用户名: 密码: 验证码:
多氯联苯在毫米级根际微域中的消减行为及生物响应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多氯联苯(Polychlorinated biphenyls)是环境中普遍存在的具有代表性的一类重要持久性有机污染物(Persistant organic pollutants, POPs),在土壤环境中不断积累,严重危胁着土壤的生产和生态功能、农产品质量和人类健康。防治和修复多氯联苯污染、保障土壤环境和农产品安全、以实现土壤资源的可持续利用是当前全球关注的焦点。植物修复是利用植物-微生物在根际环境降解有机污染物的复合生物修复技术,是目前最具潜力的土壤生物修复技术之一。研究植物修复多氯联苯的根际响应机制及其在根际微域中的降解作用机理,将为针对性地拟定经济高效的土壤PCBs污染防治和修复的实用技术提供基础理论依据。
     本论文以多氯联苯为目标污染物,首先优化、确立了土壤环境中PCBs的提取-净化-分离的分析方法,并在此基础上采用多隔层根箱法和磷脂脂肪酸(PLFAs)技术开展了离根表不同距离微域中PCBs降解效应的研究;从根际微生物、根系分泌物角度研究了黑麦草修复PCBs污染的根际响应机制;采用溶液培养的手段收集黑麦草根系分泌物,研究了模拟根际环境条件下PCBs的降解以及微生物的响应;最后,就黑麦草对PCBs的吸收、积累和体内运输以及植物体内解毒酶的响应进行了探讨。主要研究结果如下:
     (1)以Aroclor1242为目标污染物,分别对土壤样品中的分析条件进行了优化,研究了萃取溶剂、温度、时间等萃取条件对多氯联苯回收效率的影响,建立了超声萃取-气相色谱质谱法测定土壤中多氯联苯的分析方法。采用正己烷/丙酮(v/v=1/1)混合液作为萃取溶剂,萃取最佳温度为35℃,萃取时间为30 min,在此条件下多氯联苯Aroclor1242的平均加标回收率在81.4-90.2%之间,相对标准偏差为2.8-3.8%。采用湿法填柱、20ml正己烷作为淋洗溶剂,有效去除了萃取液中的干扰物质。优化了测定土壤中PCBs的色谱、质谱条件,最终实现了Aroclor1242不同同系物之间的有效分离。
     (2)采用改进的多隔层三室根箱法,通过尼龙撩网插片的控制,对根际土壤根室,距离根表1 mm、2 mm、3 mm、4 mm和5 mm的近根际,以及>5 mm远根际的微域进行划分。Aroclor 1242的根际消减行为存在距离根表不同距离远近的差异,在8mg/kg(低浓度)和16mg/kg(高浓度)两个污染水平下均呈现出一致的趋势,即近根际>根室>远根际;Aroclor1242的最大消减水平发生在距离根表3mm处,而不是距离根表最近的根室和1、2 mm处,表现出根际效应的污染物消减特性,有别于传统植物营养学中发现的营养因子根际梯度递减效应;不同氯含量的PCBs表现出不同的消减效率,研究发现低氯联苯,尤其是二氯联苯表现出较高的降解效率。作为土壤中重要活性物质DOC在不同PCBs污染水平下有不同的响应,高污染水平下DOC含量明显低于对照和低浓度污染水平。
     (3)借助土壤学现代发展起来的微生物鉴定技术-PLFAs (Phospholipid fatty acids)技术,围绕PCBs根际特异消减行为的土壤微生物学作用机制,系统深入研究了根际微域中特异性根分泌物诱导的土壤微生物群落结构的微空间演变特征。研究发现,受到黑麦草生长及根系分泌物的影响,微生物群落结构在毫米级微域内发生规律性变化,其在诱导PCBs快速消减方面起着决定性的作用。在种植物的处理中,单个PLFA i16:0,16:0 N alcohol,18:0(10Me), i16:1, a15:0, i14:1,14:020H,18:1ω9c,a17:0,14:0 3OH,i14:0,a16:0,16:1ω5c与Aroclor1242的消减呈显著正相关(p<0.05)。对不同PCBs污染浓度水平下微生物群落结构的研究表明,16 mg/kg高浓度污染水平下,真菌种群受到激发,真菌PLFAs较对照、低浓度处理显著增加(p<0.05),这可能是Aroclor1242作为碳源,被真菌利用所致。单体PLFA i16:1在黑麦草处理和对照处理中对Aroclor 1242的消减都有较大的贡献,这一发现解释了在未种植物处理中Aroclor1242消减的原因之一,进一步证明在受PCBs污染的自然土壤中,某些微生物对多氯联苯的自然消减发挥着重要的作用。
     (4)以邻位和对位取代氯的PCB7(24-CB)为研究对象,研究了其在黑麦草根际环境中24-CB的降解、黑麦草体内的运输以及植物体内抗氧化系统(SOD,POD)的响应。45天的盆栽实验结果表明,在两种土壤中,黑麦草根际对24-CB在土壤中的消减均有显著的促进作用。由初始浓度的30±0.5mg/kg分别减少到3.43 mg/kg和2.09 mg/kg。植株根部和地上部分也均有24-CB的检出,并且根部24-CB富集量远远高于植株地上部分。说明从土壤吸收到植株体内的24-CB主要富集在植物根部,只有少量的24-CB能够转移到地上部分。植物吸收不是土壤中PCBs减少的主要原因。24-CB胁迫显著影响黑麦草体内活性氧清除系统,在有机质含量不同的两种土壤中表现有所差异。淋溶土处理中,POD活性较对照处理显著增加,说明在适度的24-CB胁迫下,黑麦草可激发其自身的防御体系;松软土中与未受24-CB胁迫的对照比较,POD在污染胁迫下没有显著变化。SOD活性在两种土壤处理中也表现出不同的响应。因此土壤类型差异,尤其是有机质也是影响24-CB生物有效性、最终影响到植物对其的修复效率的重要因素之一。
     (5)采用水培法收集黑麦草根系分泌物,将其添加在2345-CB污染的土壤中,模拟根际环境条件,研究了根系分泌物对2345-CB污染土壤的修复效果。根系分泌物的引入激发了土壤中微生物群落结构的明显变化,好氧微生物受到了抑制,而厌氧微生物,特别是甲烷氧化菌和硫酸盐还原菌大量繁殖,进而影响到2345-CB的降解速率和降解途径。根系分泌物的添加在短期内显著提高了2345-CB的消减速率,随着培养时间的延长,根系分泌物对其消减的影响逐渐减弱。此外研究发现,在2345-CB的消减途径中,主要表现为还原脱氯作用,发生在间位(meta-)和对位(para-)位点的脱氯,从而导致了邻位234-CB,245-CB,25-CB的大量积累。
Polychlorinated biphenyls (PCBs), a class of typical POPs (Persistent Organic Pollutants), are widely accumulated in the soil environment. Soil contamination with PCBs poses a great threat to the production and ecological function of soil, the food quality and human health due to their widespread occurrence, persistence in soil ecosystems, carcinogenic, mutagenic and not easy degradable properties. Phytoremediation is a relatively novel approach to remove organic contaminants from soils by plants, rhizosphere microorganisms and root exudates. Investigations of the environmental behavior of PCBs in soils, including the residue, dissipation and the controlling key factors, seem urgent and effective.
     Firstly, a method for detecting PCBs residue in soils from the extraction, cleanup to the final detection, was modified and investigated. Based on the fast, accurate, high sensitivity method, the degradation of PCBs in the rhizosphere of the ryegrass and the corresponding responses, including soil enzyme and microbial structure were studied. A special-designed rhizobox and a novel method of phospholipid fatty acids (PLFAs) were used in this research. Rhizo environment by the addition of root exudates was simulated and dissipation of PCBs in soils was studied. The adsorption, transfer and accumulation of PCBs from soils to plants and the detoxification enzymes in ryegrass to 24-CB were investigated in the study. The main conclusions are as following:
     (1) The ultrasonic extraction was used for the extraction of PCBs residue in soil sample. The influence factors of solvents, temperature, and time on the extraction efficiency of were discussed. The results indicated that the optimal analytical conditions of solvent, temperature, and time were hexane-acetone (v:v=1:1),35℃and 30min respectively. The spike standard recoveries rates were between 81.4 and 90.2%, relative standard deviation was 2.8 to 3.8%. Florisil column (wet and dry filled column) for purification and separation were used. The results demonstrated that wet filled column was useful and effective. And the optimal parameters for GC-MS were modified and established.
     (2) A special-designed rhizobox experiment was conducted in the greenhouse. The ryegrass seedlings were grown for 135 days in soils spiked with Aroclor 1242 at concentrations of 8 and 16mg/kg soil to investigate rhizosphere effects on the dissipation of PCBs. The soil in the rhizobox was divided into six separate compartments at various distances from the root surface. Changes in Aroclor 1242 concentration with increasing distance from the root compartment of rhizobox were then assessed. In the treatment of 8 mg/kg, the Aroclor 1242 degradation gradients observed in the rhizobox of planted treatments appeared to be highest at the 3 mm zone layer, then at 2,4,1 and 5 mm sequentially. Thus the greatest decrease in Aroclor 1242 concentration could be achieved here because 3 mm zone represents balance between microbial activities and root exudates availability. The trend observed in the high spiked level was similar. The dissipation gradient followed the order:near rhizosphere>root compartment>far-rhizosphere soils zones. The results also showed that different congeners with different chlorine atoms had the various dissipation rates and the PCBs with two chlorine atoms appeared high degradation rates.
     (3) Further investigations were conducted using phospholipid fatty acids (PLFAs) profiles to follow the millimeter spatial response of the soil microbial community with the purpose to illustrate the mechanism of dissipation gradients of Aroclor 1242 in the rhizosphere of ryegrass (Lolium perenne L). The highest concentration of total PLFAs also occurred at 3 mm from the root zone in planted soils. Bacteria (cyl7:0,16:0), gram positive bacteria (a15:0, i16:1, a17:0) and actinomycete (18:2ω6,9c) were significantly higher in planted soils than in unplanted soils. Furthermore, individual PLFAs (i16:0,16:0 N alcohol,18:0(10Me), i16:1, a15:0, i14:1,14:02OH,18:1ω9c, a17:0,14:03OH, i14:0, a16:0,16:lω5c) were strongly correlated with the Aroclor 1242 degradation rates (%) (p<0.05) in planted treatments, whereas individual PLFAs i16:1,12:03OH,15:0, a15:0 had significant correlations with the Aroclor 1242 degradation rates (%) (p<0.05) in unplanted soils. In particular, individual PLFAs i16:1 had strong correlations with Aroclor 1242 degradation both in treatments with and without ryegrass.
     (4) PCB 7 (24-CB) was selected as the target pollutant, the dissipation rate in rhizosphere soils, the adsorption, transfer and accumulation of 24-CB from soils to plants, and the detoxification enzymes to in ryegrass 24-CB were conducted in this research. Two different soils which contain different DOM content were selected in this experiment. The results showed that ryegrass was able to absorb 24-CB from soils, and only very small amount could be transferred to the overground part. We found that the transfer of 24-CB in plants was quite limited. The 24-CB by ryegrass was mainly accumulated in root. The uptake and accumulation of 24-CB was not the main reason which induced the dissipation of 24-CB concentration. The physiological response related to the 24-CB metabolism in ryegrass was also investigated. We found that SOD and POD appeared different responses in two types of soils. We speculated that DOM played the key role on the 24-CB of bioavailability in this study, further impacted the detoxification enzymes in ryegrass.
     (5) The remediation effects and mechanisms of root exudates on rhizo-remediation in 2345-CB-spiked soils were studied in a simulated rhizo environment. The addition of root exudates improved the fast dissipation of 2345-CB at the very beginning of the experiment. Then the dissipation rates became quite slow with the increase of the time. The PLFAs profile indicated that the aerobic microbes were inhibited while the anaerobic microbes were stimulated, especially the methane oxidizing bacteria and sulfate reducing bacteria biomass. Our reports indicated that ortho-, meta-, para-dechlorination exhibited different sequence and optima. Chlorines at the position of meta-and para-were removed, result to the accumulation of 234-CB, 245-CB,25-CB.
引文
Abraham WR, Nogales B, Golyshin PN, Dietmar HP, Kenneth NT.2002. Poly chlorinated biphenyl-degrading microbial communities in soils and sediments. Curr. Opin. Microbiol, 5:246-253.
    Abramowicz DA, Brennan MJ, Van Dort HM, Gallagher EL.1993. Factors influencing the rate of polychlorinated biphenyl dechlorination in Hudson River Sediments. Environ. Sci. Technol, 27:1125-1131.
    Abramowicz DA.1990. Aerobic and anaerobic biodegradation of PCBs:A Review. Crit. Rev. Biotech,10:241-25.
    Ahmed M, Focht DD.1973. Degradation of polychlorinated phenyls by two species of Achromobacter. Can. J. Microbiol,19:47-52
    Alder AC, Haggblom MM, Oppenhelmer SR, Young LY.1993. Reductive dechlorination of polychlorinated-biphenyls in anaerobic sediments. Environ. Sci. Technol,27:530-538.
    Alkorta I, Garbisu C.2001. Phytoremediation of organic tontaminants in soils. Bioresour. Technol, 79:273-276.
    Anderson TA, Coats JR.1994. Bioremediation through rhizosphere technology [M]. Publisher: American Chemistry Society, Washington D.C.
    Anderson TA, Gunthrie EA, Walton BT.1993. Bioremediation in the rhizosphere. Environ. Sci. Technol,27:2630-2636.
    Anew AM, John WG.2000. Ectomycorrhizas-extending the capabilities of rhizosphere remediations? Soil Biol.Biochem,32:1475-1484
    Aprill W, Sims RC.1990. Evaluation of the use prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere,20:253-265.
    Asada K.2000.The water-water cycle as an alternative photon and electron sinks. Philosophical transactions of the royal society of London series B:Biological.Sciences, 355(1402):1419-1431.
    Baah E, Anderson TH.2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based technique. Soil Biol.Biochem,35:955-963.
    Baath E.1989. Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil poll,47:335-379.
    Bakker MI, Toll J, Kolloffel C.2000. Atmospheric deposition of SOCs to plants. Am. Chem.Sym.Ser,16:218-236.
    Banks MK, Lee E, Schwab AP.1999. Evaluation of dissipation mechanisms for benzo[a]pyrene in the rhizosphere of tall fescue. J. Environ. Qual,28:294-298.
    Barthlott W, Neinhuis C.1997. Purity pf the sacred lotus or escape from contamination in biological surfaces. Planta,202:1-2.
    Binet P, Portal JM, Leyval C.2001. Appliication of GC-MS to the study of anthracene disappearance in the rhizosphere ryegrass. Org. Geochem,32:217-222.
    Borjia J, Taleon DM, Auresenia J.2005. Polychlorinatedbiphenyls and their biodegradation. Process Biochem,40:1999-2013.
    Borjia J, Taleon DM, Auresenia J, Gallardo S.2005. Polychlorinated biphenyls and their biodegradation. Process Biochem,40:1999-2013.
    Bossio DA, Scow KM, Gunapala N, Graham KJ.1998. Determinants of soil microbial communities:effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol,36(1):1-12.
    Bossio DA, Scow KM.1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol,35:265-278.
    Briggs GG, Bromilow RH, Evans AA.1982. Relationship between lipophilicity and root uptake and translacation of non-ionized chemicals by barley. Pestic Sci,13:495-504.
    Briggs GG, Bromilow RH.1983. Relationship between lipophilicity and the distribution of non-ionized chemicals by barley following uptake by the roots. Pestle Sci,14:492-500.
    Brigmon RL, Anderson TA, Fliermans CB.1999. Methanotrophic bacteria in the rhizosphere of trichloroethylene-degrading plants. Int. J. Phytoremediation,1(3):241-253.
    Bruce FP. 2001. Phytoremediation of contaminated soil and ground water at hazardous waste sites. Ground water Issue, EPA/540/S-01/500.
    Buckley EH.1982. Accumulation of airbone polychlorinated biphenyls in foliage. Science, 216:520-522.
    Burken JG, Schnoor JL.1996. Phytoremediation:plant uptake of atrazine and role of root exudates. J. Environ. Eng,122:958-963.
    Burken JG, Schnoor JL.1997. Uptake and metabolism of atrazine by poplar trees. Environ. Sci. Technol,31:1399-1406.
    Canada DC, Gegnier FE.1976. Isotope ratios as a characteristic selection technique for Mass Chromatography. Chromatog. Sci,14(3):149-154.
    Carmichael LM, Christman RF, Pfaender FK.1997. Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils. Environ. Sci. Technol,31:126-132.
    Chang BV, Liu WG, Yuan SY.2001. Microbial dechlorination of three PCB congeners in river sediment. Chemosphere,45:849-856.
    Chang H, Lee J, Roh S,.Kim SR, Min KR, Kim CK, Kim EG, Kim Y.1992. Molecular cloning and characterization of catechol 2,3-dioxygenase from biphenyl polychlorinated biphenyls degrading bacteria. Biochem. Biophys. Res. Commun,187(2):609-614.
    Chavez FP, Gordillo F, Jerez CA.2006. Adaptive responses and cellular behavior of biphenyl-degrading bacteria toward polychlorinated biphenyls. Biotechnol. Adv,24:309-320.
    Chekol T, Vough LR, Chaney RL.2004. Phytoremediation of polychlorinated biphenyl-contaminated soils:the rhizosphere effect. Environ.Int,30:799-804.
    Chiou CT, Sheng G Y, Manes M.2001.A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ.Sci.Technol,35(7):1437-1444.
    Collins C, Fryer M, Grosso A.2006. Plant uptake of non-ionic organic chemicals. Environ.Sci.Technol,40:45-52.
    Compell CD. Grayston SJ.1997. Use of rhizosphere carbon source in sole carbon source tests to discriminate soil microbial communities. JMicrobiol.Meth,30:33-41.
    Cornelissen G, Rigterink H, Ferdinandy MMA, Paul CM.1998. Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ.Sci. Technol,32:966-970.
    Curl EA, Truelove B,1986. The rhizosphere. Springer-Verlag:Berlin, pp.288.
    Ding K, Luo Y, Liu S.2002. Remediation of phenanthrene contaminated soil by growing Lolium multiflorum Lam. Soils,34 (4):233-236.
    Dinkelaker B, Romheld V, Marschner H.1989. Citric acid excretion and precipitation of calcium citratein rhizosphere of white lupin (Lupinusalbus L). Plant Celland Environ,12:285-292.
    Dong XC, Wang N, Wang SL, Zhang XW, Fan ZJ.2004. Synthesis and application of molecularly imprinted polymer on selective solid-phase extraction for the determination of monosulfuron residue in soil. J. Chromatogr. A,1057:13-19.
    Dunnivant FM, Eizerman AW, Jurs PC, Mohamed NH.1992. Quantitative structure property relationship for aqueous solubilities and Henry's law constants of polychlorinated biphenyls. Environ. Sci. Technol,26:1567-1573.
    Dunnivant FM, Jardine PM, Taylor DL, John FM.1992. Cotransport of cadium and hexachlorobiphenyl by dissolved organic carbon through columns containing aquifer materials. Environ. Sci. Technol,26:360-368.
    EPA8270C. Semivolatile organic compounds by Gaschromatography/Mass Spectrometry (GC-MS)
    Eric JJ, Corinne L.2003. Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soil and impact of Arbuscular mycorrhiza. Environ. Sci. Technol, 37(11):2371-2375.
    Etsuko K, Tsukasa M, Shyoji M, Masahiko T.2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ. Exp. Bot,55:110-119.
    Fafa F, Silvia G, Zanaroli G.2003. Anaerobic biodegradation of weathered polychlorinated biphenyls (PCBs) in contaminated sediments of Porto Marghera (Venice Lagoon, Italy). Chemosphere,53:101-109.
    Farkas GL, Stahmann A.1996. On the nature of change in peroxidase isoenzymes in bean leave in tomato plants of south bean mosaic virus. Phytopathology,56:669-677.
    Ferro AM, Sim RC, Bugbee B.1994. Hycrest wheatgrass accelerates the degradation of pentachlorophenol in soil. J. Environ. Qual,23:272-279.
    Field JA, Sierra-Alvarez R.2008. Microbial transformation and degradation of polychlorinated biphenyls. Environ. Pollut,155(1):1-12.
    Fismes J, Perrin GC, Empereur BP.2002. Soil to root transfer and translication of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soil. J.Environ. Qual, 31:1649-1656.
    Fletcher JS, Hedger RS.1995. Release of phenols by plant roots and their potential importance in biorereme diation. Chemsphere,31:3000-3016.
    Gao JP, Carrison AW, Hochamer,.Mazur CS, Wolfe NL.2000. Uptake and phytotransformation of o,p'-DDT and p,p'-DDT by axenically cultivared aquatic plants. J. Agr. Food Chem. 48:6121-6127.
    Gao Y, Ren L, Ling W, Gong S, Sun B, Zhang Y.2010. Desorption of phenanthrene and pyrene in soils by root exudates. Bio. Technol,101(4):1159-1165.
    Gao YZ, Ling WT, Wang MH.2006. Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. Chemosphere,63(9):1560-1567.
    Gao YZ, Zhu LZ.2003. Phytoremediation and its models for organic contaminated soils. J. Environ. Sci,15:302-310.
    Gao YZ, Zhu LZ.2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere,55(9):1169-1178.
    Gibert ES, Crowly DE.1998. Repeated application of carvone-induced bacteria to enhance biodegradation of poly chlorinated biphenyls in soil.Appl. Microbiol. Biotechnol,50:489-494.
    Graham RD.1988. Genotypic differences in tolerance to manganese deficiency. Zinic in soil and plants. Dordrecht:Kluwer Academic publishers.78-85.
    Graham TL.1991. Flavonoid and isoflavonoid distribution in developing soybean seeding tissues and in seed and root exudates. Plant Physiol.95:594-603.
    Grayston SJ, Vaughan D, Jones D.1997. Rhizosphere carbon flow in trees, in comparison with annual plants:the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol,5:29-56.
    Green JC, Bartels GL, Warren, Warren-HicksWJ.1998. Protocols for short-term toxicity screening of hazardous waste sites. US Environmental Protection Agency. EPA/600/3-88/029.
    Giinther T, Dornberger U, Fritsche W.1996. Effects of ryegrass on biodegradation of hydrocarbon in soil. Chemosphere,33:203-209.
    Haby PA, Crowley DE.1996. Biodegradation of 3-chlorobenzoate as affected by rhizodeposition and selected carbon substrates. J. Environ. Qual,25:304-310.
    Harms H, Langebartels C.1986. Standardized plant cell suspension test systems for an ecotoxicologic evaluation of the metabolic fate of xenobiotics. Plant Sci,5:157-165.
    He Y, Xu JM, Tang CX, Wu YP.2005. Facilitation of pentachlorophenol degradation in the rhizosphere of ryegrass(Lolium perenne L.). Soil Biol. Biochem,37:2017-2024.
    Herbert B, Bertsch P, Novak J.1993. Pyrene sorption by water-soluble organic carbon. Environ. Sci.Technol,27 (2):398-403.
    Hill TCJ, Mcpherson EF, Harris JA, Birch P.1993. Microbial biomass estimated by phospholipid phosphate in soils with diverse microbial communities. Soil Biol. Biochem,25:1779-1786.
    Hinsinger P, Gilkes R J.1996. Mobilization of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur. J. Soil Sci, 47:533-544.
    Hinsinger P, Plassard C, Tang CX, Benoit J.2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints a review. Bio. Fer. Soils, 33:265-278.
    Horstmann M, McLachlan MS.1998. Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atomospheric Environ,32:1799-1809.
    Howsam M, Jones KC, Ineson P.2000. PAHs associated with the leaves of three decidupus tree species-concentrations and profiles. Environ. Pollut,108:413-424.
    Iwatal Y, Gunther FA, Westlake WE.1974. Uptake of a PCB (Aroclor 1254) from soil by carrots under field conditions. Bull. Environ. Contam. Toxicol,11:523-528.
    Jay JB, Jodi RS.1995. Biodegradation of phenol,24-DCP,and 245-T in field-collected rhizosphere and nonrhizosphere soils. J. Environ.Qual,24:782-785.
    Jencova V, Strnad H, Chodora Z, Ulbrich P, Hickey WJ, Paces V.2004. Chlorocatechol catabolic enzymes from Achromobacter xylosoxidans A8. Int. Biodeterior. Biodegradation,54:175-181.
    Jim AF, Reyes SA.2008. Microbial transformation and degradation of poly chlorinated biphenyles. Environ. Pollut,155:11-12.
    John AB.1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science,228:1434-1436.
    Joner EJ, Corgie SC, Amellal N.2002. Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Bio. Biochem,34(2):859-864.
    Joner EJ, Johansen A, Loibner AP, Cruz MA, Szolar OH, Portal JM, Lewal C.2001. Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environ. Sci.Technol,35 (13):2773-2777.
    Joner EJ, Magid J, Gahoonia TS, Jakobsen I.1995. P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis sativus L.). Soil Bio.Biochem,27:1145-1151.
    Kan AT, Fu G, Hunter MA, Tomson MB.1997. Irreversible adsorption of naphthalene and tetrachlorobiphenyl to Lula and surrogate sediments. Environ. Sci. Technol,31:2176-2185.
    Kantachote D.2001. Resistance of microbial populations in DDT-contaminated and uncontaminated soils. App.Soil Ecol,16:85-90.
    Ke L, Wong TWY, Wong AHY, Tam NFY.2003. Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings. Chemosphere Environmental and Public Health Management,52(9):1581-1591.
    Keinanen MM, Korhonen LK, Lehtola MJ, Ilkka TM, Pertti JM, Terttu V, Merja HS.2002. The microbial community structure of drinking water biofilms can be affected by phophorus availability. Appl. Environ.Microbiol,68:434-439.
    Kim YB, Park KY, Chung Y, Keun CO, Buchanan BB.2004. Phytoremediation of anthracene contaminated soils by different plant species. J. Plant. Biol,47(3):174-178.
    Kirka JL, Klironomosb JH, Hung LJ, Lee H, Trevors JT.2005.The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ. Pollut,133(3):455-465.
    Kitis M, Kilduff JE, Karanfil T.2001. Isolation of dissolved organic matter (DOM) from surface waters using reverse osmosis and its impact on the reactivity of DOM to formation and speciation of disinfection by-products. Water Res,35:2225-2234.
    Kohl SD, Rice JA.1998. The binding of contaminants to humin:a mass balance. Chemosphere,36 (2):251-261.
    Kong CH, Wang P, Zhao H,Xu XH, Zhu YD.2008. Impact of allelochemical exuded from allelopathic rice on soil microbial community. Soil Bio. Biochem,40:1862-1869.
    Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Sasek V.2001. PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere,43:207-215.
    Lal R, Saxena DM.1982. Accumulation, metabolism and effects of organochlorine insecticides on microorganisms. Microbiol.Re,46:95-127.
    Landdi L, Valori F, Ascher J, Renella G, Falchini L, Nannipieri P.2006. Root exudates effects on the bacterial communities, CO2 evolution,nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Bio. Biochem,38:509-516.
    Lechevalier, MP.1997. Lipids in bacterial taxonomy-a taxonomist's view. Cri.Re. Microbiol.5: 109-210.
    Lee D, Farmer W, Aochi Y.1990. Sorption of napropamide on clay and soil in the presence of dissolved organic matter. J. Environ. Qual,19(15):567-573.
    Leigh M, Fletcher J, Fu X, Frances JS.2002. Root turnover:An important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ.Sci.Technol, 36(7):1579-1583.
    Li H, Luo YM, Song J, Wu LH, Christie.2006. Degradation of benzo[a]pyrene in an experimentally contaminated paddy soil by vetiver grass (Vetiveria zizanioides). Environ. Geochem.H,28:183-188.
    Li M, Wu CY.2007. Effects of several soil biological factors on soil nutrients. Chinese. J. Soil. Sci, 38(1):43-46.
    Liang C, Fujinuma R, Balser TC.2008. Comparing PLFA and amino sugars for microbial analysis in an Upper Michigan old growth forest. Soil Bio. Biochem,40(8):2063-2065.
    Lichtenstein EP.1959. Absorption of some chlorinated hydrocarbon insecticides from soils into various crops. J. Agric. Food Chem,7:430-433.
    Liste HH, Felgentreu D.2006. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol,31:43-52.
    Liu H S, Song GH, Li FM.2002. The roles of root exudation on the rhizosphere nutrient and rhizosphere microorganisms. Acta.Bot.Boreal.Occident.Sin.22(3):693-702.
    Luo L, Zhang S, Shan X, Zhu Y.2006. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils. Chemosphere,63(8):1273-1279.
    Macalady JL, Fuller ME, Scow KM.1988. Effects of metamsodium fumigation on soil microbial activity and community structure. J. Environ. Qual,27:54-63.
    Magee B, Lion K, Lemley A.1991. Transport of dissolved macromolecules and their effect on the transport of phenanthrene in porous media. Environ. Sci. Technol,25(2):323-331.
    Mars A E, Kingma J, Kaschabek SR, Walter R, Dick BJ.1999. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of P seudom onas putida GJ 31. J. Bacterial,181:1309-1318.
    Marshner H, V Romheld,I Cakmak.1995. Mineral Nutrition of Higher Plants. Academic Press, London.
    Master ER, Lai VV, Kuipers B, William RC, William WM.2002. Sequential anaerobic-aerobic treatment of soil contaminated with weathered Aroclor 1242. Envrion. Sci. Technol, 36:100-103.
    Mattina M JI, Lannucci BW, Musante C.2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ.Pollut,124:375-378.
    Mclachlan MS.1996. Bioaccumulation of hydrophobic chemicals in agricultural food chains. Environ. Sci. Technol,30:252-259.
    Megharaj M, Kantachote DSI, Naidu R.2000. Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ. Pollut,109:35-42.
    Meredith ML, Hites RA.1987. Poly chlorinated biphenyls accumulation in tree bark and wood growth rings. Environ. Sci. Technol,21:709-712.
    Miya RK, Firestone MK.2000. Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass. J. Environ.Qual,29:584-592.
    Miya RK, Firestone MK.2001. Enhanced phenanthrene biodegradation in soils by slender oat root exudates and root debris. J. Environ.Qual,30:1911-1918.
    Monteith JL, Unsworth MH.1990. Principles of environmental physics 2nd Edition. Edward Arnold London.
    Moore TR, Souza W de, Koprivnjak JK.1992. Control on the sorption of dissolved organic carbon by soils. Soil Sci,142:120-129.
    Muratova A, Pozdnyakova N, Golubev S, Wittenmayer L, Makarov O, Merbach W, Turkovskaya O.2009. Oxidoreductase activity of sorghum root exudates in a phenanthrene contaminated environment. Chemosphere,74(8):1031-1036.
    Myers RT, Zak DR, White DC, Peacock A.2001. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci. Soc. Am. J,65: 359-367.
    Nannipieri P, Bollag JM.1991.Use of enzyme to detoxify pesticide-contaminated soils and waters. J. Environ. Qual,20:510-517.
    Natarajan MR, Wu WM, Wang Henry.1998. Dechlorination of spiked PCBs in lake sediment by anaerobic microbial granules. Wat. Res,32(10):3013-3020.
    Neinhuis C, Barthlott W.1997. Characterisation and distribution of water-repellent, self-cleaning plant surfaces. Ann.Bot,79:667-677.
    Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP. 1997.Uptake and transformation of trichloroethylene by hybrid poplar. Environ. Sci. Technol,31:1062-1067.
    Nichol TD.1997. Rhizosphere microbial populations in contaminated soils. Water.air.soil, pollu, 95:165-176.
    Norby RJ, Neill EG, Gregory Hood W, Luxmoore RJ.1987.Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Oxford. J, 3(3):203-210.
    Odete G, Carlos V.2001. Evidence for polychlorinated biphenyls dechlorination in the sediments of Sado Estuary, Portugal. Mar. Pollut. Bull,42 (6):453-461.
    Oida T, Barr JR, Kimata K, McClure PC, Lapeza CR, Hosoya K, Ikegami T, Smith C, Patterson DG, Tanaka N.1999. Photolysis of polychlorinated biphenyls on octadecylsilylated silica particles. Chemosphere,39(11):1795-1807.
    Palekar LD, Maruya KA, Kosta JE.2003. Dehalogenation of 2,6-dibromobiphenyl and 23456-pentachlorobiphenyl in contaminated estuarine sediment. Chemosphere,53:593-600.
    Parrish ZD, Banks MK, Schwab AP.2004. Effectives of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int. J. phytoremedia,6(2):119-137.
    Paterson S, Mackay DD, Shiu WY.1990. Uptake of organic chemicals by plants:a review of processes, correlationsand models. Chemosphere,20:297-331.
    Patryk O, Stanisaw B.2005. Polycyclic aromatic hydrocarbons content in shoots and leaves of Willow (Salix viminalis) cultivated on the Sewage Sludge-Amended Soil. Water. Air. Soil. Pollut,168:1-4
    Polder M, Hulzebos E, Jafer D.1995.Validation of models on uptake of organic chemicals by plant roots. Environ. Toxicol. Chem,14:1615-1623.
    Ponder F, Tadros M.2002. Phospholipid fatty acids in forest soil four years after organic matter removal and soil compaction. Appl. Soil. Ecol,19:173-182.
    Quensen JF, Boyd SA, Tiedje JM.1990. Dechlorination of 4 commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl. Environ. Microbiol, 56:2360-2369.
    Quensen JF, Mousa MA, Boyd SA, Thomas S, Kenneth F, John PG.1998. Reduction of arylhydrocarbon receptor-mediated activity of polychlorinated biphenyl mixtures due to anaerobic microbial dechlorination. Environ.Toxicol. Chem,17:806-813.
    Quensen JF, Tiedge JM, Boyd SA.1988. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science,242:753-754.
    Quensen JF, Tiedje JM, Boyd SA.1988. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science,242:752-754
    Rauret G, Llaurado M, Tent J, Rigol A, Alegre LH, Utrillas MJ.1994. Deposition on holm oak leaf surfaces of accidentally released radionuclides. Sci. Total. Environ,157:7-16.
    Reddym BR, Sethanathan N.1983. Mineralization of parathion in the rice rhizosphere. Appl. Environ. Microbial,45:826-829.
    Rentz A, Alvarez P JJ, Schnoor JL.2005. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates:implicatons for phytoremediation. Environ. Pollu,136:477-484.
    Rice JA.2001. Humin. Soil Science,166(11):848-857.
    Rovira AD Foster RC Martin JK.1979. Origin,nature and nomenclature of the organic materials in the rhizosphere. In:Harley JC, Scott-Russell R eds. The soil-root interface. London:Academic Press.
    Ruiz-Aguilar GML, Fernandez-Sanchez JM, Rodriguez-Vazquez R, Poggi Varaldo H.2002. Degradation by white rot fungi of high concentrations of PCB extratcted from a contaminated soil. Adv. Environ. Res,6:559-568.
    Sawhney BL, Hawkin L.1984. Plant contamination by PCBs from amended soils. J.food. protect, 47:232-236.
    Sayer GS, Shon M, Colwell RR.1977. Growth of an estuarine pseudomonas sp. on polychlorinated phenyl. Microb. Ecol,3:241-255.
    Schmidt IK, Ruess L, Baath E, Anders M, Flemming E, Jonasson S.2000. Long-term manipulation of the microbes and microfauna of two subartic heaths by addition of fungicide, bactericide, carbon and fertilizer. Soil Bio. Biochem,32:707-720.
    Schnoor J L, Light LA, Mccutcheno SC, Wolfe NL, Laura HC.1995. Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol,29:318-323.
    Schroll R, Bierling B, Cao G, Dorfler, Lahaniati M, Langenbach T, Scheunert I, Winkler R.1994. Uptake of organic chemicals from soil by agricultural plants. Chmosphere,28:297-303.
    Seheunert I.1985. Environmental modeling for priority setting among existing chemicals. Proceedings GSF Workshop, Munich,279-298.
    Shi WM, Chino M, Youssef RA, Satoshi M, Seiichi T.1988. The occurrence of mugineic acid in the rhizosphere soil of barley plant. Soil Sci. plant Nutr,34:585-592.
    Siciliano DS, Germida JJ.1999. Enhanced phytoremediation of chlorobenzoates in rhizosphere soil. Soil Bio. Biochem,31:299-305.
    Simonich SL, Hites RA.1995. Organic pollution accumulation in vegetation. Environ. Sci. Technol,29:2905-2913.
    Smiley RW, Cook RJ.1973. Relationship between takeoff of wheat and rhizosphere pH in soil fertilized with ammonium vs.nitrate nitrogen. Phytopothol,63:882-890.
    Smillie RH, Waid JS.1986. Australia wide monitoring of airbone polychlorinated biphenyls (PCBs) using Eucalyptus foliage. Search,17:216-219.
    Smith KEC, Jones KC.2000. Particles and vegetation:implications for the transfer of particle-bound organic contaminants to vegetation. Sci. Total Environ,246:207-236.
    Spittler Thomas M.1984. Filed measurement of polychlorinated biphenyls in soil and sediment using a portable gas chromatograph. ACS. Symp. Ser.37-42.
    Strattom Charles L, Sosebee, Jackson B.1976. PCB and PCT contamination of the environment near sites of manufacture and use. Environ. Sci. Technol.13:229-233.
    Strek HJ, Weber JB.1982. Behaviour of polychlorinated biphenyls (PCBs) in soils and plants. Environ. Pollut,28,291-312.
    Suresh B, Sherkhane PD.2005. Uptake and degradation of DDT by hairy root cultures of Cichorium intybu sand Brassica juncea. Chemosphere,61 (9):1288-1292
    Susan CW, Kevin CJ.1993. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs):A review. Environ.Pollut,81(3):229-249.
    Susarla S, Medina VF, McCutcheon SC.2002. Phytoremediation:An ecological solution to organic chemical contamination. Ecol. Engineer,18(5):647-658.
    Topp E, Scheunert L, Attar A, Korte F.1986. Factors affecting the uptake of 14C-labelled organic chemical by plants from soil. Ecotoxicol. Environ. Saftety,11:219-228.
    Toyama T, Yu N, Kumada H, Sei L, Ike M, Fujita M.2006. Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrrhiza and bacterial in its rhizosphere. J. Bio. Bioengineer,101(4):346-353.
    Trapp S, Mcfarlane JC.1995. Plant contamination modeling and simulation of Organic Chemical Process. Lewis London.
    Turpeinen R, Kairesalo T, Haggblom M M.2004. Microbial community structure and activity in arsenic-, chromium-, and copper-contaminated soils. FEMS Microbiol.Ecol,47(1):39-50.
    Van Dort HM, Bedard DL.1991. Reductive ortho and meta dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms. Appl. Environ. Microb,57:1576-78.
    Van Dort MH, Bedard DL.1991. Reductive ortho-and metadechlorination of a polychlorinated biphenyl congener by anaerobic microorgarlisms. Appl. Environ. Microb,57 (5):1576-1578.
    VanVleet ES, Quinn JG.1979. Early diagenesis of fatty acids and isoprenoid alcohols in esturine and coastal sediments. Geochim. Cosmochim.Acta, (43):289-303.
    Velikova V, Yordanov I, Edreva A.2000. Oxidative stress and some antioxidant systems in acid rain-treated bean-plants-protective role of exogenous polyamines. Plant Sci,151:59-66.
    Vestal J R, White D C.1989. Lipid analysis in microbial ecology:quantitative approaches to the study of microbial community. Bio. Science,39:535-541.
    Villeneuve JP, Holm E.1984. Atomospheric background of chlorinated hydrocarbons studied in Swedish lichens. Chemosphere,13:1133-1138.
    Wang ZW, Shan XQ, Zhang SZ.2002. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere,46:1163-1171.
    White DC, Pinkart HC, Ringelberg DB.1996. Biomass measurements:Biochemical approaches. Washington, DC:American Society for Microbiology Press.
    Wiegel J, Wu QZ.2000. Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microb.Ecol,32:1-15.
    Wild E, Dent J, Thomas GO, Jones KC.2005. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ. Sci. Technol.39 (10):3695-3702.
    Winston GW.1991. Oxidants and antioxidants in aquatic animals. Compar. Biochem. Physi, 100:173-176.
    Wu YP, Ding N, Wang G, Xu JM, Wu JJ, Philip CB.2009. Effects of different soil weights, storage times and extraction methods on soil phospholipid fatty acid analyses. Geoderma,150: 171-178.
    Xing Y, Lu YL, Dawson WR.2005. A Spatial Temporal Assessment of Pollution from PCBs in China. Chemosphere,60(6):731-739.
    Xu SY, Chen YX, Lin Q, Wu WX, Wang D, Xue SG, Shen CF.2006. Remediation of phenanthrene and pyrene-contaminate soil by growing maize (Zea Mays L.). Acta.Pedologica. Sinica,143(12):226-232.
    Yoshitami K J, Shann J R.2001. Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization. Soil Bio. biochem,33:1769-1776.
    Zelles L.1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review. Biol. Fert. Soils,29:111-129.
    Zhang QZ, Davis LC, Erickson LE.2001. Transport of methyl tertibutylether through alfalfa plants. Environ. Sci. Technol,35:725-731.
    Zheng ZX, Sheth U, Nadiga M, Jennifer LP, Kalidas S.2001. A model for the role of the proline-linked petose phosphate pathway in polymeric dye-tolerance in oregano. Pro. Biochem,36:941-946.
    Zhu LZ, Gao YZ.2004. Prediction of phenanthrene uptake by plants with a partition-limited model. Environ. Pollut,131:505-508.
    Zhu YH, Zhang SZ, Huang HL, Wen B.2009. Effects of maize root exudates and organic acids on the desorption of phenanthrene from soils. J. Environ. Sci,21(7):920-926.
    艾尼瓦尔,王栋,周集体.2000.降解多氯联苯的微生物特性研究进展.上海环境科学,19(11):519-522.
    毕新慧,徐晓白.2000.多氯联苯的环境行为,化学进展,12(2):152-160.
    常学秀,段昌群,王焕校.2000.根分泌物与植物对金属毒害的抗性.应用生态学报,11(2):315-320.
    陈龙池,廖利平,汪思龙,肖复明.2002.根系分泌物生态学研究.生态学杂志,21(6):57-62.
    陈瑞蕊,林先贵,尹睿,施亚琴.2005.有机污染土壤中菌根的作用.生态学杂志,24:176-180.
    陈娴.2006.受多氯代有机物污染土壤的植物修复及其根际效应初探,中山大学硕士学位论文.
    陈孝忠.1986.丁草胺残留量的气相色谱分析.环境化学,(6):1-5.
    陈振翔,于鑫,夏明芳,戴朝霞,孙成.2005.磷脂脂肪酸分析方法在微生物生态学中的应用. 生态学杂志,24(7):828-832.
    冯慧敏,何红波,白震,武叶叶,郭柏栋,张明,张旭东.2008.乙草胺的微生物降解及其对土壤磷脂脂肪酸特性的影响.应用生态学报,19(7):1585-1590.
    付颖,叶非,苏宏杰.2010.土壤中单嘧磺隆的超声提取方法研究.东北农业大学学报,41(5):25-27.
    高曾贵,陈捷,刘军华,冯晶,赵辉.2007.拮抗内生细菌B20-006菌株对玉米主要防御酶系的影响.植物病理学报,37(1):102-104.
    高军.2005.长江三角洲典型污染农田土壤多氯联苯分布、微生物效应和生物修复研究.浙江大学博士学位论文.
    高子勤,张淑香.1998.连作障碍与根际微生态环境Ⅰ:根系分泌物及其生态效应.应用生态学报,9(5):549-554.
    关松荫编著.1986.土壤酶及其研究法.北京:农业出版社.
    郭红莲,程根武,陈捷.2003.玉米灰斑病抗性反应中酚类物质代谢作用的研究.植物病理学报,33(4):342-346.
    郝乾坤.2004.植物根分泌物及其效应.杨凌职业技术学院学报,3(1):53-56.
    何艳,徐建明,汪海珍,吴愉萍.2005.五氯酚(PCP)污染土壤模拟根际的修复.中国环境科学,25(5):602-606.
    何艳.2006.五氯酚的土水界面行为及其在毫米级根际微域中的消减作用.浙江大学博士学位论文
    黄泽春,陈同斌,雷梅.2002.陆地生态系统中水溶性有机质的环境效应.生态学报,22(2):259-269.
    旷远文,温达志,钟传文,周国逸.2003.根系分泌物及其在植物修复中的作用.植物生态学报,27(5):709-717.
    黎瑞珍,杨庆建,陈贻锐.2004.超氧化物歧化酶(SOD)活性的测定及其应用研究.琼州大学学扳,11(5):34-36.
    李森,陈家军,孟占利.2004.多氯联苯处理处置方法国内外研究进展.中国环保产业,2:26-29.
    李廷强.2005.超积累植物东南景天(Sedum alfredii hance)对锌的活化、吸收及转运机制研究.浙江大学博士学位论文.
    梁慧星,陈爱辉,丁成,李朝霞,吴小琴.2011.1,3-二氯苯对芦苇湿地土壤生物活性的影响.微生物学通报,38(4):569-574.
    刘洪升,宋秋华,李凤民.2002.根分泌物对根际矿物营养及根际微生物的效应.西北植物学报,22(3):693-702.
    刘世亮,骆永明,丁克强,李华,曹志洪,吴龙华,宋静.2004.菌根真菌对土壤中有机污染物的修复研究.地球科学进展,19:197-203.
    刘素纯,萧浪涛,廖柏寒,鲁旭东,匡逢春,赵文魁,童建华.2006.铅胁迫对黄瓜幼苗抗氧化酶活性及同工酶的影响.应用生态学报,17(2):300-304.
    刘文菊,张西科,张福锁.1999.根表铁氧化物和缺铁根分泌物对水稻吸收镉的影响.土壤学报,36(4):463-468.
    刘亚云,陈桂珠.2006.植物修复多氯联苯研究进展,应用生态学报,17(2):325-330.
    刘亚云,孙红斌,陈桂珠,赵波.2009.红树植物秋茄对PCBs污染沉积物的修复.生态学报,29(11):6002-6009.
    刘芷宇,李良谟,施卫明.1997.根际研究法.南京:江苏科学技术出版社.
    卢晓丹,高彦征,凌婉婷,赵扬辉,刘紫讙.2008.多环芳烃对黑麦草体内过氧化物酶和多酚氧化酶的影响.农业环境科学学报,27(5):1969-1973.
    鲁如坤.1999.土壤农业化学分析方法.北京:中国农业科技出版社,60-67.
    庞欣,王东红,彭安.2001.铅胁迫对小麦幼苗抗氧化酶活性的影响,环境科学,22(5):108-111.
    彭胜巍,周启星.2008.持久性有机污染土壤的植物修复及其机理研究进展,生态学杂志,27(3):469-475.
    申建波,张福锁.1999.根分泌物的生态效应.中国农业科技导按,1(4):21-27.
    沈宏,严小龙.2000.根系分泌物研究现状及其在农业环境领域的应用.农村生态环境,16(3):51-54.
    施卫明.1993.根系分泌物与养分有效性.土壤,25:252-256.
    施征,史胜青,姚洪军,钟传飞,高荣孚.2009.植物线粒体中活性氧的产生及其抗氧化系统.北京林业大学学报,31(1):150-154.
    宋勇春,冯固,李晓林.2000.泡囊丛枝菌根对三叶草根际土壤磷酸酶活性的影响.应用与环境生物学报,6(Z):171-175.
    宋玉芳,孙铁珩,许华夏.1999.表面活性剂TW80对土壤中多环芳烃生物降解的影响.应用生态学报,10:230-232.
    孙红斌,刘亚云,陈桂珠.2006.微生物降解多氯联苯的研究进展.生态学杂志,25(12):1564-1569.
    孙铁珩,宋玉芳.1999.植物修复PAHs和矿物油污染土壤的调控研究.应用生态学报,10(2):225-229.
    唐光辉,田鹏鹏,陈安良,冯俊涛,张兴.2007.两种农药树干注射对垂柳叶内PPO和POD活性及同工酶谱的影响.西北农林科技大学学报自然科版,35(4):145-149.
    滕应,骆永明,高军,李振高.2008.多氯联苯污染土壤菌根真菌-紫花苜蓿-根瘤菌联合修复效应.环境科学,29(10):2925-2930.
    涂书新,孙锦荷,郭智芬,谷峰.2000.植物根系分泌物与根际营养关系评述.土壤与环境,9:64-67.
    王金花,朱鲁生,孙瑞莲,赵秉强.2004.阿特拉津对两种不同施肥条件土壤脲酶的影响.农业环境科学学报,23(1):162-166.
    王夔,1991.生命科学中的微量元素(上卷)北京:中国计量出版社,140-141.
    王书锦,胡江春,张宪武.2002.新世纪中国土壤微生物学得展望,微生物学杂志,22(1):36-39.
    王鑫,郭平毅,原向阳,姚满生.2008.2,4-D丁脂对罂粟(Papaver somniferum L.)保护酶活性及脂质过氧化作用的影响.生态学报,28(3):1098-1103.
    王咏,王春霞,徐静波.2000.多环芳烃化合物对鲤鱼肝微粒体EROD的体外诱导.环境科学学报,9(20):176-180.
    王友保,张莉,刘登义.2003.灰渣场土壤酶活性与植被和土壤化学性质的关系.应用生态学报,14(1):110-112.
    王韵秋,郝绍卿,于得荣.1985.老参地土壤理化性状的变化.全国人参科技资料汇编:栽培分册Ⅰ.国家医药管理局出版.
    吴辉,郑师章.1993.凤眼莲根分泌物对Enterobacter sp.nov.苯酚代谢的影响.应用生态学报,4(1):78-84.
    吴愉萍.2009.基于磷脂脂肪酸(PLFA)分析技术土壤微生物群落多样性的研究.浙江大学博士学位论文.
    谢明吉.2008.多年生黑麦草(Lolium perenne L)对菲的吸收和生理响应.厦门大学博士学位论文.
    熊明彪,何建平,宋光煜.2002.根分泌物对根际微生物生态分布的影响.土壤通报,33(2):145-148.
    徐向阳,任艳红,黄绚,郑平.2004.典型有机污染物微生物降解及其分子生物学机理的研究进展,浙江大学学报,30(6):684-689.
    许超,夏北成.2007.土壤多环芳烃污染根际修复研究进展.生态环境,16(1):216-222.
    严万里,陈晓明,郭丽燕,柳芳.2011.超氧化物歧化酶活性测定的影响因素研究.生物学通报,46(3):50-53.
    严重玲,洪业汤,付舜珍,方重华,雷基祥,沈芹1997. Cd. Pb胁迫对烟草叶片中活性氧清除系统的影响.生态学报,17(5):488-492.
    杨兵,廖斌,邓冬梅,束文圣,蓝崇钰.2004.Cu2+对两种生态型鸭跖草Cu积累和抗氧化酶的影响.中国环境科学,24(1):9-13.
    杨丽莉,邓延慧.2002.超声波提取-气相色谱法测定土壤中残留六六六和滴滴涕.环境监测管理与技术,14(3):33-34.
    叶陈英.2010.水稻根系酚酸类化感物质分泌动态及其对土壤生理生化特性的影响.福建农林大学硕士学位论文.
    俞晟,肖琳,朱东强,杨柳燕.2009.超声提取-高效液相色谱检测土壤中十溴联苯醚.环境化学,28(1):121-125.
    张超兰,汪小勇,姜文,廖荣胜,黄锋.2007.有机氯农药六六六污染土壤的植物修复研究.生态环境,16(5):1436-1440.
    张福锁.1992.根系分泌物及其在植物营养中的作用(综述).北京农业大学学报,18(4):353-356.
    张福锁.1993.环境胁迫与植物营养.北京:北京农业大学出版社,79-91.
    张福锁.1998.环境胁迫与植物根际营养.北京:中国农业出版社.
    张金彪,黄维南.2000.镉对植物的生理生态效应的研究进展.生态学报,20(3):514-523.
    张明.2009.碳水化合物及在黑麦草吸收多环芳烃中的作用.浙江大学博士学位论文.
    张雪莲,骆永明,滕应,俞元春,王家嘉,徐莉,李振高.2009.长江三角洲某电子垃圾拆解区土壤中多氯联苯的残留特征.土撼41(4):588-593.
    张琢.2007.环境样品中多氯联苯的气相色谱测定研究.东南大学硕士学位论文.
    赵士燕.2007.土壤环境中多氯联苯的分析方法研究.山东大学硕士学位论文.
    赵小亮,刘新虎,贺江舟,万传星,龚明福,张利莉.2009.棉花根系分泌物对土壤速效养分和酶活性及微生物数量的影响.西北植物学报,29(7):1426-1431.
    周冀衡,李永平,杨虹琦,王勇,邵岩,郭紫明,朱列书,马文广.2005.不同基因型烟草根系分泌物对难溶性磷钾的活化效应.湖南农业大学学报,31(3):276-280.
    周江敏,代静玉,潘根兴.2003.土壤中水溶性有机质的结构特征及环境意义,农业环境科学学扳,22(6):731-735.
    周启星,宋玉芳.2001.植物修复的技术内涵及展望.安全与环境学报,1(3):48-53.
    朱雪梅,陶澍,林健枝.2004.根际土壤中DDTs的残留与转化.环境化学,23(2):157-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700