation of downstream signaling in cultured cardiomyocytes. Pull down assay and western blot analysis for RhoA activity and expression were performed. RhoA immunofluorescence confocal microscopy was analysed for RhoA translocation. Besides, the activity of p-38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPK) was performed by western blot analysis.
     Results:
     (1) FPPS expression was elevated both in cultured neonatal cardiomyocytes (NCMs) following AngⅡ(1μM) treatment and in the hypertrophic myocardium of 18-week-old spontaneously hypertensive rats (SHRs).
     (2) FPPS shRNA lentivirus was constructed successfully. FPPS silencing in NCMs completely inhibited the hypertrophy marker genes ofβ-myosin heavy chain (β-MHC) and brain natriuretic peptide (BNP), as well as cell surface area. In vivo gene transfer also attenuated hypertrophic responses as indexed by left ventricular weight/body weight, heart weight/body weight as well as expression ofβ-MHC and BNP mRNA in SHRs. Echocardiography also showed the partial attenuation of interventricular septum wall thickness at diastolic phase (IVSd) and improvement of fraction shortening (FS) and ejection fraction (EF) in SHR silencing group.
     (2) FPPS knockdown prevented elevated RhoA activity as well as RhoA translocation to plasma membrane in incubation with AngⅡcompared with non-silenced controls in NCMs. Similarly, increased-phosphorylation of P-38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPK) by AngⅡwas attenuated.
     Conlusions:
     In conclusion, the expression of FPPS was elevated in Ang II-mediated cardiac hypertrophy and FPPS with RhoA-associated P38 and JNK MAPK signaling might play an important role in AngⅡ-induced cardiac hypertrophy.
     Part 3 Alendronate modulates angiotensinⅡ-induced neonatal cardiac fibroblast proliferation differentiation and collagen production in vitro
     Background:
     Nitrogen-containing bisphosphonates (N-BPs), are extensively used in bone-related diseases and cancers. Our first part experimental research suggests alendronate could modulate cardiac hypertrophy induced by angiotensinⅡ(AngⅡ). Previous study demonstrated alendronate has beneficial effects on cardiac fibrosis in spontaneously hypertensive rats.
     Aims:
     This study was designed to examine whether pretreatment with alendronate could modulate Ang II activated early events of cardiac fibrosis in vitro including the increase in cell proliferation, differentiation of neonatal cardiac fibroblasts, and collagen production.
     Methods:
     Cardiac fibroblasts were prepared from 1 to 2-day-old Wistar rats. The proliferation of cardiac fibroblasts was determined by water-soluble tetrazolium (WST)-1 assay using Cell Counting Kit (CCK-8) and the differentiation marker of cardiac fibroblasts a-smooth muscle actin (a-SMA) was measured by western blot. Collagen production was assayed by the mRNA expression of collagen type II and type II using the real-time polymerase chain reaction (qRT-PCR) method, as well as by the analysis of hydroxyproline levels. Additionally transforming growth factor (TGF)-β1 protein production by cultured neonatal cardiac fibroblasts as well as P38 mitogen-activated protein kinase (MAPK) activity was evaluated by enzyme linked immunosorbent (ELISA) and western blot respectively.
     Results:
     Alendronate inhibited the proliferation and differentiation of cardiac fibroblasts as well as prevented collagen production by Ang II in vitro. Furthermore, the TGF-β1 protein expression and secretion by cardiac fibroblasts as well as activated P38 MAPK by AngⅡwere all reversed by alendronate.
     Conclusion:
     The current study demonstrates the inhibitory role of alendronate on Ang II-induced increase in cell proliferation, differentiation of neonatal cardiac fibroblasts and collagen production. The effect is possibly mediated by lowering the TGF-β1 levels and inactivation of P38 MAPK signaling.
引文
[1]Baker KM, Booz GW, Dostal DE. Cardiac actions of angiotensin II:Role of an intracardiac renin-angiotensin system. Annu Rev Physiol 1992; 54:227-241.
    [2]Chien KR, Knowlton KU, Zhu H, Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy:molecular studies of an adaptive physiologic response. FASEB J1991; 5:3037-3046.
    [3]Liang F, Gardner DG. Autocrine/paracrine determinants of strain-activated brain natriuretic peptide gene expression in cultured cardiac myocytes. J Biol Chem 1998;273:14612-14619.
    [4]Komuro I. Molecular mechanism of cardiac hypertrophy and development. Jpn Circ J 2001; 65:353-358.
    [5]Kim S, Iwao H. Molecular and Cellular Mechanisms of Angiotensin Ⅱ-Mediated Cardiovascular and Renal Diseases. Pharmacol Rev 2000; 52:11-34.
    [6]Aoki H, Izumo S, Sadoshima J. Angiotensin Ⅱ activates RhoA in cardiac myocytes:a critical role of RhoA in angiotensin Ⅱ-induced premyofibril formation. Circ Res 1998; 82:666-776.
    [7]Higashi, M., Shimokawa, H., Hattori, T., Hiroki, J., Mukai, Y., Morikawa, K et al. Long-term inhibition of Rho-kinase suppresses angiotensinⅡ-induced cardiovascular hypertrophy in rats in vivo:effect on endothelial NAD(P)H oxidase system. Circ Res 2003; 93:767-775.
    [8]Morikawa-Futamatsu K, Adachi S, Maejima Y, Tamamori-Adachi M, Suzuki J, Kitajima S, et al. HMG-CoA reductase inhibitor fluvastatin prevents angiotensin Ⅱ-induced cardiac hypertrophy via Rho kinase and inhibition of cyclin D1. Life Sci 2006; 79:1380-1390.
    [9]Aikawa R, Komuro I, Nagai R, Yazaki Y. Rho plays an important role in angiotensin Ⅱ-induced hypertrophic responses in cardiac myocytes. Mol Cell Biochem 2000; 212:177-182.
    [10]Klaus Scheffzek, Ilona Stephan, Ole N. Jensen, Daria Illenberge, Peter Gierschik. The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI. Nat Struct Biol 2000; 7:122-126.
    [11]Gelb MH. Protein prenylation, et cetera:signal transduction in two dimensions. Science 1997; 275:1750-1751.
    [12]omaw JF, Casey PJ. Mammalian protein geranylgeranyltransferase. Subunit composition and metal requirements. J Biol Chem 1992; 267:17438-17443.
    [13]Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J.2000; 348:241-255.
    [14]Ermond van Beek, Elsbet Pieterman, Louis Cohen, Clemens Lowik, Socrates Papapoulos. FarnesylPyrophosphate Synthase Is the Molecular Target of Nitrogen-Containing Bisphosphonates. Biochem Biophys Res Commun 1999; 264: 108-111.
    [15]Kathryn L, Kavanagh, Kunde Guo, James E, Dunford, Xiaoqiu Wu. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. PNAS 2006; 103:7829-7834.
    [16]Casey PJ. Mechanisms of protein prenylation and role in G protein function. Biochem Soc Trans 1995; 23,161-166.
    [17]Casey PJ. Protein lipidation in cell signaling. Science1995; 268,221-225.
    [18]Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev 2001; 81,153-208.
    [19]Lavandero S, Foncea R, Perez V, Sapag-Hagar M. Effect of inhibitors of signal transduction on IGF-1-induced protein synthesis associated with hypertrophy in cultured neonatal rat ventricular myocytes. FEBS Lett 1998; 422:193-196.
    [20]Simpson P, Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Circ Res 1982;50:101-116.
    [21]Yamamoto K, Ohki R, Lee RT, Ikeda U, Shimada K. Peroxisome proliferator-activated receptor gamma activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation 2001; 104:1670-1675.
    [22]Nlend MC, Schmid A, Sutto Z, Ransford GA, Conner GE, Fregien N etal. Calcium-mediated, purinergic stimulation and polarized localization of calcium-sensitive adenylyl cyclase isoforms in human airway epithelia. FEBS Lett 2007; 581:3241-3246.
    [23]Peinnequin A, Mouret C, Birot O, Alonso A, Mathieu J, Clarencon D,et al. Ratpro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC Immunol 2004;5:3.
    [24]Aelst L, D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev 1997; 11:2295-2322.
    [25]Sakamoto T, Ishibashi T, Sugimoto K, Sakamoto N, Ohkawara H, Niinuma M et al. RhoA-dependent PAI-1 gene expression induced in endothelial cells by monocyte adhesion mediates geranylgeranyl transferase I and Ca2+ signaling. Atherosclerosis 2007; 193:44-54.
    [26]M. Hayashi, M. Sakata, T. Takeda, M. Tahara, T. Yamamoto, R. Minekawa et al. Hypoxia upregulates hypoxia-inducible factor-1 alpha expression through RhoA activation in trophoblast cells. J. Clin. Endocrinol Metab 2005; 90:1712-1719.
    [27]A. Woods, G. Wang, F. Beier.RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J.Biol. Chem 2005; 280:11626-11634.
    [28]Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 2000; 373:231-241.
    [29]Rogers MJ.New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 2003; 9,2643-2658.
    [30]Fisher, J. E., Rogers, M. J., Halasy, J. M., Luckman, S. P et al. Alendronate mechanism of action:geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci 1999; 96:133-138.
    [31]Sawaka, K., Morishige, K., Tahara, M., Kawagishi, R., Ikebuchi, Y., Tasaka. Alendronate inhibits lysophosphatidic acid-induced migration of human ovarian cancer cells by attenuating the activation of rho. Cancer Res 2002; 6:6015-6020.
    [32]Kae Hashimoto a, Ken-ichirou Morishige a, Kenjiro Sawada b, Masahiro Tahara a, Shoko Shimizu a, Seiji Ogata a et al. Alendronate suppresses tumor angiogenesis by inhibiting Rho activation of endothelial cells. Biochem Biophy Res Commun 2007; 354:478-484.
    [33]Laufs U, Liao JK. Targeting Rho in cardiovascular disease. Circ Res 2000; 87: 526-528.
    [34]Laufs U, Kilter H, Konkol C, Wassmann S, Bohm M, Nickenig G. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res 2002;53:911-920.
    [35]Wang YX, da Cunha V, Martin-McNulty B, Vincelette J, Li W, Choy DF, et al. Inhibition of Rho-kinase by fasudil attenuated angiotensin II-induced cardiac hypertrophy in apolipoprotein E deficient mice.Eur J Pharmacol 2005; 512:215-222.
    [1]Zhang, F. L., P. J. Casey. Protein prenylation:molecular mechanisms and functional consequences. Annu. Rev. Biochem 1996; 65:241-269.
    [2]Clerk A, Sugden PH. Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res 2000; 86:1019-1023.
    [3]Finkel T. Myocyte hypertrophy:the long and winding RhoA9d. J Clin Invest 1999; 103:1619-1620.
    [4]Klaus Scheffzek, Ilona Stephan, Ole N. Jensen, Daria Illenberge, Peter Gierschik The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI. Nature Structural Biology 2000; 7:122-126.
    [5]Aoki H, Izumo S, Sadoshima J. Angiotensin Ⅱ activates RhoA in cardiac myocytes:a critical role of RhoA in angiotensin Ⅱ-induced premyofibril formation. Circ Res 1998; 82:666-776.
    [6]Aikawa R, Komuro I, Nagai R, Yazaki Y. Rho plays an important role in angiotensin Ⅱ-induced hypertrophic responses in cardiac myocytes. Mol Cell Biochem 2000; 212:177-182.
    [7]AspenstromP. Effectors for the Rho GTPases. Curr Opin Cell Biol 1999; 11:95-102.
    [8]Thorburn J, Xu S, Thorburn A. MAP kinase-and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J 1997; 16:1888-1900.
    [9]Rajapurohitam V, Javadov S, Purdham DM, Kirshenbaum LA, Karmazyn M. An autocrine role for leptin in mediating the cardiomyocyte hypertrophic effects of angiotensin II and endothelin-1.J Mol Cell Cardiol 2006; 41:265-274.
    [10]Aoki H, Richmond M, Izumo S, Sadoshima J. Specific role of the extracellular signal-regulated kinase pathway in angiotensin II-induced cardiac hypertrophy in vitro. Biochem J 2000;347:275-284.
    [11]Li L,Hu SJ. Alterations in gene expression of series key enzymes in mevalonic acid pathway detected by RNA array in spontaneously hypertensive rats. Chinese Journal of Pathophysiology 2008;24:54-59.
    [12]Diez J, Panizo A, Hernandez M, Vega F, Sola I, Fortuno MA, Pardo J. Cardiomyocyte Apoptosis and Cardiac Angiotensin-Converting Enzyme in Spontaneously Hypertensive Rats. Hypertension 1997; 30:1029-1034.
    [13]Li L, Yi-Ming W, Li ZZ, Zhao L, Yu YS, Li DJ, Xia CY, Liu JG, Su DF. Local RAS and inflammatory factors are involved in cardiovascular hypertrophy in spontaneously hypertensive rats. Pharmacol Res 2008; 58:196-201.
    [14]Mizuno K, Tani M, Hashimoto S, Niimura S, Sanada H, Watanabe H, Ohtsuki M, Fukuchi S. Effects of losartan, a nonpeptide angiotensin Ⅱ receptor antagonist, on cardiac hypertrophy and the tissue angiotensin Ⅱ content in spontaneously hypertensive rats. Life Sci 1992; 51:367-374.
    [15]Lijnen P, Petrov V. Antagonism of the renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. Methods Find Exp Clin Pharmacol 1999; 21:363-274.
    [16]Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22:326-330.
    [17]Cingolani E, Ramirez Correa GA, Kizana E, Murata M, Cho HC, Marban E. Gene therapy to inhibit the calcium channel beta subunit:physiological consequences and pathophysiological effects in models of cardiac hypertrophy. Circ Res.2007 Jul 20;101:166-175.
    [18]Simpson P, Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Circ Res 1982; 50:101-116.
    [19]Kubota Y, Umegaki K, Kagota S, Tanaka N, Nakamura K, Kunitomo M, Shinozuka K. Evaluation of blood pressure measured by tail-cuff methods (without heating) in spontaneously hypertensive rats. Biol Pharm Bull 2006; 29:1756-1758.
    [20]Kokubo M, Uemura A, Matsubara T, Murohara T. Noninvasive evaluation of the time course of change in cardiac function in spontaneously hypertensive rats by echocardiography. Hypertens Res 2005; 28:601-660.
    [21]Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev 2001; 81:153-208.
    [22]Komuro I. Molecular mechanism of cardiac hypertrophy and development. Jpn Circ J 2001; 65:353-358.
    [23]Kim S, Iwao H. Molecular and Cellular Mechanisms of Angiotensin Ⅱ-Mediated Cardiovascular and Renal Diseases. Pharmacol Rev 2000; 52:11-34.
    [24]ugden PH. Signalling pathways in cardiac myocyte hypertrophy. Ann Med 2001; 33:611-622.
    [25]Ye Y, Hu SJ, Li L. Inhibition of farnesylpyrophosphate synthase prevents angiotensin Ⅱ-induced hypertrophic responses in rat neonatal cardiomyocytes: involvement of the RhoA/Rho kinase pathway. FEBS Lett 2009; 583:2997-3003.
    [26]Li L, Chen GP, Yang Y, Ye Y, Yao L, Hu SJ. Chronic inhibition of farnesyl pyrophosphate synthase attenuates cardiac hypertrophy and fibrosis in spontaneously hypertensive rats. Biochem Pharmacol 2010; 79:399-406.
    [1]Russell RG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, et al.. Bisphosphonates:an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci 2007; 1117:209-257.
    [2]Wu L, Zhu L, Shi WH, Zhang J, Ma D, Yu B. Zoledronate inhibits the proliferation, adhesion and migration of vascular smooth muscle cells. Eur J Pharmacol 2009; 602:124-231.
    [3]Ylitalo R, Oksala O, Yla-Herttuala S, Ylitalo P.Effect of clodronate (dichloromethy lene bisphosphonate) on the development of experimental atherosclerosis in rabbits. J Lab Clin Med 1994; 123:769-776.
    [4]Luckish A, Cernes R, Boaz M, Gavish D, Matas Z, Fux A et al. Effect of long-term treatment with risedronate on arterial compliance in osteoporotic patients with cardiovascular risk factors. Bone 2008; 43:279-283.
    [5]Montagnani A, Gonnelli S, Cepollaro C, Campagna MS, Franci MB, Pacini S, et al. Changes in serum HDL and LDL cholesterol in patients with Paget's bone disease treated with pamidronate. Bone 2003; 32:15-19.
    [6]Gozzetti A, Gennari L, Merlotti D, Salvadori S, De Paola V, Avanzati A,et al. The effects of zoledronic acid on serum lipids in multiple myeloma patients. Calcif Tissue Int 2008; 82:258-262.
    [7]Liang LI, Guo-ping CHEN, Yin YANG, Yang YE, Lei YAO, Shen-jiang HU. Chronic inhibition of farneyl pyrophosphate synthase attenuates cardiac hypertrophy and fibrosis in spontaneously hypertensive rats. Biochemical pharmacology 2010;79:399-406.
    [8]Javier DIEZ, Angel PANIZO, Marta HERNANDEZ, Francisco VEGA, Iosu SOLA, Maria Antonia FORTUNO,et al. Cardiomyocyte Apoptosis and Cardiac Angiotensin-Converting Enzyme in Spontaneously Hypertensive Rats. Hypertension 1997; 30:1029-1034.
    [9]Li L, Yi-Ming W, Li ZZ, Zhao L, Yu YS, Li DJ, et al.Local RAS and inflammatory factors are involved in cardiovascular hypertrophy in spontaneously hypertensive rats. Pharmacol Res 2008; 58:196-201.
    [10]Mizuno K, Tani M, Hashimoto S, Niimura S, Sanada H, Watanabe H,et al. Effects of losartan, a nonpeptide angiotensin II receptor antagonist, on cardiac hypertrophy and the tissue angiotensin II content in spontaneously hypertensive rats. Life Sci 1992; 51:367-374.
    [11]Nishikimi T, Tadokoro K, Akimoto K, Mori Y, Ishikawa Y, Ishimura K, et al. Response of adrenomedullin system to cytokine in cardiac fibroblasts-role of adrenomedullin as an antifibrotic factor. Cardiovasc Res 2005; 66:104-113.
    [12]He Y, Huang Y, Zhou L, Lu LM, Zhu YC, Yao T. All-trans retinoic acid inhibited angiotensin Ⅱ-induced increase in cell growth and collagen secretion of neonatal cardiac fibroblasts. Acta Pharmacol Sin 2006; 27:423-429.
    [13]Lattmann T, Ortmann J, Horber S, Shaw SG, Hein M, Barton M. Upregulation of endothelin converting enzyme-1 in host liver during chronic cardiac allograft rejection. Exp Biol Med (Maywood) 2006; 231:899-901.
    [14]Peinnequin A, Mouret C, Birot O, Alonso A, Mathieu J, Clarencon D, Agay D, Chancerelle Y, Multon E. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC Immunol52004;3.
    [15]Villarreal, NN Kim, GD Ungab, MP Printz and WH Dillmann.Identification of functional angiotensin Ⅱ receptors on rat cardiac fibroblasts. Circulation 1993; 88: 2849-2861.
    [16]Eghbali M. Cardiac fibroblasts:function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol 1998; 87:183-189.
    [17]Olson ER, Naugle JE, Zhang X, Bomser JA, Meszaros JG. Inhibition of cardiac fibroblast proliferation and myofibroblast differentiation by resveratrol Am J Physiol Heart Circ Physiol 2005; 288:H1131-H1138.
    [18]Eghbali M. Cardiac fibroblasts:function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol 1998;87 (Suppl 2):183-189.
    [19]Xu X, Pang J, Yin H, Li M, Hao W, Chen C,et al. Hexarelin suppresses cardiac fibroblast proliferation and collagen synthesis in rat. Am J Physiol Heart Circ Physiol 2007; 293:H2952-h2958.
    [20]ostal DE, Booz GW, Baker KM. Angiotensin II signaling pathways in cardiac fibroblasts:conventional versus novel mechanisms in mediating cardiac growth and function. Mol Cell Biochem 1996; 157:12-26.
    [21]Hashimoto K, Morishige K, Sawada K, Tahara M, Shimizu S, Ogata S, Sakata M, Tasaka K, Kimura T. Alendronate suppresses tumor angiogenesis by inhibitng Rho activation of endothelial cells. Biochem Biophys Res Commun 2007; 354:478-484.
    [22]Virtanen SS, Vaananen HK, Harkonen PL, Lakkakorpi PT. Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway.Cancer Res 2002; 62:2708-2714.
    [23]Lijnen PJ, Petrov VV. Role of intra cardiac renin-angiotensin aldosterone system in extracellular matrix remodeling. Methods Find Exp Clin Pharmacol 2003; 25: 541-564.
    [24]Lee AA, Dillmann WH, McCulloch AD, Villarreal FJ. Anoiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts J Mol Cell Cardiol 1995; 27:2347-2357.
    [25]Campbell SE, Katwa LC. Angiotensin Ⅱ stimulated expression of transforming g rowth factor-betal in cardiac fibroblasts and myofibroblasts.J Mol Cell Cardiol 1997; 29:1947-1958.
    [26]Lim, H. and Zhu, Y. Z. Role of transforming growth factor-β in the progression of heart failure. Cell Mol Life Sci 2006; 63:2584-2596.
    [27]Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS. Angiotensin Ⅱ stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta land endothelin-1 from fibroblasts. Cardiovasc Res 1998; 40:352-363.
    [28]Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H, et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy Proc Natl Acad Sci U S A 2001; 98:12283-12288.
    [29]Fischer TA, Ludwig S, Flory E, Gambaryan S, Singh K, Finn P, et al Activation of cardiac c-Jun NH(2)-terminal kinases and p38-mitogen-activated protein kinases with abrupt changes in hemodynamic load. Hypertension 2001;37:1222-1228.
    [30]Sano M, Fukuda K, Sato T, Kawaguchi H, Suematsu M, Matsuda S, et al.ERK and p38 MAPK, but not NF-kappaB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res 2001;89:661-669.
    [31]Kompa AR, See F, Lewis DA, Adrahtas A, Cantwell DM, Wang BH, et al.Long-Term but Not Short-Term p38 Mitogen-Activated Protein Kinase Inhibition Improves Cardiac Function and Reduces Cardiac Remodeling Post-Myocardial Infarction. J Pharmacol Exp Ther 2008;325:741-750.
    [32]Park JK, Fischer R, Dechend R, Shagdarsuren E, Gapeljuk A, Wellner M, et al. p38 mitogen-activated protein kinase inhibition ameliorates angiotensin II-induced target organ damage. Hypertension 2007; 49:481-489.
    [1]Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990; 343:425-430.
    [2]Horton JD. Sterol regulatory element-binding proteins:transcriptional activators of lipid synthesis. Biochem Soc Trans 2002; 30:1091-1095.
    [3]Weber LW, Boll M, Stampfl A. Maintaining cholesterol homeostasis:sterol regulatory element-binding proteins. World J Gastroenterol 2004; 10:3081-3087.
    [4]Hinson DD, Chambliss KL, Toth MJ, Tanaka RD, Gibson KM. Posttranslational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways. J Lipid Res 1997; 38:2216-2223.
    [5]Fisher JE, Rodan GA, Reszka AA.In vivo effects of bisphosphonates on the osteoclast mevalonate pathway. Endocrinology 2000;141:4793-4796.
    [6]Reilly JF, Matinez SD, Mickey G, Maher PA:A novel role for farnesyl pyrophosphate synthase in fibroblast growth factor-mediated signal transduction. Biochem J 2002;366:501-510.
    [7]Poulter CD, Rilling HC:The prenyl transfer reaction. Enzymatic and mechanistic studies of the 1-4 coupling reaction in the terpene biosynthetic pathway. Accounts Chem Res 1978; 11:307-313.
    [8]Holloway PW, Popjak G:The purification of 3,3 dimethylallyl and geranyl transferase and of isopentanyl pyrophosphate isomerase from pig liver. Biochem J 1967; 104:57-70.
    [9]Casey PJ. Mechanisms of protein prenylation and role in G protein function. Biochem Soc Trans 1995; 23,161-166.
    [10]Bonetti PO, Lerman LO, Napoli C, Lerman A. Statin effects beyond lipid lowering are they clinically relevant? Eur Heart J 2003;24:225-248.
    [11]Werner N, Nickenig G, Laufs U. Pleiotropic effects of HMG-CoA reductase inhibitors. Basic Res Cardiol 2002;97:105-116.
    [12]Halcox JPJ, Deanfield JE. Beyond the laboratory:clinical implications for statin pleiotropy. Circulation 2004; 109:Ⅱ-42-Ⅱ-48.
    [13]Istvan ES.Structural mechanism for statin inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Am Heart J 2002;144(6 Suppl):S27-S32.
    [14]Istvan E. Statin inhibition of HMG-CoA reductase:a 3-dimensional view.Atheroscler Suppl 2003;4:3-8.
    [15]Istvan ES, Deisenhofer J. The structure of the catalytic portion of human HMG-CoA reductase. Biochim Biophys Acta 2000;1529:9-18.
    [16]Lennernas H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences. Clin Pharmacokinet 1997;32:403-425.
    [17]Jones P, Kafonek S, Laurora I, Hunninghake D. Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES study). Am J Cardiol 1998;81: 582-587.
    [18]Jones PH, Davidson MH, Stein EA, et al. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR Trial). Am J Cardiol 2003;92:582-560.
    [19]Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia.West of Scotland Coronary Prevention Study Group. N Engl J Med 1995; 333:1301-1307.
    [20]Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels:results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998;279:1615-1622.
    [21]Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial Lipid Lowering Arm (ASCOT-LLA):a Multicentre randomised controlled trial. Lancet 2003; 361:1149-1158.
    [22]Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, et al. CARDS investigators. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS):multicenter randomised placebo-controlled trial. Lancet 2004;364:685-696.
    [23]Prosser LA, Stinnett AA, Goldman PA, et al. Cost-effectiveness of cholesterol-lowering therapies according to selected patient characteristics. Ann Intern Med 2000; 132:769-779.
    [24]Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease:the Scandinavian Simvastatin Survival Study (4S). Lancet 1994;344: 1383-1389.
    [25]Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996;335: 1001-1009.
    [26]Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels.The Long-Term Intervention with Pravastatin in Ischaemic Disease(LIPID) Study Group. N Engl J Med 1998;339:1349-1357.
    [27]Tonkin AM, Colquhoun D, Emberson J, et al. Effects of pravastatin in 3260 patients with unstable angina:results from the LIPID study. Lancet 2000;356: 1871-1875.
    [28]Shepherd J, Blauw GJ, Murphy MB, et al. PROspective Study of Pravastatin in the Elderly at Risk. Pravastatin in elderly individuals at risk of vascular disease (PROSPER):a randomised controlled trial. Lancet 2002; 360:1623-1630.
    [29]Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals:a randomised placebo-controlled trial. Lancet 2002; 360:7-22.
    [30]Shepherd J. Who should receive a statin these days? Lessons from recent clinical trials. J Intern Med 2006;260:305-319.
    [31]Bellosta S, Ferri N, Bernini F, et al. Non-lipid-related effects of statins. Ann Med 2000; 32:164-176.
    [32]Chan KK, Oza AM, Siu LL. The statins as anticancer agents. Clin Cancer Res 2003; 9:10-19.
    [33]Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C. Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 1995; 109:1337-1343
    [34]Borgquist S, Djerbi S, Ponten F, Anagnostaki L, Goldman M, Gaber A, Manjer J, Landberg G, Jirstrom K. HMG-CoA reductase expression in breast cancer is associated with a less aggressive phenotype and influenced by anthropometric factors. Int J Cancer.2008;123:1146-53.
    [35]Rogers MJ, Frith JC, Luckman SP, et al. Molecular mechanisms of action of bisphosphonates. Bone 1999; 24:73S-79S.
    [36]Swanson KM, Hohl RJ. Anti-cancer therapy:targeting the mevalonate pathway. Curr Cancer Drug Targets 2006; 6:15-37.
    [37]Fleisch H. Bisphosphonates in bone disease. From the laboratory to the patient, 4th edn. Academic Press, New York.2000.
    [38]Green JR, Rogers MJ. Pharmacologic profile of zoledronic acid:a highly potent inhibitor of bone resorption. Drug Dev Res 2002; 55:210-224.
    [39]Denoyelle C, Hong L, Vannier JP, Soria J, Soria C.New insights into the action of zoledronic acid in breast cancer cells by dual RhoA-dependent and-independent effects. Br J Cancer 2003;88:1631-1640.
    [40]Sawada K, Morishige K, Tahara M, et al. Alendronate inhibits lysophosphatidic acid-induced migration of human ovarian cancer cells by attenuating the activation of Rho. Cancer Res 2002; 62:6015-6020.
    [41]Coxon JP, Oades GM, Kirby RS, Colston KW. Zoledronic acid induces apoptosis and inhibits adhesion to mineralized matrix in prostate cancer cells via inhibition of protein prenylation. BJU Int 2004;94:164-170.
    [42]Russell RG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, et al.. Bisphosphonates:an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci 2007; 1117:209-57.
    [43]Nancollas GH, Tang R, Phipps RJ et al (2006) Novel insights intoactions of bisphosphonates on bone:differences in interactions with hydroxyapatite. Bone 38(5):617-627.
    [44]Maksymowych WP. Bisphosphonates for arthritis-A confusing rationale. J Rheumatol 2003; 30:430-433.
    [45]Wu L, Zhu L, Shi WH, Zhang J, Ma D, Yu B. Zoledronate inhibits the proliferation, adhesion and migration of vascular smooth muscle cells. Eur J Pharmacol 2009; 602:124-131.
    [46]Soltau J, Zirrgiebel U, Esser N, et al. Antitumoral and antiangiogenic efficacy of bisphosphonates in vitro and in a murine RENCA model Anticancer Res.2008; 28:933-41.
    [47]Price PA, Faus SA, Williamson MK. Bisphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorption. Arterioscler Thromb Vasc Biol 2001; 21:817-824.
    [48]A. Montagnani, S. Gonnelli, C. Cepollaro, et al. Gennari Changes in serum HDL and LDL cholesterol in patients with Paget's bone disease treated with pamidronate. Bone 2003; 32:15-9.
    [49]Gozzetti A, Gennari L, Merlotti D, et al.The effects of zoledronic acid on serum lipids in multiple myeloma patients. Calcif Tissue Int 2008; 82:258-862.
    [50]Guney E, Kisakol G, Ozgen AG, Yilmaz C, Kabalak T. Effects of bisphosphonates on lipid metabolism. Neuro Endocrinol Lett 2008; 29:252-255.
    [51]Luckish A, Cernes R, Boaz M, Gavish D, Matas Z, Fux A, Shargorodsky M. Effect of long-term treatment with risedronate on arterial compliance in osteoporotic patients with cardiovascular risk factors. Bone 2008; 43:279-283.
    [52]Andrea Montalvetti, Alexis Fernandez, John M. Sanders, Subhash Ghosh, Erin Van Brussel, Eric Oldfield,et al. Farnesyl Pyrophosphate Synthase Is an Essential Enzyme in Trypanosoma brucei. THE JOURNAL OF BIOLOGICAL CHEMISTRY 2003; 278:17075-17083.
    [53]Feng Jiang, Luping Yang, Xiaoyan Cai, Jomol Cyriac, Ishaiahu Shechter,Zhou Wang. Farnesyl diphosphate synthase is abundantly expressed and regulated by androgen in rat prostatic epithelial cells Journal of Steroid Biochemistry & Molecular Biology 2001;78:123-130.
    [54]Li J, Herold MJ, Kimmel B, Muller I, Rincon-Orozco B, Kunzmann V, et al. Reduced expression of the mevalonate pathway enzyme farnesyl pyrophosphate synthase unveils recognition of tumor cells by Vgamma9Vdelta2 T cells. J Immunol 2009; 182:8118-8124.
    [55]Mesa RA. Tipifarnib:farnesyl transferase inhibition at a crossroads.Expert Rev Anticancer Ther 2006; 6:313-319.
    [56]Feldman EJ. Farnesyltransferase inhibitors in myelodysplastic syndrome.Curr Hematol Rep 2005; 4:186-190.
    [57]Capell BC, Olive M, Erdos MR, Cao K, Faddah DA, Tavarez UL,et al. Afarnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci U S A. 2008; 105:15902-15907.
    [58]Work LM, McPhaden AR, Pyne NJ, Pyne S, Wadsworth RM, Wainwright CL. Short-term local delivery of an inhibitor of Ras farnesyltransferase prevents neointima formation in vivo after porcine coronary balloon angioplasty. Circulation 2001; 104:1538-1543.
    [59]Peterson YK, Kelly P, Weinbaum CA, Casey PJ. A novelproteingeranyl-geranyl-transferase-I inhibitor with high potency, selectivity, and cellular activity. J Biol Chem2006; 281:12445-12450.
    [60]El Oualid F, Cohen LH, van der Marel GA, Overhand M. Inhibitors of protein: geranylgeranyl transferases. Curr Med Chem2006;13:2385-2427.
    [61]Laufs U, Kilter H, Konkol C, Wassmann S, Bohm M, Nickenig G. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res 2002;53,911-920.
    [62]Peterson YK, Kelly P, Weinbaum CA, Casey PJ.A novel protein geranyl-geranyltransferase-I inhibitor with high potency, selectivity, and cellular activity. J Biol Chem 2006; 281:12445-12450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700