用户名: 密码: 验证码:
普通小麦倍半萜合成途径关键基因Tafps的鉴定和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚜虫是危害小麦生产的主要害虫之一,据统计,我国每年小麦蚜虫危害面积可达1667万公顷,造成减产15-30%,严重时可高达50%。近年来,由于全球气候变暖、耕作制度变化等因素,使麦蚜的繁殖能力和适应性显著增强,其危害日趋严重。目前,麦蚜防治以喷洒农药为主,但大量使用农药,不仅对人畜有害,而且造成严重的环境污染。培育抗虫小麦品种是防止蚜虫危害的最有效途径,但由于现有小麦种质资源中缺乏有效的抗蚜基因,抗性机制尚不明确,常规育种难以奏效。通过基因工程的方法创制小麦抗蚜新种质已成为目前研究的重要课题。
     倍半萜类化合物合成于MVA途径,在植物与植食性昆虫互作中发挥重要作用,参与植物的防御反应。法尼烯焦磷酸合成酶(farnesyl pyrophosphate synthase,FPS)是萜类化合物合成途径中的关键酶之一,其催化合成的产物FPP可在细胞质中通过MVA(Mevalonate pathway)途径作为[反]-β-法尼烯【(E)-β-farnesene,EβF】合成酶的底物。EβF是重要的倍半萜类化合物,是一种无色无味挥发物,是小麦麦长管蚜(Sitobion avenae Fabricius)、禾谷缢管蚜(Rhopalosi phum padiLinnaeus)、麦无网长管蚜(Metopolophium dirhodum Walker)和麦二叉蚜(Schizaphis graminumRondani)等蚜虫报警信息素的唯一成份,可以使蚜虫产生骚动、从植株上脱落,并吸引蚜虫天敌,有效控制蚜虫危害。研究发现,许多植物中含有EβF合成酶,能释放EβF,具有天然的蚜虫驱避特性。但小麦、棉花、大豆等重要农作物中,只含有FPS,但不含有EβF合成酶。因此,了解小麦中FPS的特性、分布与供应状况,通过调控和改良小麦中倍半萜类化合物代谢途径,创制释放蚜虫报警信息素的新一代抗蚜转基因小麦,具有重要意义和应用价值。本项目分离克隆了小麦Tafps基因,并对其序列结构特征、表达模式、酶活性及其对蚜虫的抗性等进行了研究。取得以下研究结果。
     1、小麦Tafps基因克隆、染色体定位及其结构特征分析:以普通小麦品种科农199为实验材料,采用同源克隆的方法,克隆得到6个法尼烯焦磷酸合成酶基因(Tafps-A1,Tafps-B1,Tafps-D1,Tafps-A2,Tafps-B2,Tafps-D2),分别定位于第三同源群(Tafps1)和第一同源群(Tafps2)染色体的长臂上。随机测序获得了Tafps1和Tafps2各成员的基因组DNA和编码序列全长,初步表明各基因分别具有3个拷贝。Tafps1各成员的gDNA均含11个外显子,10个内含子;而Tafps2各成员的gDNA均含12个外显子,11个内含子。Tafps1和Tafps2各成员内部相似性分别为99.59%和98.39%。Tafps-B1与拟南芥Atfps1和Tafps-B2与拟南芥Atfps2的相似性分别为61.13%和67.62%。Tafps-B1与水稻Osfps1和Tafps-B2与水稻Osfps2的相似性分别为87.98%和82.93%。对各成员进行生物信息学分析和预测,结果表明小麦Tafps基因分为两种同工型,具有2个异戊烯基转移酶功能域。
     2、小麦Tafps基因的表达模式分析:通过实时荧光定量PCR,对小麦科农199中Tafps1和Tafps2两个同工型表达特性进行分析表明两同工型在小麦中的表达具有时空特异性,在苗期、拔节期及成熟期,Tafps1在绿色器官(包括叶片、茎和颖壳)中表达量相对较高,Tafps2在非绿色器官(包括根、幼穗和种子)中表达量相对较高;抽穗期两基因表达趋势趋于一致。蚜虫咬食可诱导两基因表达量的变化。蚜虫咬食后,两基因在苗期的变化趋势相同,在根中表达量降低,在茎及叶片中表达量升高,其中,Tafps1的表达在叶片中显著升高(P<0.05)。抽穗期,蚜虫咬食后,Tafps1的表达在叶片(P<0.01)和茎(P<0.05)中的表达量显著升高,在幼胚中轻微升高,在颖壳中显著降低(P<0.05),根中轻微降低;Tafps2在颖壳(P<0.001)和叶片(P<0.05)中的表达量显著升高,在其余器官中均有不同程度的上升。推测Tafps基因与小麦对蚜虫侵害的应激抗性反应相关,具有防御反应诱导的表达特性。
     3、小麦Tafps基因的酶活性及亚细胞定位分析:在大肠杆菌中表达Tafps-B1和Tafps-B2基因,通过组氨酸标签分离纯化获得的目的蛋白,与前体化合物异戊基焦磷酸(isopentenylpyrophosphate, IPP)和香叶草基焦磷酸(geranyl pyrophosphate, GPP)一起进行体外催化反应,GC-MS分析去磷酸化后的产物,结果显示, TaFPS-B1和TaFPS-B2均可IPP和GPP形成法尼醇,证明Tafps-B1和Tafps-B2基因在原核细胞中具有FPP合成活性,但TaFPS-B1的活性较高,约为TaFPS-B2的两倍。采用PEG介导方法,分别将Tafps-B1和Tafps-B2与hGFP的融合基因,转化拟南芥原生质体。激光共聚焦显微镜观察表明,TaFPS-B1和TaFPP-B2与hGFP的融合蛋白出现在胞质中,进一步为其参与胞质中的MVA途径提供了佐证。
     4、小麦Tafps基因的功能分析:农杆菌介导的浸花法获得转Tafps-B1过表达拟南芥植株3棵,转Tafps-B2过表达植株1棵,转Tafps-B1Atfps1突变体拟南芥6棵,转Tafps-B2Atfps2突变体拟南芥植株3棵。GC-MS分析野生型、过表达、突变体以及互补表达拟南芥植株的挥发物。结果表明,与野生型拟南芥相比,苗期Tafps-B1和Tafps-B2过表达的拟南芥中倍半萜烯β-石竹烯(β-Caryophyllene)明显升高,转Tafps-B1拟南芥每株每天β-石竹烯的释放量为130.30ng,是野生型的5.5倍;转Tafps-B2拟南芥每株每天β-石竹烯的释放量为87.68ng,是野生型的3.7倍;与野生型相比,Atfps1拟南芥突变体、Atfps2拟南芥突变体中β-石竹烯的释放量分别降低46.5%和53.3%,说明fps基因控制倍半萜化合物的合成量。4通道嗅觉仪(4-way olfactometer bioassay)检测花期转基因拟南芥植株的挥发物对有翅桃蚜(Myzus pesicae)行为的影响,单因素检测实验结果表明,与野生型相比,Tafps-B1和Tafps-B2过表达拟南芥植株对蚜虫有明显的驱避作用(Tafps-B1,P<0.01; Tafps-B2,P<0.05);4通道嗅觉仪双选择实验结果表明,与野生型拟南芥相比,Tafps-B1过表达拟南芥植株对蚜虫有显著的驱避作用(P<0.05),Tafps-B2过表达的拟南芥对蚜虫亦有驱避作用但统计分析不显著。fps1和fps2突变体拟南芥对有翅桃蚜均有明显的吸引作用,而互补植株对蚜虫有微弱的驱避作用。以上结果表明,小麦Tafps与拟南芥fps具有相似的功能,小麦Tafps在拟南芥中过表达,提高了拟南芥对桃蚜的驱避性(抗性),Tafps1基因的效果显著优于Tafps2。
     为了近一步验证提高EβF合成酶的前体物质FPP是否能够提高EβF的释放量,将Tafps-B1和Tafps-B2过表达的拟南芥分别与转薄荷(Mentha x piperita)EβF合成酶基因拟南芥株系FS11-4.4进行杂交,后续的检测工作正在进行中。
Aphids (Aphididae) are major agricultural pests which cause significant yield losses of crop plantseach year by inflicting damage both through the direct effects of feeding and by vectoring harmful plantviruses. Each year, around62.5%of the26million hectares of the Chinese wheat growing area sufferedsevere aphid infestations, causing15-30%, and sometimes even as higher as50%substantial yieldlosses and great economic losses to the farmers. Along with the application of nitrogen fertilizer andelevation of atmospheric CO2concentration, aphid infestation becomes more serious. For many crops,insecticides provide a simple and effective strategy for aphid control. However, the application of suchchemicals is not desirable in the long term, because of the development of insecticide resistance and thepotential negative effects on non-target organisms, and the need for more sustainable agriculturalpractices with fewer external chemical inputs. Conventional breeding programs have been undertakenand considerable efforts have been expended in the search for aphid resistance in small grain germplasmworldwide. However, due to the complexity of plant-aphid interactions and the rapid development ofresistant pest biotypes, outbreak of aphids causing substantial losses are reported regularly. Breedersand growers are still struggling to find an efficient strategy for aphid control in wheat. Development ofaphid-resistant wheat through genetic engineering would be a good alternative strategy.
     Sesquiterpenoid produced from Mevalonate (MVA) pathway, is crucial in plant-herbivoreinteraction, involved in plant defensive responses. Farnesene pyrophosphate synthase (FPS) is the thekey enzyme in terpene biosynthetic pathway, whose catalytic product farnesene pyrophosphate (FPP) isthe substrate of (E)-β-farnesene synthase in MVA pathway.(E)-β-farnesene, a colorless, odorlessvolatile and one of the most important sesquiterpenoid, is the only component of alarm pheromone ofSitobion avenae Fabricius, Rhopalosi phum padi Linnaeus, Metopolophium dirhodum Walker andSchizaphis graminum Rondani, which could cause repulsion of aphids and also the attraction of naturalenemies and thus minimiz aphid infestation. Many plants contained the EβF synthase could release EβFand had the natural capacity of repellence to aphids. There is only FPS, but no EβF synthase, availiblein wheat, cotton, soybeans and other agronomic important crops, therefore, it was very valuable tounderstand the characteristics, distribution and supply situation of the FPS in the wheat and to create anew generation of genetically modified wheat which was aphid resistant and releasing aphid alarmpheromone, by regulation and improvement of the terpenoids metabolic pathways in wheat. In thisstudy, we isolated Tafps genes from common wheat for the first time, their sequence structure andexpression characteristics, enzyme catalytic activity, aphids’ resistance to the transgenic plants and soon were investigted thoroughly. The results are as following.
     1. Isolation, chromosome location and analyses on sequence structure of Tafps. Six FPP synthasegenes (Tafps-A1, Tafps-B1, Tafps-D1, Tafps-A2, Tafps-B2, Tafps-D2), which belong to two isoformswere isolated from common wheat variety Kenong199by homologous cloning for the first time. Themembers belong to the first isoform are assigned to the long arm of group3chromosomes, whereas the others belong to the second isoform were resided in the long arm of group1chromosomes. All thecDNA and genomic DNA of each gene were obtained, and three copies of each gene were predicted byrandomly sequencing. The similarity of each member of Tafps1and Tafps2was99.59%and98.39%,respectively. Genomic DNA of Tafps1contained11exons and10introns, and Tafps2contained12exons and11introns.The similarities of Tafps-B1and Atfps1, Tafps-B2and Atfps2was61.13%and67.62%, respectively. The similarity of Tafps-B1and Osfps1, Tafps-B2and Osfps2was87.98%and82.93%, respectively. Bioinformatics analysis and prediction results showed that wheat Tafps gene wasdivided into two isoforms, and had the typical two isopentenyl transferase functional domains.
     2. Analyses on the expression profiles of Tafps. Analyses of the expression profiles of the twoisoforms by real-time quantitative PCR indicated that the two isoforms expressed spatial and temporal,the expression levels of Tafps1were relatively higher in the green organs (including leaf, stem andglume) and the expression levels of Tafps2were relatively higher in the non-green organs (includingroot, influence and mature embryo) at the seeding, jointing and mature stage; whereas they remained thesame at earing stage. The expression levels of the two isoforms could be induced by aphids’ infestation.The expression levels of both genes was decreased in the root and increased in the leaf and stem atseeding stage with the level of Tafps1was significantly enhanced in the leaf(P<0.05) whereas that ofTafps2decreased in the roo(tP<0.01). At earing stage, the level of Tafps1was significantly increased inthe lea(fP<0.01)and the stem(P<0.05), a slightly increase in immature embryo, a significant decreasein glume(P<0.05)and a slightly decrease in the root after aphid infestation; the level of Tafps2wassignificantly enhanced in glume (P<0.001)and leaf(P<0.05) and a slight increase in the rest organsafter inoculation. Thus, it was speculated these genes was involved in the defensive response of wheatto aphid infestation.
     3. Analyses on enzyme catalytic activity and subcellular location of Tafps.After expression ofTafps-B1and Tafps-B2in protokaryon cell, TaFPS-B1and TaFPS-B2were purified by His-Tag andtheir catalytic activities were investigated by adding their substrates geranyl pyrophosphate (GPP) andisopentenyl pyrophosphate (IPP). After alkaline phosphatased, farnesol was detected by GC-MS, provedthe activity of farnesyl pyrophosphate synthase, with the activity of TaFPS-B1was about twice higherthan that of TaFPS-B2. After fusion Tafps-B1and Tafps-B2with GFP and transformed into Arabidopsismesophyll protoplasts induced by PEG, the fusion proteins hGFP with TaFPS-B1and TaFPS-B2weredetected in cytoplasm by confocal laser scanning microscope, corresponding with the fact that FPS isinvolved in the mevalonate (MVA) pathway in the cytoplasm.
     4. Functional analyses of Tafps in Arabidopsis. Three Tafps-B1and one Tafps-B2overexpressionplants, six Tafps-B1transgenic Atfps1mutants and three Tafps-B2transgenic Atfps2mutants wereobtained by floral dip method mediated with Agrobacterium. By contrast with wild-type Arabidopsis,β-Caryophyllene increased significantly in Tafps-B1and Tafps-B2transgenic Arabidopsis at seedingsatge. The emmison of β-Caryophyllene in Tafps-B1transgenic Arabidopsis was130.30ng per plant perday and5.5times higher than wild-type; the emmison of β-Caryophyllene in Tafps-B2transgenicArabidopsis was87.68ng per plant per day and3.7times higher than wild-type by GC-MS analysis. However, compared with wild-type, Atfps1mutants and Atfps2mutants decreased46.5%and53.3%seperately. These results indicated that fps was a key gene in the synthesis of sesquiterperen. Using the4-way olfactometer bioassay to detect the effects of the volatiles from transgenic Arabidopsis atflowering time on alate aphids (Myzus pesicae) behavior, the result of single factor experiment showedthat, in contrast with wild-type, transgenic Tafps-B1and Tafps-B2plants had significantly repellenteffect on aphids(Tafps-B1, P<0.01; Tafps-B2, P<0.05); two choice experiments of4-way olfactometershowed that compared with wild type Arabidopsis, Tafps-B1transgenic Arabidopsis had significantrepellent effect on aphids(P<0.05), Tafps-B2transgenic Arabidopsis also repelled aphids but notsignificant at statistical level. In addition, Atfps1and Atfps2mutants Arabidopsis were attracted to alateaphids and complementary plants showed faintly repellence to aphids. All the results demonstratedTafps has similar function as Atfps and over-expression of Tafps in Arabidopsis enhanced the repellenceto Myzus pesicae with Tafps1performed better than Tafps2.
     For further studies, crossings between transgenic Arabidopsis with Tafps-B1, Tafps-B2andtransgenic Arabidopsis with EβF synthase gene isolated from Mentha x piperita have been done todefine if the emission of EβF will be increased by over-expressing its substrate FPP.
引文
1.陈巨莲,倪汉祥,孙京瑞.主要次生物质对麦蚜的抗性阈值及交互作用.保护学报,2002,29(1):7-12.
    2.陈巨莲,倪汉祥,丁红建,孙京瑞.麦长管蚜全纯人工饲料的研究.中国农业科学,2000,33(3):54-59.
    3.陈新,李玲玲,吕慧贞,刘庆忠,张元湖.法呢基焦磷酸(FPP)的生物合成及其分子调控.生物技术通报,2007,(2):67-71.
    4.崔红,慕平利,李雪君,刘梦林.烟草fps转基因发状根的离体培养及其抗菌性.湖南农业大学学报(自然科学版),2008,34(4):422-425.
    5.段灿星,王晓鸣,朱振东.小麦种质对麦长管蚜的抗性鉴定与评价.植物资源遗传学报,2006,7(3):297-300.
    6.韩军丽,李振秋,叶和春,李国凤.青蒿高产株系001法呢基焦磷酸合酶基因的克隆、原核表达及酶活性测定.河北农业大学学报,2008,31(4):71-75.
    7.何水林,郑金贵,王晓峰,王燕华,许明,李斌莲,林明.植物次生代谢:功能、调控及其基因工程.应用与环境生物学报,2002,8(5):558-563.
    8.胡想顺,赵慧燕,Heimbach U., Thieme T.,李军,张宇红,刘佰明,李东鸿,胡祖庆.3个新引进小麦品种对麦长管蚜抗性的初步研究.西北植物学报,2004,24(7):1221-1226.
    9.冷平生,王天华,苏淑钗,蒋湘宁,王沙生.银杏黄酮苷和萜类内酯含量的季节变化.植物资源与环境学报,2001,10(3):15-18.
    10.李景娟,张正斌,李魏强,徐萍.六倍体小麦基因克隆方法研究进展.麦类作物学报,2007,27(2):349-353.
    11.李军,赵慧燕,李志刚,韩诗畴,安新城.不同小麦品种对麦长管蚜的抗性.昆虫知识,2007,44(4):509-513.
    12.李素娟,张志勇,王兴运,丁红建,倪汉祥,孙京瑞,程登发,陈巨莲.用模糊识别技术鉴定小麦品种(系)抗蚜性研究.植物保护,1998,24(5):15-16.
    13.李新岗,马养民,刘拉平,候慧波,马江平,肖飞.华山松球果挥发性萜类成分研究.西北植物学报,2005,25(10):2072-2076.
    14.梁辉,朱银峰,朱祯,孙东发,贾旭.雪花莲凝集素基因转化小麦及转基因小麦抗蚜性的研究.遗传学报,2004,31(2):189-194.
    15.刘长军,孟玉玲,侯嵩生,陈晓亚.棉花法呢基焦磷酸合酶克隆序列分析及其在种子发育过程中的表达特征.植物学报,1998,40(8):703-710.
    16.师彦平.单萜和倍半萜化学(天然产物化学丛书)[M].北京:化学工业出版社,2010,91-100
    17.童平和,朱希孟,曹雅忠,郭予元,胡毅,武豫清,邹德华.冬小麦品种抗蚜性田间鉴定研究初报.中国种业,1991,02:29-30.
    18.王莉,史玲玲,张艳霞,刘玉军.植物次生代谢物途径及其研究进展.武汉植物学研究,2007,25(5):500-50.
    19.王美芳,原国辉,陈巨莲,雷振生,吴政卿.麦蚜发生危害特点及小麦抗蚜性鉴定的研究.河南农业科学,2006,7:58-60.
    20.吴文君.植物化学保护实验技术导论.西安:陕西科学技术出版社,1988
    21.夏延斌.萜类和生物碱,食品化学[M].北京:中国农业出版社,2004
    22.夏云龙,杨奇华,萧红.小麦形态特征与抗麦长管蚜的关系研究.植物保护学报,1991,18(1):5-10.
    23.肖崇厚.中药化学[M].上海:上海科学技术出版社,1991,323-374.
    24.徐涛,孔垂华,胡飞.红蓟化感作用研究Ⅱ:挥发油对不同营养水平下植物的化感作用.应用生态学报,1999,10:748-750.
    25.许燕华,骆萍,卢山,贾军伟,蔡煜,周向军,林芝萍,陈晓亚.次生萜类生物合成的调控.中国科学基金,2000:197-199.
    26.闫凤鸣.化学生态学.//戈峰.现代生态学(第二版).北京:科学出版社,2008
    27.闫凤鸣,李松岗,许崇任,林昌善.玉米丁布对亚洲玉米螟的拒食作用及生长发育的影响.北京大学学报(理科版),1996,32(2):254-260.
    28.杨涛,曾英.植物萜类合酶研究进展.云南植物研究,2005,27(1):l-10.
    29.喻修道. EβF合成酶基因的克隆及功能分析[博士论文].北京:中国农业科学院,2010
    30.张长波,孙红霞,巩中军,祝增荣.植物萜类化合物的天然合成途径及其相关合酶.植物生理学通讯,2007,43(4):779-786.
    31.赵玉军,叶和春,李国风,陈大华,刘彦.优系青蒿法呢基焦磷酸合酶基因的克隆和酶学分析.科学通报,2003,48(2):162-166.
    32.郑光宇.基因工程防治蚜虫研究进展.喀什师范学院学报,2006,27(3):54-60.
    33. Adams J.B., McAllan J.V. Pectinase in the saliva of Myzus persicae (Sulz.)(Homoptera:Aphididae). Canadia Journal of Zoology,1956,34:541-543.
    34. Aharoni A., Giri A.P., Deuerlein S., Griepink F., de-Kogel W.J., Verstappen F.W.A., VerhoevenH.A., Jongsma M.A., SchwabW., Bouwmeester H.J. Terpenoid metabolism in wildtype andtransgenic Arabidopsis plants. Plant Cell,2003,15:2866-2884.
    35. Altpeter F., Diaz I., McAuslane H., Gaddour K., Carbonero P., Vasil I.K. Increased insectresistance in transgenic wheat stably expressing trypsin inhibitor CMe. Molecular Breeding,1999,5:53-63.
    36. Arumuganathan K., Earle E.D. Nuclear DNA content of some important plant species. PlantMolecular Biology Report,1991,9:208-218.
    37. Attucci S., Aitken S.M., Gulick P.J., Ibrahim R.K. Farnesyl pyrophosphate syntase from whitelupin: molecular cloning, expression, and purification of the expressed protein. Archives ofBiochemistry and Biophysics,1995,321(2):493-500.
    38. Banerjee S., Hess D., Majumder P., Roy D., Das S. The interactions of Allium sativum leafagglutinin with a chaperonin group of unique receptor protein isolated from a bacterialendosymbiont of the mustard aphid. Journal of Biological Chemistry,2004,279:23782-23789.
    39. Bhattarai K.K., Li Q., Liu Y., Dinesh-Kumar S.P., Kaloshian I. The Mi-1-mediated pest resistancerequires Hsp90and Sgt1. Plant Physiology,2007,144:312-323.
    40. Bhattarai K.K., Xie Q.G., Pourshalimi D., Younglove T., Kaloshian I. Coi1-dependent signalingpathway is not required for Mi-1-mediated potato aphid resistance. Molecular Plant-MicrobeInteractions,2007,20:276-282.
    41. Birch A.N.E., Geoghegan I.E., Majerus M.E.N., Mcnicol J.W., Hackett C., Gatehouse A.M.R.,Atehouse J.A. Tri-trophic interaction involving pest aphids. Predatory2-spot ladybirds andtransgenic potatoes expressing snowdrop lectin for aphid resistance. Molecular Breeding,1999,5:75-83.
    42. Birch R.G. Plant transformation, problems and strategies for practical application. Annual Reviewof Plant Physiology and Plant Molecular Biology,1997,48:297-326.
    43. Blackman R.L., Eastop V.F. Aphids on the World's Crops: An Identification and InformationGuide.(2nd eds) John Wiley&Sons, Chichester,2000:466.
    44. Blanchard L., Karst F. Characterization of a lysine-to-glutamic acid mutation in a conservativesequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae. Gene,1993,125:185-189.
    45. Bohlmann J., Croteau R. Diversity and variability of terpenoid defenses in conifers:moleculargenetics, biochemistry and evolution of the terpene synthase gene family in grand fir(Abiesgrandis). Novartis Found Symp,1999,223:132-145.
    46. Bohlmann J., Phillips M., Ramaehandiran V., Katoh S., Croteau R. cDNA cloning, characterization,and functional expression of four new monoterpene synthase members of the Tpsd gene familyfrom grand fir (Abiesgrandis).Arch Biochem Biophys,1999,368:232-243.
    47. Bones A.M., Rossiter J.T. The myrosinase glUCOSinohte system. its orgallization andbiochemistry. Physiologia Phntamm,1996,97:194-208.
    48. Bowers W.S., Nault L.R., Webb R.E., Dutky S.R. Aphid alarm pheromone: Isolation, identification,synthesis. Science,1972,177:1121-1122.
    49. Boyko E.V., Smith C.M., Thara V.K., Bruno J.M., Deng Y. The molecular basis of plant geneexpression during aphid invasion: wheat Pto-and Pti-like sequences are involved in interactionsbetween wheat and Russian wheat aphid (Homoptera: Aphididae). Journal of EconomicEntomology,2006,99:1430-1445..
    50. Brems D.N., Bruenger E., Rilling H.C. Isolation and characterization of a photoaffinity-labeledpeptide from the catalytic site of prenyltransferase. Biochemistry,1981,23;20(13):3711-3718.
    51. Bruce T.J.A., Birkett M.A., Blande J., Hooper A.M., Matin J.L., Khambay B., Prosser I., SmartL.E., Wadhams L.J. Response of economically important aphids to components of Hemizygiapetiolata essential oil. Pest Management Science,2005,61:1115-1121.
    52. Bryant J.P., Chapin F.S.III., Klein D.R. Carbon/nutrient balance of boreal plants in relation tovertebrate herbivory. Oikos,1983,40:357-368.
    53. Cai Q.N., Zhang Q.W., Cheo M. Contribution of indole alkaloids to Sitobion avenae (F.) resistancein wheat. Journal of Applied Entomology,2004,128:517-521.
    54. Campbell B.C., Jones K.C., Dreyer D.L. Discriminative behavioural responses by aphids to variousplant matrix polysaccharides. Entomologia Experimentalis et Applicata,1986,41,17-24.
    55. Cane D.E. Comprehensive Natural Products Chemistry. In: Cane D.E eds. Isoprenoid Biosynthesis,Oxford: Pergamon.1998.
    56. Chappell J. The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiology,1995,107:1-6.
    57. Chen A., Kroon P.A., Poulter C.D. Isoprenyl diphosphate synthases: Protein sequence comparisons,a phylogenetic tree, and predictions of secondary structure. Protein Science,1994,3:600-607.
    58. Chen A.J., Poulter C.D., Kroon P.A. Isoprenyl diphosphate synthases: Protein sequencecomparisons, a phylogenetic tree, and predictions of secondary structure. Protein Science,2008,3(4):600-607.
    59. Chen D.H., Liu C.J., Ye H.C., Li F.G., Liu B.L., Meng L.X., Chen X.Y. Ri-mediatedtransformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene forartemisinin production. Plant Cell Tissue and Organ culture,1999,57:157-162.
    60. Choi D.,Ward B.L.,Bostock R.M. Differential induction and suppression of potato3-hydroxy-3-methylglutaryl coenzyme a reductaae genes in response to Phytophthora infestans andto its elicitor araehidonic acid.Plant Cell,1992,4:1333-1344.
    61. Cooper W.R., Jia L., Goggin F.L. Acquired and R-gene-mediated resistance against the potatoaphid in tomato. Journal of Chemical Ecology,2004,30:2527-2542.
    62. Cornish K., Backhaus R.A. Rubber transferase activity in rubber particles of guayule.Phytochemistry,1990,29:3809-3813.
    63. Cornish K. The separate roles of plant cis and trans prenyl transferase in cis-1,4-polyisoprenebiosynthesis. European Journal of Biochemistry,1993,218:267-271.
    64. Crok J., Wildung M., Croteau R. Isolation and bacterial expression of a sesquiterpene synthasecDNA clone from peppermint (Mentha×piperita, L.) that produces the aphid alarm pheromone(E)-β-farnesene. Proc Natil Acad Sci USA,1997,94:12833-12838.
    65. Cunillera N., Arro M., Delourme D., Karst F., Boronat A., FerrerA. Arabidopsis thaliana containstwo differentially expressed farnesyl-diphosphate synthase genes. Journal of Biological Chemestry,1996,271(13):7774-7780.
    66. Cunillera N., Boronat A., Ferrer A. The Arabidopsis thaliana fps1gene generates a novel mRNAthat encodes a mitochondrial farnesyl-diphosphate synthase isoform. Journal of BiologicalChemistry,1997,272:15381-15388.
    67. Delourme D., Lacroute F., Karst F. Cloning of an Arabidopsis thaliana cDNA coding for farnesyldiphosphate synthase by functional complementation in yeast. Plant Molecular Biology,1994,26:1867-1873
    68. Dicke M. Local and systemic production of volatile herbivore-induced induced terpenoids:theirrole in plant-herbivore mutualism.Plant Physiology,1994,143:465-472.
    69. Dorschner K.W., Ryan J.D., Johnson R.C., Eikenbary R.D. Modification of host nitrogen levels bythe greenbug (Homoptera, Aphididae)-its role in resistance of winter wheat to aphids.Environmental Entomology,1987,16(4):1007-1011.
    70. Dutta I., Majumder P., Saha P., Ray K., Das S. Constitutive and phloem specific expression ofAllium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance intransgenic Indian mustard (Brassica juncea). Plant Science,2005,169,996-1007.
    71. Foster P.S., Denholm I., Thompson R. Bioassay and field-simulator studies of the efficacy ofpymetrozine against peach-potato aphids, Myzus persicae (Hemiptera: Aphididae), possessingdifferent mechanisms of insecticide resistance. Pest Management Science,2002,58:805-810.
    72. Gaffe J., Bru J.P., Causse M., Vidal A. Stamitti-Bert L., Carde J.P., Gallusci P., LEFPS1, a Tomatofarnesyl pyrophosphate gene highly expressed during early fruit development. Plant Physiology,2000,123:1351-1362.
    73. Gershenzon J, Croteau R. Terpenoids.In:Rosenthal G A eds.Herbivores,Their Interactions withSecondary Metabolis the Chemical Participants, Vo1.1C. New York: Academic Press, l991,165-219.
    74. Gershenzon J., Dudareva N. The function of terpene natural products in the natural world. NatureChemical Biology,2007,3(7):408-414.
    75. Goggin F.L., Shah G., Williamson V.M. Ullman D.E Developmental regulation of Mi-mediatedaphid resistance is independent of Mi-1.2transcript levels. Molecular Plant-Microbe Interactions,2004,17:532-536.
    76. Guenther A.B., Monson R.K., Fall R. Isoprene and monoterpene emission rate variability:Observations with eucalyptus and emission rate algorithm development. Journal of GeophysicalResearch,1991,96(D6):10799-10808.
    77. Guerrieri E., Poppy G.M., Powell W., Tremblay E., Pennacchio F. Induction and systemic releaseof herbivore-induced plant volatiles mediating in-flight orientation of Aphidius ervi. Journal ofChemical Ecology,1999,25:1247-1261.
    78. Hansen L.M. Effect of6-methoxybenzoxazolin-2-one (MBOA) on the reproduction rate of thegrain aphid (Sitobion avenae F.). Journal of Agricultural and Food Chemistry,2006,54:1031-1035.
    79. Harmel N., Létocart E., Cherqui A., Giordanengo P., Mazzucchelli G., Guillonneau F., De Pauw E.,Haubruge E. Francis FIdentification of aphid salivary proteins: a proteomic investigation of Myzuspersicae. Insect Molecular Biology,2008,17(2):165-174.
    80. Hodge S., Pope T.W., Holaschke M., Powell G. The effect of beta-aminobutyric acid on thegrowth of herbivorous insects feeding on Brassicaceae. Annals of Applied Biology,2006:148,223-229.
    81. Hu M.Y., Klocke J.A., Chiu S.F. Response of five insects to botanical insecticides,rhodojaponin-III.Journal of Economic Entomology,1993,86(3):706-711.
    82. Huber D.P.W., Philippe R.N., Godard K.A., Sturrock R.N., Bohlmann J. Characerization of fourterpene synthase cDNAs from mehyl jasmonateinduced Douglas-fir. Pseudotsuga menziesii.Phytochemistry,2005,66:1427-1439.
    83. Joly A., Edwards P.A. Effect of site-directed mutagenesis of conserved aspartate and arginineresidues upon farnesyl diphosphate synthase activity. Journal Biology Chemistry,1993,268:26983-26989.
    84. Kazutsuka S, Toshisuke I, Makoto M, Mitsue M, Naoki Y. Cloning of a cDNA that encodesfarnesyl diphosphate synthase and the blue-light-induced expression of the corresponding gene inthe leaves of rice plants. Biochimica et Biophysica Acta,1997,1350:240-246.
    85. Koyama T., Saito K., Ogura K., Obata S., Takeshita A. Site-directed mutagenesis of farnesyldiphosphate synthase; effect of substitution on the three carboxyl-terminal amino acids. CanadianJournal of Chemistry,1993,72:75-79.
    86. Koyama T., Tajima M., Sano H., Doi T., Koike-Takeshita A., Obata S., Nishino T., Ogura K.Identification of significant residues in the substrate binding site of Bacillus stearothermophilusfarnesyl diphosphate synthase. Biochemistry,1996,35,9533-9538.
    87. Lange B.M., Rujan T., Martin W., Croteau R. Isoprenoid biosynthesis: The evolution of twoancient and distinct pathways across genomes. Proc Natl Acad Sci USA,2000,97:13172-l3l77.
    88. Laskovics F.M., Poulter C.D. Prenyltransferase; determination of the binding mechanism andindividual kinetic constants for farnesyl pyrophosphate synthetase by rapid quench and isotopepartitioning experiments. Biochemistry,1981,20(7):1893-901.
    89. Laule O, Fiirholz A, Chang H.S, Zhu T, Wang X, Heifetz P.B, Gruissem W, Lange B.M. Crosstalkbetween cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. ProcNatl Acad Sci USA,2003,100(11):6866-6871.
    90. Lee P.C., Mijts B.N., Schmidt-Dannert C. Investigation of factors influencing production of themonocyclic carotenoid torulene in metabolically engineered Escherichia coli. App l MicrobiolBiotechnol,2004,65:538-546.
    91. Li C.P, Larkins B.A. Identification of a maize endosperm-specific cDNA encoding farnesylpyrophosphate synthetase. Gene,1996,171:193-196.
    92. Li Q., Xie Q.G., Smith-Becker J., Navarre D.A., Kaloshian I. Mi-1-mediated aphid resistanceinvolves salicylic acid and mitogen-activated protein kinase signaling cascades. MolecularPlant-Microbe Interactions,2006,19:655-664.
    93. Llusia J., Penuelas J. Seasonal patterns of terpene content and emission from seven Mediterraneanwoody spcies in field conditions. American Journal of Botany,2000,87:133-140.
    94. Madhusudhan V.V., Miles P.W. Mobility of salivary components as a possible reason fordifferences in the responses of alfalfa to the spotted alfalfa aphid and pea aphid. EntomologiaExperimentalis et Applicata,1998,86:25-39
    95. McMullen M.D., Byme P.F., Snook M.E., Wiseman B.R., Lee E.A., Widstrom N.W., Coe E.H.Quantitative trait loci and metabolic pathways. Proc Natl Acad Sci USA,1998,95:1996-2000.
    96. Michael D., Katrien D. Comparative genetics in the grasses. Proc Natl Acad Sci USA,1998,95:1971-1974.
    97. Miles P.W. Aphid salivary secretions and their involvement in plant toxicoses. Campbell R K,Eikenbary R.D.(eds). Aphid-plant genotype interactions. Elsevier, Amsterdam,1990:131-147.
    98. Miller B., Heuser T., Zimmer W. Functional involvement of a deoxy-D-xylulose5-phosphatereductoisomerase gene harboring locus of Synechococcus leopoliensis in isoprenoid biosynthesis.FEBS Letters,2000,481:221-226.
    99. Mittler T.E. Application of Artificial Feeding Techniques for Aphids,//Minks A.K., Harrewijn P.Aphids: Their Biology, Natural Enemies, and Control (vol.2B). Amsterdam: Elsevier,1998:145-170.
    100. Moloi M.J., van der Westhuizen A.J. The reactive oxygen species are involved in resistanceresponses of wheat to the Russian wheat aphid. Plant Physiology,2006,163,1118-1125.
    101. Mutti N.S., Park Y., Reese J.C., Reeck G.R. RNAi knockdown of a salivary transcript leading tolethality in the pea aphid, Acyrthosiphon pisum. Journal of Insect Science2006,6.38Availableonline: http://insectscience.org/6.38.
    102. Narita J.O., Gruissem W. Tomato hydroxymethylgutaryl-CoA reductase is required early in fruitdevelopment but not during repening.Plant Cell,1989,1:181-190.
    103. Nelson E.H., Matthews C.E., Rosenheim J.A. Predators reduce prey population growth by inducingchanges in prey behavior. Ecology,2004,85:1853-1858.
    104. Newman J.D., Chappell J. Isoprenoid biosynthesis in plant: carbon partitioning within thecytoplasmic pathway. Critical Reviews in Biochemistry and Molecular Biology,1999,34(2):95-106.
    105. Newton E., Bullock J.M. Bottom-up effects of glucosinolate variation on aphid colony dynamics inwild cabbage populations. Ecological Entomology,2009,34:614-623.
    106. Ohnuma S., Hirooka K., Hemmi H., Ishida C., Ohto C., Nishino T. Conversion of productspecificity of archaebacterial geranylgeranyl-diphosphate synthase. Identification of essentialamino acid residues for chain leghth determination of prenyltransferase reaction. Journal BiologyChemistry,1996,271:18831-18837.
    107. Olivier L.M., Krisans S.K. Peroxisomal protein targeting and identification of peroxisomaltargeting signals in cholesterol biosynthetic enzymes. Biochimica et Biophysica Acta,2000,1529,89-102.
    108. Owens M.K., Lin C-D., Taylor Jr. C. A., Whisenant S.G. Seasonal paterns of plant flammabilityand monoterpenoid content in Juniperus asshei. Journal Chemistry Ecology,1998,24:2115-2126.
    109. Pan Z.Q., Herickhoff L, Backhaus A.R. Cloning, characterization, and heterologous expression ofcDNAs for farnesyl diphosphate synthase from the Guayule Rubber plant reveals that thisprenyltransferase occurs in rubber particles. Archives of Biochemistry and Biophysics,1996,332(1):196-204.
    110. Peng Z., Miles P.W. Studies on the salivary physiology of plant bugs: function of the catecholaseof the rose aphid. Journal of Insect Physiology,1988,34:1027-1033.
    111. Prosser I.M., Adams R.J., Beale M.H., Hawkins N.D., Phillips A.L., Pickett J.A., Field L.M.Cloning and functional characterization of a cismuuroladiene synthase from black peppermint(Mentha×piperita) and direct evidence for a chemotype unable to synthesise farnesene.Phytochemistry,2006,67:1564-1571.
    112. Qureshi J.A., Michaud J.P. Interactions among three species of cereal aphids simultaneouslyinfesting wheat. Journal of Insect Science2005:5.13. Available online:http://insectscience.org/5.13
    113. Rahbe Y., Deraison C., Bonade-Bottino M., Girard C., Nardon C., Jouanin L. Effects of thecysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance ofMyzus persicae on OC-I expressing transgenic oilseed rape. Plant Science,2003,164:441-450.
    114. Ramirez C.C., Villagra C.A., Niemeyer H.M. Increased xylem ingestion and decreased phloemingestion in the aphid Acyrthosiphon pisum (Hemiptera: Aphididae) parasitised by Aphidius ervi(Hymenoptera: Braconidae). European Journal of Entomology,2006,103:263-265.
    115. Ribeiro A.P.O., Pereira E.J.G., Galvan T.L., Picanco M.C., Picoli E.A.T., da Silva D.J.H., FariM.G., Otoni W.C. Effect of eggplant transformed with oryzacystatin gene on Myzus persicae andMacrosiphum euphorbiae. Journal of Applied Entomology,2006,130:84-90.
    116. Rodríguez-Concepción M, Boronat A. Elucidation of the methylerythritol phosphate pathway forisoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics.Plant Physiology,2002,130(3):1079-1089.
    117. Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis inbacteria, algae and higher plants. Natural Product Reports,1999,16:565-574.
    118. Saito A., Rilling H.C. The formation of cyclic sesquiterpenes from farnesyl pyrophosphate byprenyltransferase. Archives of Biochemistry and Biophysics,1981,208:508-511.
    119. Sakata H., Hashimoto Y. Should aphids attract or repel ants? Effect of rival aphids and extrafloralnectaries on ant-aphid interactions. Population Ecology,2000,42:171-178.
    120. Sandstrom J., Telang A., Moran N.A. Nutritional enhancement of host plants by aphids-acomparison of three aphid species on grasses. Journal of Insect Physiology,2000,46:33-40.
    121. Sanmiya K., Ueno O., Matsuoka M., Yamamoto N. Localization of farnesyl-diphosphate synthasein chloroplasts. Plant Cell Physiology,1999,40:348-354.
    122. Schmidt-Darmert C., Umeno D., Arnold F.H. Molecular breeding of carotenoid biosyntheticpathways.Nature Biotechnology,2000,18(7):50-753.
    123. Shen B., Zheng Z., Dooner H.K. A maize sesquiterpene cyclase gene induced by insect herbivoryand volicitin: characterization of wild-type and mutant alleles. Proc Natl Acad Sci USA,2000,97(26):14808-14812.
    124. Solomons T.W.G., Fryhle C.B. Organic Chemistry;8th eds.; John Wiley&Sons: Hoboken, NJ,
    2004.
    125. Starks M.C., Back K., Chappell J., Noel J.P. Structural basis for cyclic terpene biosynthesis bytobacco5-epi-aristolochene synthase. Science,1997,277:1815-1820.
    126. Staudt M., Seufen G. Light-dependent emission of monoterpenes by holm oak (Quercus ilex L.).Nat Urwissenschaf Ten,1995,82:89-92.
    127. Stoger E., Williams S., Christou P., Down R.E., Gatehouse J.A. Expression of the insecticidallectin from snowdrop (Galanthus nivalis agglutinin: GNA) in transgenic wheat plants: Effects onpredation by the grain aphid Sitobion avenae. Molecular Breeding,1999,5:65-73.
    128. Stout M.J., Workman K.V., Bostock R.M., Duffey S.S. Specificity of induced resistance in thetomato, Lycopersicon esculentum. Oecologia,1998,113:74-81.
    129. Sylvie A., Susan M.A., Patrick J.G., Ragai K.I. Farnesyl pyrophosphate synthase from white lupin:molecular cloning, expression, and purification of the expressed protein. Archives of Biochemistryand Biophysics,1995,321(2):493-500
    130. Sylwia G., Bogumil L., Wieslaw O. Effect of low and high-saponin lines of alfalfa on pea aphid.Journal of Insect Physiology,2006,52,737-743.
    131. Urbanska A., Tjallingii W.F., Dixon A.F.G., Leszczynski B. Phenol oxidizing enzymes in the grainaphid's saliva. Entomologia Experimentalis et Applicata,1998,86:197-203.
    132. Vishnudasan D., Tripathi M.N., Rao U., Khurana P. Assessment of nematode resistance in wheattransgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Research,2005,14(5):665-675.
    133. Wang C.W., Oh M.K., Liao J.C. Engineered isopernoid pathway enhances astaxanthin productionin Escherichia coli. Biotechnology and Bioengineering,2000,62(2):235-241.
    134. Wang J.R., Yan Z.H., Wei Y.M., Nevob E., Baumc B.R., Zheng Y.L. Molecular characterizationof dimeric alphaamylase inhibitor genes in wheat and development of genome allele specificprimers for the genes located on chromosome3BS and3DS. Journal of Cereal Science,2006,43:360-368.
    135. Wang K., Ohnuma S.I. Chain-length determination mechanism of isoprenyl diphosphate synthasesand implications for molecular evolution. Trends in biochemical Sciences,1999,24(1):445-451.
    136. Wientjens W.H.J.M., Lakwijk A.C., Van Der Marel T. Alarm pheromone of grain aphids.Experientia,1973,29:658-660.
    137. Will T., Tjallingii W.F., Thonnessen A., van Bel A.J.E. Molecular sabotage of plant defense byaphid saliva. Proc Natl Acad Sci USA,2007,104:10536-10541.
    138. Yamaura T, Tanaka S., Tataba M. Participation of phytochrome in the photoregulation of terpenoidsynthesis in thyme seedlings.Plant Cell Physiology,1991,32:603-608.
    139. Yan F.M., Bengtsson M., Witzgall P. Behavioral response of female codling moth, Cydiapomonella, to apple volatiles. Jounal of Chemistry Ecology,1999,25(6):1343-1351.
    140. Yao J.H., Zhao X.Y., Qi H.X., Wan B.L., Chen F., Sun X.F., Yu S.Q., Tang K.X. Transgenictobacco expressing an Arisaema heterophyllum agglutinin gene displays enhanced resistance toaphids. Canadian Journal of Plant Science,2004,84:785-790.
    141. Yazaki K, Matsuoka H, Shimomura K, Bechthold A., Sato F. A novel dark-inducible Protein,LeDI-2, and its involvement in root-specific secondary metabolism in Lithospermumerythrorhizon.Plant Physiology,2001,125:1831-1841.
    142. Yu X.D., Jones H.D., Ma Y.Z., Wang G.P., Xu Z.S., Zhang B.M., Zhang Y.J., Ren G.W., PickettJ.A., Xia L.Q.(E)-β-Farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco(Nicotiana tabacum). Functional&Integrative Genomics,2012,12(1):207-213.
    143. Yu Y., Wei Z. Increased oriental armyworm and aphid resistance in transgenic wheat stablyexpressing Bacillus thuringiensis (Bt) endotoxin and Pinellia ternate agglutinin (PTA). Plant CellTissue and Organ culture,2008,94(1):33-44.
    144. Zhang Q.H., Birgersson G., Zhu J., Lofstedt C., Lofqvist J., Schlyter F. Leaf volatiles from nonhostdeciduous trees: variation by tree species, season and temperature, and electrophysiological activityin Ips typographus. Journal of Chemistry Ecology,1999,25:1923-1943.
    145. Zhao L.Y., Chen J.L., Cheng D.F., Sun J.R., Liu Y., Tian Z. Biochemical and molecularcharacterizations of Sitobion avenae induced wheat defense responses. Crop Protection,2009,28(5):435-442.
    146. Zook M., Hohn T., Bonnen A., Tsuji J., Hammerschmidt R. Characterization of nove1sesquiterpenoid biosynthesis in tobacco expressing a funga1sesquiterpene synthase. PlantPhysiology,1996,112:311-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700