用户名: 密码: 验证码:
多孔金属的动态力学响应及其温度相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔金属是一种结构型材料,在对其力学性能探讨的过程中,常存在实验数据离散性较大、结果规律性不明显以及概念相互混淆等问题。本文利用SHPB设备及其改进的装置从实验方面以及数值手段探讨了多孔金属在不同环境温度下应变率效应及其相关影响因素,并对由轴向惯性效应引起的应力不均匀进行详细的探讨。
     通过实验分析了泡沫材料的密度分散性对实验结果的影响,指出当试件的密度分布符合正态分布时,近似密度下的实验曲线具有较好的重合性。采用大尺寸((?)37mm)的石英晶体片技术,探讨了低阻抗大孔径的多孔材料在SHPB实验中的应力均匀性。结果表明,随着厚度的增加,试件的应力不均匀度增大,波动效应的影响越明显。
     利用ABAQUS有限元软件,对两种典型结构的应变率效应进行探讨,总结出:无论是Type Ⅰ(圆环)结构还是Type Ⅱ(折板)结构,只要存在结构的失稳屈曲,就一定具有应变率效应。轻质泡沫铝的动静态实验结果表明,其在压缩的过程中呈现“应力降”的现象,对于这种大孔径的泡沫材料,“应力降”的现象是胞孔层坍塌失稳造成,而坍塌失稳必然是率敏感的。
     实验得出了泡沫铝在动态和静态加载下随着温度的变化趋势,结果指出随着温度的升高,泡沫铝具有明显的软化效应,材料的力学特性由硬变软,由脆变韧。随着温度的升高,泡沫铝的应变率敏感度也逐渐增大。在低温段(-50℃~200℃),基体材料变形特性更接近于固体,应变率效应随温度的变化并不显著,而在较高的温度段,基体材料变形特性更接近流体,应变率效应更明显。
     同时,设计了一种基于SHPB装置的可视化高温炉,通过高速摄影观测了泡沫铝在高温高应变率下的变形特性。孔结构在低温下存在较多的屈曲失稳、撕裂等变形方式,而在高温下的变形方式以孔壁的塑性弯曲为主。
     对Hopkinson杆实验装置进行改造,采用两次撞击实验测得泡沫铝在撞击过程中冲击端与支撑端的应力-时间曲线,并利用高速摄影观察试件在不同撞击速度下的变形过程。在低速撞击下,两端应力大小相近,主要以胞孔随机坍塌与剪切坍塌变形为主,对应准静态模式。在高速撞击下,试件从冲击端开始变形,以压实波的速度向支撑端传播,此时冲击端应力明显大于支撑端的应力,对应冲击模式,随着撞击速度的增加,试件两端的应力均匀性越差。实验指出,在冲击模式下,试件两端应力-时间曲线与试件的厚度大小无关,但是与试件的密度有关,随着密度的增加,在同一撞击速度下,两端的应力越接近。
     另对设计的单次撞击Hopkinson实验方案进行初步探讨,成功检测出高温高速(≤26m/s)下试件冲击端与支撑端的应力。实验结果指出在同一撞击速度下,环境温度越高,试件两端的应力均匀性越差,并通过SHPB数值模拟证实了高温下应力均匀性差的现象,增加温度与提高撞击速度对应力不均匀性具有类似的影响效果。
The cellular metal is a type of structural material. In research of its mechanical properties, usually there are some difficulties existing in the experimental data, such as data scatter, non-apparentness of the regularity of results, and the confusion of concept. In this paper, the strain rate effect of cellular metal under different ambient temperature, relevant factors, and stress heterogeneity caused by axial inertia effect are studied in detail from experimental method with improved SHPB equipment and numerical methods.
     The influence of density dispersion of the foam material on the experimental results is analyzed in the experiment. The experimental results show that the experimental data curve with approximate density have better repeatability when the specimen density distribution is similar to normal distribution. In addition, the technique of large diameter (φ37mm) quartz crystal slice is used to inverstigate the stress uniformity of low impedance and large cell material in SHPB experiment. The results indict that the stress non-uniformity of sample increases and the wave effect is more apparent with the increase of the thickness.
     Using ABAQUS finite element software the strain rate effect of two typical structures are investigated. It is can be concluded that for both Type I (ring) structure and Type II (folded plate) structure if there exist buckling of the structure, it must have the strain rate effect. The static and dynamic experimental results present that the mechanical behavior of this material shows the phenomenon of'stress drop'. For this large cell foam materials this phenomenon is caused by the collapse of cell aperture which lead to instability. While the collapse and instability must relate to rate sensitive.
     The change of the mechanical properties of aluminum foams are obtained with the change of temperature from the experiments. The experimental results show that aluminum foam has a soften effect, that is the mechanical properties of the material change from hard to soft, and from frangility to ductility. In addition, the strain rate sensitivity of aluminum foam also increases with the temperature increases. At the low temperature range (-50℃-200℃), the properties of deformation of matrix material closed to that of solid. The stain rate effect is not significant variation with the variation of temperature. While at the higher temperature range, the properties of deformation of matrix material closed to that of fluid, the strain rate effect is more apparent.
     At the same time, a type of visualization high temperature furnace based on SHPB device is designed. And then the deformation characteristics of aluminum foam under high temperature and high strain rate is observed with a high-speed photography. At low temperatures, there are more buckling, tearing and other deformation of cell structure in the sample. While at high temperature, the deformation characteristics is mainly the plastic bending of cell wall.
     Using improved Hopkinson bar experimental device the stress-time curve of impact end and support end of aluminum foam under the impact process. And the deformation process of specimen at different impact velocity is observed by high-speed photographic. The stress at both ends have same magnitude under low velocity. The deformation mainly is random collapse of cell structure and shear collapse, which correspond to the quasi-static model. While under the high velocity, the deformation of specimen starts the impact end and propagate from impact end to support end with compaction wave speed. Under this condition, the stress of impact end significantly greater than that of the support end, which correspond to the impact model. The stress uniformity of two ends became worse with the increase of impact velocity.
     The experiment results revealed that the stress-time curves of two ends are unrelated to the thickness of specimen in the impact model. But it related to the density of specimen. The stresses of two ends are closer with the increase of the density under the same impact velocity.
     At last, a single impact Hopkinson is preliminarily investigated. The stress of impact end and support end at high temperature and high speed (≤26m/s) is detected successfully. The experimental results indicated that the worse of the stress uniformity is obtained at the two ends under same impact velocity and the high ambient temperature. In addition, this phenomenon is validated by the numerical simulation of SHPB model. And the increase of temperature and impact velocity has the similar influence on the stress heterogeneity.
引文
[1]Gibson LJ, Ashby MF. Cellular solids:Structure and properties [M]. Cambridge:Cambridge University Press,1997:309-343.
    [2]卢天健,何德坪,陈常青,等.超轻多孔金属材料的多功能特性及应用.力学进展,2006,36(4):517-535.
    [3]Langseth M, Hopperstad OS. Crash behavior of thin-walled aluminum members. Thin-Walled Structures,1998,32:127-150.
    [4]Song HW, Wan Z, Sie Z, et al. Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes. International Journal of Impact Engineering,2000,24: 385-401.
    [5]Banhart J, Baumeister J. Deformation characteristics of metal foams, Journal of Materials Science,1998,33:1431-1440.
    [6]Ruan D, Lu G, et al. Compressive behaviour of aluminium foams at low and medium strain rates. Composite Structures,2002,57:331-336.
    [7]Zhao H, Elnasri I, Abdennadher S. An experimental study on the behavior under impact loading of metallic cellular materials. International Journal of Mechanical Sciences,2005, 47:757-774.
    [8]Deshpande VS, Fleck NA. High strain rate compressive behaviour of aluminium alloy foams. International Journal of Impact Engineering,2000,24:277-298.
    [9]Lee S, Barthelat F, Moldovan N, et al. Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials. International Journal of Solids and Structures,2006,43: 53-73.
    [10]Paul A, Ramamurty U. Strain rate sensitivity of a closed-cell aluminum foam, Materials Science and Engineering,2000, A281:1-7.
    [11]Cady CM, GrayⅢ GT, Liu C, et al. Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature. Materials Science and Engineering A,2009,525: 1-6.
    [12]Aly MS. Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures:experimental results. Materials Letters,2007,61:3138-3141.
    [13]刘建林.麦克斯韦对应用力学的贡献.力学与实践,2010,32:150-152.
    [14]Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. In:Containing Papers of a Mathematical or Physical Character.1914, A213:437-456.
    [15]Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society. Section B,1949,62(11):676-700.
    [16]Kawata K, Hashimoto S, et al. A new testing method for the characterization of materials in high velocity tension. Bristol and London:Institute of Physics,1979:71-80.
    [17]王鹏飞,罗斌强,胡时胜.套管式冲击拉伸实验装置的研制.实验力学,2009,24(6):513-518.
    [18]Baker WE, Yew CH. Strain-rate effects in the propagation of torsional plastic wave. J Appl Mech,1966,33:917-923.
    [19]薛青,沈乐天,陈淑霞,白以龙.单脉冲加载的Hopkinson扭杆装置.爆炸与冲击,1996,16(4):289-297.
    [20]崔云霄,卢芳云,林玉亮,等.一种新的高应变率复合压剪技术.实验力学,2006,21(5):584-590.
    [21]Hou B, Ono A, Abdennadher S, et al. Impact behavior of honeycombs under combined shear-compression. Part Ⅱ:experiment. International Journal of Solids and Structures,2011, 48(5):687-697.
    [22]郑文,徐松林,蔡超,胡时胜.基于Hopkinson压杆的动态压剪复合加载实验研究.力学学报,2012,44(1):124-131.
    [23]Gorham DA, Pope PH, Field JE. An improved method for compressive stress-strain measurements at very high strain rates. Proc. R. Soc. Lond. A,1992,438:153-170.
    [24]陶俊林,陈裕泽,田常津,等.直接撞击Hopkinson实验技术讨论.第三届全国爆炸力学实验技术学术会议论文集,18-23.
    [25]Lopatnikov SL, Gama BA, Haque MJ, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment. Composite Structures,2003,61:61-71.
    [26]Nieh TG, Higashi K, Wadsworth J. Effect of cell morphology on the compressive properties of open-cell aluminum foams. Materials Science & Engineering,2000, A283:105-110.
    [27]穆建春,习会峰,龙志勤.不同孔隙率及孔径泡沫铝的力学与吸能特性研究.实验力学,2009,24(3):223-227.
    [28]Mcdonald SA, Mummery PM, Johnson G, Withers PJ. Characterization of the three-dimensional structure of a metallic foam during compressive deformation. Journal of Microscopy,2006,223:150-158.
    [29]杨福俊,唐兆琛,朱莉,等.闭孔泡沫铝特征统计及其变形行为实验研究.东南大学学报,2009,39(2):250-254.
    [30]Field JE, Walley SM, Proud WG, et al. Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering,2004,30: 725-775.
    [31]Lankford J, Dannemann KA. Strain rate effects in porous materials. In:Symposium Proceeding 521, Porous and Cellular Materials for Structure Applications, Warrendale: Materials Research Society,1998,103-108.
    [32]Yu JL, Wang X, Wei ZG, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core. International Journal of Impact Engineering,2003, 28:331-347.
    [33]Kanahashi H, Mukai T, et al. Dynamic compression of an ultra-low density aluminium foam. Materials Science &Engineering,2000, A280:349-353.
    [34]Mukai T, Kanahashi H, Yamada Y, et al. Dynamic compressive behavior of an ultra-lightweight magnesium foam. Scripta Materialia,1999,41(4):365-371.
    [35]Dannemann KA, Jr. JL. High strain rate compression of closed-cell aluminium foams. Materials Science & Engineering,2000, A293:157-164.
    [36]胡时胜,王悟,潘艺,等.泡沫材料的应变率效应.爆炸与冲击,2003,23(1):13-18.
    [37]田杰,胡时胜.基体性能对泡沫铝力学行为的影响.工程力学,2006,23(8):168-176.
    [38]Reid SR, Peng C. Dynamic uniaxial crushing of wood. Int. J. Impact. Engng,1997,19: 531-570.
    [39]Harrigan JJ, Reid SR, Peng C. Inertia effects in impact energy absorbing materials and structures. Int. J. Impact Engng.1999,22:955-979.
    [40]Lopatnikov SL, Gama BA, Haque MJ, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment. Composite Structures,2003,61:61-71.
    [41]Radford DD, Deshpande VS, Fleck NA. The use of metal foam projectiles to simulate shock loading on a structure. International Journal of Impact Engineering,2005,31:1152-1171.
    [42]Tan PJ, Harrigan JJ, Reid SR. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Materials Science and Technology,2002,18:480-488.
    [43]Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part I:experimental data and observations. Journal of the Mechanics and Physics of Solids,2005,53:2174-2205.
    [44]Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part II:'shock'theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids,2005,53:2206-2230.
    [45]Elnasri I, Pattofatto S, Zhao H, et al. Shock enhancement of cellular structures under impact loading:Part I Experimental. Journal of the Mechanics and Physics of Solids,2007,55: 2652-2671.
    [46]Pattofatto S, Elnasri I,, Zhao H, et al. Shock enhancement of cellular structures under impact loading:Part II analysis. Journal of the Mechanics and Physics of Solids,2007,55:2672-2686.
    [47]Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honercombs-a finite element study. International Journal of Impact Engineering,2003,28:161-182.
    [48]Zheng Z J, Yu J L, Li J R. Dynamic Crushing of 2D Cellular Structures:A Finite Element Study. Int J Impact Eng,2005,32(1-4):650-664.
    [49]刘耀东,虞吉林,郑志军.惯性对多孔金属材料动态力学行为的影响.高压物理学报,2008,22(2):118-124.
    [50]Liu YD, Yu JL, Zheng ZJ, Li JR. A numerical study on the rate sensitivity of cellular metal. International Journal of Solids and Structures,2009,46:3988-3998.
    [51]Hall IW, Guden M, Yu CJ. Crushing of aluminum closed cell foams:density and strain rate effects. Scripta mater,2000,43:515-521.
    [52]Chen C, Lu TJ, Fleck NA. Effect of imperfections on the yielding of two dimensional foams. Journal of the Mechanics and Physics of Solids,1999,47:2235-2272.
    [53]Grenestedt JL. On interactions between imperfections in cellular solids. Journal of Materials Science,2005,40:5853-5857.
    [54]Grenestedt JL. Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids. Journal of the Mechanics and Physics of Solids,1998,40(1):29-50.
    [55]张铱鈖,赵隆茂.非均匀泡沫金属材料在冲击载荷下的变形模拟.爆炸与冲击,2006,26(1):33-38.
    [56]张铱鈖,赵隆茂.泡沫金属材料的动力压缩响应.机械强度,2009,31(1):001-007.
    [57]张红,黄小清,汤立群,等.泡沭铝微结构及其分布特性的数字图像分析.华南理工大学学报(自然科学版),2004,32(1):9-13,
    [58]Olurin OB, Arnold M, Korner C, et al. The investigation of morphometric parameters of aluminium foams using micro-computed tomography. Materials Science and Engineering, 2002, A328:334-343.
    [59]魏志强,黄小清,杨宝,等.应用高速摄影机对泡沫铝在SHPB实验过程的变形跟踪与分析.实验力学,2011,26(2):117-123.
    [60]Mukai T, Kanahashi H, et al. Experimental study of energy absorption in a closed-celled Aluminum foam under dynamic loading. Scripta Materialia,1999,40(8):921-927.
    [61 Onck PR, Andrews EW, Gibson LJ. Size effects in ductile cellular solids. Part Ⅰ:modeling. International Journal of Mechanical Sciences,2001,43:681-699.
    [62]Andrews EW, Gioux G, Onck PR, et al. Size effects in ductile cellular solids. Part II: experimental results. International Journal of Mechanical Sciences,2001,43:701-713.
    [63]Chen C, Fleck NA. Size effects in the constrained deformation of metallic foams. Journal of the Mechanics and Physics of Solids,2002,50:955-977.
    [64]Bigg DM. Predicting the shock mitigating properties of thermoplastic foams. Polym. Eng. Sci.,1981,21(9):548-556.
    [65]胡玲玲,黄小清,张红,汤立群.泡沫铝材料的一维粘塑性本构关系.华南理工大学学报,2004,32(4):87-91.
    [66]Deshpande VS, Fleck NA. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids,2000,48:1253-1283
    [67]Chen C, Lu TJ. A phenomenological framework of constitutive modeling for incompressible and compressible elastoplastic solids. Int J Solids Str uctures,2000,37:7769-7786
    [68]王二恒,虞吉林,王飞等.泡沫铝材料准静态本构关系的理论和实验研究.力学学报,2004,36(6):673-679.
    [69]Meinecke EA, Schwaber DM. Energy absorption in polymeric foams. I. Prediction of impact behavior from instron data for foams with rate-independent modulus. J. Appl. Polym. Sci., 1970,14:2239.
    [70]Nagy A, Ko WL, Lindholm US. Mechanical behavior of foamed materials under dynamic compression. J. Cell. Plastics,1974,10:127-134.
    [71]Sherwood JA, Frost CC. Constitutive modeling and simulation of energy absorbing polyurethane foam. Polymer Eng. Sci.,1992,.32(16):1138-1146.
    [72]胡时胜,刘剑飞,王悟.硬质聚氨酯泡沫塑料本构关系的研究.力学学报,1998,30(2):151-156.
    [73]Liu QL, Subhash G, Gao XL. A parametric study on crushability of open-cell structural polymeric foams. Journal of Porous Materials,2005,12:233-248
    [74]Chou CC, Zhao Y, Lim GG, Song GS. A constitutive model for polyurethane foams with strain-rate and temperature effects. SAE Technical Paper,980967,1998.
    [75]Wang ZH, Jing L, Zhao LM. Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading. Transactions of Nonferrous Metals Society of China,2011, 21:449-454.
    [76]Hakamada M, Nomura T, et al. Compressive deformation behavior at elevated temperatures in a closed-cell aluminum foam. Materials Transactions,2005,46(7):1677-1680.
    [77]Nieves I, Arceo F, Nieh TG, Earthman JC. Tensile behavior of open-cellular Al foams at ambient and intermediate temperatures. TMS,2003,473-481.
    [78]Andrews EW, Huang JS, Gibson LJ. Creep behavior of a closed-cell aluminum foam. Acta mater,1999,47(10):2927-2935.
    [79]刘学斌,马蓦,王秀锋,等.开孔泡沫钛力学性质的温度相依性.稀有金属材料与工程,2008,37(2):277-280.
    [80]甘秋兰,张俊彦.温度和应变率对泡沫镍拉仲行为的影响.湘潭大学自然科学学报,2003,25(4):88-90.
    [81]Aly MS. Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures:experimental results. Materials Letters,2007,61:3138-3141.
    [82]Chiddister JL, Malvern LE. Compression-impact testing of aluminum at elevated temperatures. Experimental Mechanics,1963,81-90.
    [83]Rosenberg Z, Dawicke D, Strader E, Bless SJ. A new technique for heating specimens in split-hopkinson-bar experiments using induction-coil heaters. Experimental Mechanics, 1986,275-278.
    [84]夏开文,程经毅,胡时胜SHPB装置应用于测量高温动态力学性能的研究.实验力学,1998,13(3):307-313.
    [85]李玉龙,索涛,郭伟国,等.确定材料在高温高应变率下动态性能的Hopkinson杆系统.爆炸与冲击,2005,25(6):487-492.
    [86]周国才,胡时胜,付峥.用于测量材料高温动态力学性能的SHPB技术.实验力学,2010,25(1):9-15.
    [87]张方举,谢若泽,田常津,等SHPB系统高温实验自动组装技术.实验力学,2005,20(2):281-284.
    [88]Lee WS, Lin CF. High-temperature deformation behavior of Ti6A14V alloy evaluated by high strain-rate compression tests. Materials Processing Technology,1998,75:127-136.
    [89]Lennon AM, Ramesh KT. A technique for measuring the dynamic behavior of materials at high temperatures. International Journal of Plasticity,1998,14(12):1279-1292.
    [90]Apostol M, Vuoristo T, Kuokkala VT. High temperature high strain rate testing with a compressive SHPB. J. Phys.Ⅳ,2003,110:459-464.
    [91]Thomas T, Mahfuz H, et al. Dynamic compression of cellular cores:temperature and strain rate effects. Composite Structures,2002,58:505-512.
    [92]Song Bo, Lu W. Y, et al. The effects of strain rate, density, and temperature on the mechanical properties of polymethylene diisocyanate (PMDI)-based rigid polyurethane foams during compression. Journal of Materials Science,2009,44:351-357.
    [93]Cady CM, GrayⅢ GT, Liu C, et al. Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature. Shock Compression of Condensed Matter,2001, 725-728.
    [94]Melis M, Carney K, Fasnella EL, et al. A summary of the space shuttle Columbia tragedy and the use of LS-DYNA in the accident investigation and return to flight efforts.8th International LS-DYNA Users Conference, Dearborn MI,2004.
    [1]Hall IW, Guden M, Yu CJ. Crushing of aluminum closed cell foams:density and strain rate effects. Scripta mater,2000,43:515-521.
    [2]Kanahashi H, Mukai T, et al. Dynamic compression of an ultra-low density aluminium foam [J]. Materials Science &Engineering,2000, A280:349-353.
    [3]Mukai T, Kanahashi H, Yamada Y, et al. Dynamic compressive behavior of an ultra-lightweight magnesium foam. Scripta Materialia,1999,41(4):365-371.
    [4]Dannemann KA, Jr. JL. High strain rate compression of closed-cell aluminium foams. Materials Science & Engineering,2000, A293:157-164.
    [5]胡时胜,王悟,潘艺,等.泡沫材料的应变率效应.爆炸与冲击,2003,23(1):13-18.
    [6]Deshpande VS, Fleck NA. High strain rate compressive behaviour of aluminium alloy foams. International Journal of Impact Engineering,2000,24:277-298.
    [7]Chen C, Lu TJ, Fleck NA. Effect of imperfections on the yielding of two dimensional foams. Journal of the Mechanics and Physics of Solids,1999,47:2235-2272.
    [8]Grenestedt JL. On interactions between imperfections in cellular solids. Journal of Materials Science,2005,40:5853-5857.
    [9]Grenestedt JL. Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids. Journal of the Mechanics and Physics of Solids,1998,40(1):29-50.
    [10]张铱纷,赵隆茂.非均匀泡沫金属材料在冲击载荷下的变形模拟.爆炸与冲击,2006,26(1):33-38.
    [11]张铱鈖,赵隆茂.泡沫金属材料的动力压缩响应.机械强度,2009,31(1):001-007.
    [12]张红.黄小清,汤立群等.泡沫铝微结构及其分布特性的数字图像分析.华南理工大学学报(自然科学版),2004,32(1):9-13.
    [13]Olurin OB, Arnold M, Korner C, et al. The investigation of morphometric parameters of aluminium foams using micro-computed tomography. Materials Science and Engineering, 2002, A328:334-343.
    [14]魏志强,黄小清,杨宝,等.应用高速摄影机对泡沫铝在SHPB实验过程的变形跟踪与分 析.实验力学,2011,26(2):117-123.
    [15]Mukai T, Kanahashi H, et al. Experimental study of energy absorption in a closed-celled Aluminum foam under dynamic loading[J]. Scripta Materialia,1999,40(8):921-927.
    [16]Onck PR, Andrews EW, Gibson LJ. Size effects in ductile cellular solids. Part Ⅰ:modeling[J]. International Journal of Mechanical Sciences,2001,43:681-699.
    [17]Andrews EW, Gioux G, Onck PR, et al. Size effects in ductile cellular solids. Part II: experimental results. International Journal of Mechanical Sciences,2001,43:701-713.
    [18]Chen C, Fleck NA. Size effects in the constrained deformation of metallic foams. Journal of the Mechanics and Physics of Solids,2002,50:955-977.
    [19]Tan PJ, Reid SR, et al. Dynamic compressive strength properties of aluminium foams. Part I: experimental data and observations. Journal of the Mechanics and Physics of Solids,2005,53: 2174-2205.
    [20]肖大武,李英雷,胡时胜.LY12铝小尺寸试件的SHPB实验探讨.实验力学,2009,24(1):81-85.
    [21]Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Strain gradient plasticity:Theory and Experiment. Acta metal, mater,1994,42(2):475-487.
    [22]郭宇,庄茁,李晓雁.FCC金属塑性屈服的尺度效应和应变率响应.力学学报,2006,38(3):398-406.
    [23]Stolken JS, Evans AG. A microbend test method for mearsuing the plasticity length scale. Acta Mater,1998,46:5109.
    [24]Matthews JW, Blakeslee AE. Defects in exitaxial multilayers I. Misfit dislocations. J Cryst Growth,1974,27:118.
    [25]张守保,张磊Φ100SHPB应用现状和前景《Hopkinson杆实验技术研讨会会议论文集》,2007.
    [26]宋小林,谢和平,王启智.大理岩的高应变率动态劈裂实验.应用力学学报,2005,22(3):419425.
    [27]李为民,许金余,沈刘军,李庆Φ100mmSHPB应力均匀及恒应变率加载试验技术研究.振动与冲击,2008,27(2):129-132.
    [28]Zhao H, Abdennadher S, Othman R. An experimental study of square tube crushing under impact loading using a modified large scale SHPB. International Journal of Impact Engineering,2006,32:1174-1189.
    [29]胡俊,巫绪涛,胡时胜.EPS混凝土动态力学性能研究.振动与冲击,2011,30(7):205-209.
    [30]李英华,杨黎明,汤立群,等.脆性材料水泥砂浆多轴应力下的动态响应分析.振动与冲击,2011,30(10):216-220.
    [31]Kolsky H. An inverstigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society. Section B,1949,62(11):676-700.
    [32]胡时胜.霍普金森压杆技术.兵器材料科学与工程,1991,11:40-47.
    [33]王礼立.应力波基础(第2版).北京:国防工业出版社,2005.
    [34]Weinong Chen, Bo Song. Split Hopkinson (Kolsky) Bar:Design, Testing and Applications. 2011.
    [35]宋力,胡时胜.SHPB测试中的均匀性问题及恒应变率.爆炸与冲击,2005,25(3):207-216.
    [36]Yang L M, Shim V. An analysis of stress uniformity in split Hopkinson bar test specimens. International Journal of Impact Engineering,2005,31(2):129-150.
    [37]Song B, Chen W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials. Experimental Mechanics,2004,44(3):300-312.
    [38]王宝珍,胡时胜.猪后腿肌肉的冲击压缩特性实验.爆炸与冲击,2010,30(1):33-38.
    [39]林玉亮,卢芳云,卢力.石英压电晶体在霍普金森压杆实验中的应用.高压物理学报,2005,19(4):299-304.
    [40]Frew DJ, Forrestal MJ, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Experimental Mechanics,2002,42(1):93-106.
    [41]Song B, Chen W. Loading and unloading Split Hopkinson Pressure Bar pulse-shaping techniques for dynamic hysteretic loops. Experimental Mechanics,2004,44(6):622-627.
    [42]Casem D, Weerasooriya T, Moy P. Inertial effects of quartz force transducers embedded in a split Hopkinson pressure bar. Experimental Mechanics,2005,45(4):368-378.
    [43]Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J. Am. Ceram. Soc.,1994,77(1):263-267.
    [1]Liang R, Khan AS. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. International Journal of Plasticity,1999,15:963-980.
    [2]Voyiadjis GZ, Abed FH. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mechanics of materials,2005,37:355-378.
    [3]Voyiadjis GZ, Almasri AH. A physically based constitutive model for fcc metals with applications to dynamic hardness. Mechanics of materials,2008,40:549-563.
    [4]胡时胜,王悟,潘艺,等.泡沫材料的应变率效应.爆炸与冲击,2003,23(1):13-18.
    [5]王永胜,左孝青,尹志其,等.应变率对泡沫铝压缩性能的影响.材料导报(综述篇),2009,23(2):47-52.
    [6]Klintworth JW. Dynamic crushing of cellular solids. PHD Thesis, Department of Engineering, University of Cambridge,1989.
    [7]Reid SR, Reddy TY. Experimental investigation of inertia effects in one-dimensional metal ring systems subjected to end impact-Ⅰ. Fixed-ended systems. International Journal of Impact Engineering,1983,1(1):85-106.
    [8]Reid SR, Bell WW, Barr RA. Structural plastic shock model for one-dimensional ring systems. International Journal of Impact Engineering,1983,1(2):175-191.
    [9]Calladine CR, English RW. Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. Int. J. Mech. Sci.,1984,26:689-701.
    [10]Tam LL, Calladine CR. Inertia and strain-rate effects in a simple plate-structure under impact loading. International Journal of Impact Engineering,1991,11(3):349-377.
    [11]Zhao H, Gary G. Crushing behavior of aluminium honeycombs under impact loading. Int. J. Impact Engng,1998,21(10):827-836.
    [12]Reid SR, Reddy TY, Peng C. Dynamic compression of cellular structures and materials. In: Jones N, Wierzbicki T, editors. Structural crash-worthiness and failure. Amsterdam:Elsevier, 1993,p.295.
    [13]Su XY, Yu TX, Reid SR. Inertia-sensitive impact energy-absorbing structures. Part Ⅰ:Effects of inertia and elasticity. Int J Impact Engng 1995;16(4):651.
    [14]Su XY, Yu TX, Reid SR. Inertia-sensitive impact energy-absorbing structures. Part Ⅱ:Effect of strain rate. Int J Impact Engng 1995;16(4):673.
    [15]Chen C, Lu TJ, Fleck NA. Effect of imperfections on the yielding of two dimensional foams. Journal of the Mechanics and Physics of Solids,1999,47:2235-2272.
    [16]Grenestedt JL. On interactions between imperfections in cellular solids. Journal of Materials Science,2005,40:5853-5857.
    [17]Deshpande VS, Fleck NA. High strain rate compressive behaviour of aluminium alloy foams. International Journal of Impact Engineering,2000,24:277-298.
    [18]McCullough KYG, Fleck NA, Ashby MF. Uniaxial stress-strain behaviour of aluminium alloy foams. Acta mater,1999,47(8):2323-2330.
    [19]Zhao H, Abdennadher S. On the strength enhancement under impact loading of square tubes made from rate insensitive metal. International Journal of Solids and Structures,2004,41: 6677-6697.
    [20]石亦平,周玉蓉ABAQUS有限元分析实例讲解.北京:机械工业出版社,2006.
    [21]庄茁ABAQUS非线性有限元分析与实例.北京:科学出版社,2005.
    [22]Gibson L J, Ashby M F. Cellular solids:Structure and properties [M]. Cambridge:Cambridge University Press,1997:309-343.
    [23]Prasad GLE, Gupta NK. An experimental study of deformation modes of domes and large-angled frusta at different rates of compression. International Journal of Impact Engineering,2005,32:400-415.
    [24]Dong XL, Gao ZY, Yu TX. Dynamic crushing of thin-walled spheres:An experimental study. International Journal of Impact Engineering,2008,35:717-726.
    [25]田杰,胡时胜.基体性能对泡沫铝力学行为的影响.工程力学,2006,23(8):168-176.
    [26]程和法,黄笑梅,许铃.基体对泡沫铝压缩行为与吸能性的影响.有色金属,2003,55(3):10-13.
    [1]Dannemann KA, Jr. JL. High strain rate compression of closed-cell aluminium foams. Materials Science and Engineering,2000, A293:157-164.
    [2]Kanahashi H, Mukai T, et al. Dynamic compression of an ultra-low density aluminium foam. Materials Science and Engineering,2000,A 280:349-353.
    [3]Mukai T, Miyoshi T, et al. Compressive response of a closed-cell aluminum foam at high strain rate. Scripta Materialia,2005,54:533-537.
    [4]Deshpande VS, Fleck NA. High strain rate compressive behaviour of aluminium alloy foams. International Journal of Impact Engineering,2000,24:277-298.
    [5]D. Ruan, G. Lu et al. Compressive behaviour of aluminium foams at low and medium strain rates. Composite Structures,2002,57:331-336.
    [6]M. Hakamada, T. Nomura et al. Compressive deformation behavior at elevated temperatures in a closed-cell aluminum foam. Materials Transactions,2005,46(7):1677-1680.
    [7]Nieves I, Arceo F, Nieh TG, Earthman JC. Tensile behavior of open-cellular Al foams at ambient and intermediate temperatures. TMS,2003,473-481.
    [8]Andrews EW, Huang JS, Gibson LJ. Creep behavior of a closed-cell aluminum foam. Acta mater,1999,47(10):2927-2935.
    [9]刘学斌,马蓦,王秀锋,等.开孔泡沫钛力学性质的温度相依性.稀有金属材料与工程,2008,37(2):277-280.
    [10]甘秋兰,张俊彦.温度和应变率对泡沫镍拉伸行为的影响.湘潭大学自然科学学报,2003,25(4):88-90.
    [11]Aly MS. Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures:experimental results. Materials Letters,2007,61:3138-3141.
    [12]Thomas T, Mahfuz H, et al. Dynamic compression of cellular cores:temperature and strain rate effects. Composite Structures,2002,58:505-512.
    [13]Song B, Lu WY, et al. The effects of strain rate, density, and temperature on the mechanical properties of polymethylene diisocyanate (PMDI)-based rigid polyurethane foams during compression. Journal of Materials Science,2009,44:351-357.
    [14]Cady CM, GrayⅢ GT, Liu C, et al. Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature. Shock Compression of Condensed Matter,2001, 725-728.
    [15]Cady CM, GrayⅢ GT, Liu C, et al. Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature. Materials Science and Engineering A,2009,525: 1-6.
    [16]Chiddister JL, Malvern LE. Compression-impact testing of aluminum at elevated temperatures. Experimental Mechanics,1963,81-90.
    [17]Rosenberg Z, Dawicke D, Strader E, Bless SJ. A new technique for heating specimens in split-hopkinson-bar experiments using induction-coil heaters. Experimental Mechanics, 1986,275-278.
    [18]夏开文,程经毅,胡时胜SHPB装置应用于测量高温动态力学性能的研究.实验力学,1998,13(3):307-313.
    [19]李玉龙,索涛,郭伟国,等.确定材料在高温高应变率下动态性能的Hopkinson杆系统.爆炸与冲击,2005,25(6):487-492.
    [20]周国才,胡时胜,付峥.用于测量材料高温动态力学性能的SHPB技术.实验力学,2010,25(1):9-15.
    [21]张方举,谢若泽,田常津,等SHPB系统高温实验自动组装技术.实验力学,2005,20(2):281-284.
    [22]Meyers MA. Dynamic behavior of materials. USA:John Wiley&Sons, Inc.,1994.
    [23]Parameswaran VR, Urabe N, Weertman J. Dislocation mobility in aluminum. Journal of Applied Physics.1972,43(7):2982-2987.
    [24]Williamson DM, Siviour CR, et al. Temperature-time response of a polymer bonded explosive in compression (EDC37). Journal of Physics D:Applied Physics,2008, 085404(10pp).
    [1]Gibson L J, Ashby M F. Cellular solids:Structure and properties. Cambridge:Cambridge University Press,1997:309-343.
    [2]Evan A G. Multifunctionality of cellular metal systems. Progress in Materials Science,1999, 43(3):171-221.
    [3]Wadley H N G. Multifunctional periodic cellular metals.Philos T R Soc A,2006,364:31-68.
    [4]Bigg D M. Predicting the shock mitigating properties of thermoplastic foams. Polym. Eng. Sci.,1981,21(9):548-556
    [5]Miltz J, Ramon O and Mizrahi. Mechanical behavior of closed cell plastic foams used as cushioning materials. J. Appl. Polym. Sci.,1989,38:281-290
    [6]Ramon O, Mizrahi S and Miltz J. Mechanical properties and behavior of open cell foams used as cushioning materials. Polym. Eng. Sci.,1990,30:197.
    [7]胡玲玲,黄小清,张红,汤立群.泡沫铝材料的一维粘塑性本构关系.华南理工大学学报,2004,32(4):87-91.
    [8]V.S. Deshpande, N.A. Fleck. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids,2000,48:1253-1283.
    [9]Chen C, Lu TJ. A phenomenological framework of constitutive modeling for incompressible and compressible elastoplastic solids. lnt J Solids Structures,2000,37:7769-7786.
    [10]王二恒,虞吉林,王飞,等.泡沫铝材料准静态本构关系的理论和实验研究.力学学报,2004,36(6):673-679.
    [11]Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh International Symposium on Ballistics, The Hague, The Netherlands 1983,983:541-547.
    [12]Rusch KC. Load-copression behavior of flexible foams. J. Appl. polym. Sci., 1969,13:2297-2311.
    [13]Rusch KC. Load-compression behavior of brittle foams. J. Appl. Polym. Sci., 1970,14:1263-1276.
    [14]Schwaber DM and Meinecke EA. Energy absorption in polymeric foams.Ⅱ.Prediction of impact behavior from instron data for foams with rate-dependent modulus. J. Appl. Polym. Sci.,1971,15:2381-2393.
    [15]Meinecke EA, Schwaber DM. Energy absorption in polymeric foams. Ⅰ. Prediction of impact behavior from instron data for foams with rate-independent modulus. J. Appl. Polym. Sci., 1970,14:2239.
    [16]Nagy A, Ko WL and Lindholm US. Mechanical behavior of foamed materials under dynamic compression. J. Cell. Plastics,1974,10:127-134.
    [17]Sherwood JA and Frost CC. Constitutive modeling and simulation of energy absorbing polyurethane foam. Polymer Eng. Sci.,1992,32(16):1138-1146.
    [18]Holmquist TJ, Johnson GN. Determinaiton of constants and comparison of results for various constitutive models. Journal of PhysiqueⅣ,1991,C3:853-860.
    [19]Rule WK, Jones SE. A revised form for the Johnson-Cook strength model. Int. J. Impact Engng.1998,21(8):609-624.
    [20]胡时胜,刘剑飞,王悟.硬质聚氨酯泡沫塑料本构关系的研究.力学学报,1998,30(2):151-156.
    [21]Liu QL, Subhash G, Gao XL. A parametric study on crushability of open-cell structural polymeric foams. Journal of Porous Materials,2005,12:233-248.
    [22]Chou CC, Zhao Y, Lim GG, Song GS. A constitutive model for polyurethane foams with strain-rate and temperature effects. SAE Technical Paper,980967,1998.
    [23]Wang ZH, Jing L, Zhao LM. Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading. Transactions of Nonferrous Metals Society of China,2011,21: 449-454.
    [1]Reid SR, Peng C. Dynamic uniaxial crushing of wood, Int. J. Impact. Engng,1997,19: 531-570.
    [2]Harrigan JJ, Reid SR, Peng C. Inertia effects in impact energy absorbing materials and structures. Int. J. Impact Engng.1999,22:955-979.
    [3]Lopatnikov SL, Gama BA, Haque MJ, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment. Composite Structures,2003,61:61-71.
    [4]Radford DD, Deshpande VS, Fleck NA. The use of metal foam projectiles to simulate shock loading on a structure. International Journal of Impact Engineering,2005,31:1152-1171.
    [5]Tan PJ, Harrigan JJ, Reid SR. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Materials Science and Technology,2002,18:480-488.
    [6]Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part I:experimental data and observations. Journal of the Mechanics and Physics of Solids,2005,53:2174-2205.
    [7]Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part II:'shock'theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids,2005,53:2206-2230.
    [8]Lee S, Barthelat F, Moldovan N, et al. Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials. International Journal of Solids and Structures,2006,43: 53-73.
    [9]Elnasri I, Pattofatto S, Zhao H, et al. Shock enhancement of cellular structures under impact loading:Part I Experimental. Journal of the Mechanics and Physics of Solids,2007,55: 2652-2671.
    [10]Pattofatto S, Elnasri I, Zhao H, et al. Shock enhancement of cellular structures under impact loading:Part II analysis. Journal of the Mechanics and Physics of Solids,2007,55:2672-2686.
    [11]Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honercombs-a finite element study. International Journal of Impact Engineering,2003,28:161-182.
    [12]Zheng Z J, Yu J L, Li J R. Dynamic Crushing of 2D Cellular Structures:A Finite Element Study[J]. Int J Impact Eng,2005,32(1-4):650-664.
    [13]刘耀东,虞吉林,郑志军.惯性对多孔金属材料动态力学行为的影响.高压物理学报,2008,22(2):118-124.
    [14]Liu YD, Yu JL, Zheng ZJ, Li JR. A numerical study on the rate sensitivity of cellular metal. International Journal of Solids and Structures,2009,46:3988-3998.
    [15]Dharan CKH, Hauser FE. Determination of stress-strain characteristics at very high strain rates. Exp.Mech.1970,10:370-376.
    [16]Gorham DA, Pope PH, Field JE. An improved method for compressive stress-strain measurements at very high strain rates. Proc. R. Soc. Lond. A,1992,438:153-170.
    [17]陶俊林,陈裕泽,田常津等.直接撞击Hopkinson实验技术讨论.第三届全国爆炸力学实验技术学术会议论文集,p18-23.
    [18]宋博,胡时胜,刘剑飞.泡沫塑料中冲击波的传播.实验力学,1999,14(3):273-278.
    [19]刘耀东.多孔金属材料率效应的数值分析与动态压缩行为的理论研究.中国科学技术大学博士学位论文,2010.
    [20]Reid SR, Bell WW, Barr RA. Structural plastic shock model for one-dimensional ring systems. International Journal of Impact Engineering,1983,1(2):175-191.
    [21]Shim VP, Tay BY, Stronge WJ. Dynamic crushing of strain-softening cellular structures-a one-dimensional analysis. ASME Journal of Engineering Materials and Technology,1990, 112:398-405.
    [22]Li QM, Meng H. Attenuation or enhancement-a one-dimensional analysis on shock transmission in the solid phase of a cellular material. Internation Journal of Impact Engineering,2002,27:1049-1065.
    [23]张铱鈖,赵隆茂.非均匀泡洙金属材料在冲击载荷下的变形模拟.爆炸与冲击,2006,26(1):33-38.
    [24]张铱鈖,赵隆茂.泡沫金属材料的动力压缩响应.机械强度,2009,31(1):001-007.
    [25]Lopatnikov SL, Gama BA, Haque MJ et al. High-velocity plate impact of metal foams. International Journal of Impact Engineering,2004,30:421-445.
    [26]王礼立.应力波基础(第2版).北京:国防工业出版社,2005.
    [27]周风华,王礼立,胡时胜.高聚物SHPB试验中试件早期应力不均匀性的影响.实验力学,1992,7(1):23-29.
    [1]Chiddister JL, Malvern LE. Compression-impact testing of aluminum at elevated temperatures. Experimental Mechanics,1963,81-90.
    [2]Lindholm US, Yeakley LM. High Strain-rate Testing:Tension and Compression.1968,8:1-9.
    [3]Rosenberg Z, Dawicke D, Strader E, Bless SJ. A new technique for heating specimens in split-hopkinson-bar experiments using induction-coil heaters. Experimental Mechanics,1986, 275-278.
    [4]Song B, Lu WY, Syn CJ. The effects of strain rate, density and temperature on the mechanical properties of polymethylene diisocyanate (PMDI)-based rigid polyurethane foams during compression. J Mater Sci,2009,44:351-357.
    [5]Song B, Chen W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials. Experimental Mechanics,2004,44(3):300-312.
    [6]王宝珍,胡时胜.猪后腿肌肉的冲击压缩特性实验[J].爆炸与冲击,2010,30(1):33-38.
    [7]林玉亮,卢芳云,卢力.石英压电晶体在霍普金森压杆实验中的应用[J].高压物理学报,2005,19(4):299-304.
    [8]郭伟国.PVDF压电薄膜用于Hopkinson压杆测量泡沫金属的动态性能.实验力学,2005,20(4):635-639.
    [9]刘剑飞,胡时胜PVDF压电计在低阻抗介质动态力学性能测试中的应用.爆炸与冲击,1999,19(3):229-234.
    [10]张志浩,施利毅,代凯,等.新型纳米银导电胶的制备及其性能研究.功能材料,2008, 2(39):337-340.
    [11]张方举,谢若泽,田常津,等SHPB系统高温实验自动组装技术.实验力学,2005,20(2):281-284.
    [12]邓志方,李思忠,颜怡霞,等.一种高温SHPB实验技术中的温度场分析.实验力学,2005,20:65-69.
    [13]李玉龙,索涛,郭伟国,等.确定材料在高温高应变率下动态性能的Hopkinson杆系统.爆炸与冲击,2005,25(6):487-492.
    [14]Yang L M, Shim V. An analysis of stress uniformity in split Hopkinson bar test specimens. International Journal of Impact Engineering,2005,31(2):129-150.
    [15]Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc,1994,77(1):263-267.
    [16]周风华,王礼立,胡时胜.高聚物SHPB试验中试件.早期应力不均匀性的影响.实验力学,1992,7(1):23-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700