用户名: 密码: 验证码:
轴向冲击载荷下泡沫铝填充金属圆管的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫铝填充薄壁金属管的复合结构广泛地应用于在减轻结构质量的前提下提高结构的抗冲击性能和能量吸收能力。本文以泡沫铝为芯层的单层薄壁金属圆管和双层薄壁金属圆管为研究对象,利用有限元软件ANSYS/LS-DYNA模块进行了数值仿真分析,研究了轴向载荷作用下两种填充结构的变形过程和吸能特性。根据已有的实验资料,建立有限元模型,模拟结果与实验结果吻合,充分验证了模型的正确性。在此基础上,考虑了金属圆管的几何尺寸和芯层材料的密度对填充结构吸能性能的影响,根据各个填充结构的径向位移分布曲线、应力云图和能量吸收曲线,对比分析各种因素对复合填充结构的变形和能量吸收能力的影响。在同等冲击条件下和相同时间内,对相同儿何参数的单层薄壁金属圆管填充结构和双层薄壁金属圆管泡沫铝填充结构进行对比,对比分析两种结构的能量吸收曲线,评价两者在吸能性能方面的优劣性。本文得到的主要结果如下:
     1、在轴向冲击载荷作用下,泡沫铝复合填充结构的能量吸收量远大于单独的泡沫铝或薄壁金属空管结构的能量吸收量。
     2、在相同的冲击能量下,填充结构的长度越长,填充泡沫金属的密度越小,薄壁金属管的厚度越薄,两种填充结构被压缩的轴向位移越大。填充结构的长度和填充泡沫金属的密度对两种填充结构的平均应力影响不大,而两种填充结构的平均应力会随着薄壁金属管厚度的增大而增大。填充结构的长度对两种填充结构的吸能性能影响不大,而泡沫金属的密度越大,薄壁金属管的厚度越大,两种填充结构的吸能性能会越强。
     3、在相同冲击质量和冲击速度下,由于内外薄壁金属圆管与泡沫铝芯层间的相互作用,单层薄壁金属圆管泡沫铝填充结构的最大径向位移要比双层薄壁金属圆管泡沫铝填充结构大,而平均应力要比双层薄壁金属圆管泡沫铝填充结构的小。由于双圆管填充结构中泡沫金属被充分压缩,在相同时间内双层薄壁金属圆管泡沫铝结构比单层薄壁金属圆管泡沫铝结构吸收的能量更多,说明填充结构中泡沫金属的压缩程度对该结构的能量吸收影响较大。
Thin-walled metallic circular tubes with aluminum foam filler was widely used in improving structure crashworthiness, energy absorption and reducing structure weight. By using the finite element software ANSYS/LS-DYNA, the single thin-wall metallic circular tube and double thin-wall metallic circular tube with foam aluminum filler under axial impact loading are researched, and the deformation process and energy absorption of two kinds of composite structures are analysised. On the basis of the previous experimental data, the finite element model has been established. The numerical results are good agreement with the experimental results. So the finite element models in this paper are right. According to the radial displacement distribution curve, the von misses stress and the energy absorption curves of each composite structure, the model geometry dimension and the densities of aluminum foam impact upon the energy absorption of the composite structure. Under the same impact conditions, the absorbing energy curves of the single circular tube composite structure and double circular tube composite structure are compared at the same time, and the advantages and disadvantages of two kinds of composite structures are given. The main conclusions in this paper are as follows:
     1. Under axial impact loading, the amount of absorbing energy of thin-walled metallic circular with aluminum foam filler is greatly bigger than that of aluminum foam or metallic tubes alone.
     2. The longer the length of the model, the smaller the densities of aluminum foam filler and the thinner the thickness of metallic tube, the bigger the axial displacement of two kinds of structures when they are compressed. The thicker the thin-walled metallic tube, the bigger the von misses stress. But the different length of the composite structure and densities of the aluminum foam have little effect on the mean stress of two kinds of structures. Increasing the thickness of the thin-wall metallic tube or the density of aluminum foam, the ability of absorption energy of the composite structures is improved, but the length of composite structure has little effect on that.
     3. Under the same impact quality and impact velocity, because of the interaction between double tubes and foam aluminum, the maximum radial displacement of single circular tube composite structure is bigger than that of double circular tube composite structure, but the von misses stress is smaller. Because of aluminum foam between internal and external tube is fully compressed, the amount of absorbing energy of double circular tube composite structure is bigger than single circular tube composite structure in the same time. Numerical result shows that aluminum foam compressed degree in composite structure has big impact on absorbing energy of the composite structure.
引文
[1]程慧静,张崇民等.泡沫铝的研究现状与应用展望[J].鞍山科技大学学报,2005,28(6):28-32.
    [2]陈文革,张强.泡沫金属的特点、应用、制备与发展[J].粉末冶金工业,2005,15(2):37-42.
    [3]武小娟,孙伟成等.泡沫铝的制备与应用[J].新技术新工艺.材料与表面处理,2002(4):49-51.
    [4]付全荣,张铱鼢等,多孔泡沫金属性能及在化工设备中的应用[D].太原理工大学,2010.
    [5]牛文娟,白晨光等.泡沫钛及其合金制备方法研究进展[J].粉末冶金技术,2009,27(4):301-304.
    [6]屠永清,张存涛.泡沫铝填充钢管短柱工作性能研究[J].工业建筑,2007,37(1):494-496.
    [7]张涛,徐治平,朱学康等.泡沫铝填充薄壁结构吸能分析[J].船舰科学技术,2007,29(2):52-56.
    [8]邵国鑫,屠永清,沈洪.泡沫铝填充钢管构件阻尼性能的实验研究[J].煤矿机械,2008,29(2):49-52.
    [9]黄炼,吕志强,赵应龙.泡沫铝填充圆管轴向动力屈曲及吸能特性研究[J].船舰科学技术,2009,31(8):55-59.
    [10]桂良进,范子杰等.泡沫填充圆管的动态轴向压缩吸能特性[J].清华大学学报,2004,44(5):709-712.
    [11]吴刚,吕志强等.轴向冲击作用下泡沫填充圆管吸能特性研究[J].噪声与振动控制,2008,6(3):161-164.
    [12]谢中友,李剑荣等.泡沫铝填充薄壁圆管的三点弯曲实验的数值模拟[J].固体力学学报,2007,28(3):261-265.
    [13]李志斌,虞吉林,郑志军等.薄壁管及其泡沫金属填充结构耐撞性的实验研究[J].实验力学,2012,27(1):77-86.
    [14]Mantena P.Raju, Mann Richa. Impact and dynamic response of high-density struct ural foam used as filler inside circular steel tube[J]. Composite Structuers,2003, 61(4):291-302.
    [15]Seitzberger M, Rammerstorfer F G, et al. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam[J]. International Jour nal of Solids and Structures.2000,37(4):4125-4147.
    [16]Kim A, Chen S S, Hasan M A. Bending behavior of thin-walled cylindrical tube filled with aluminum alloy foam[J]. Key Engineering Materials,2004,170(243): 46-51.
    [17]Hanssen G.A, Langseth M, Hopperstad S.O. Static and dynamic crushiing of circ ular aluminium extrusions with aluminium foam filler[J]. International Joural of I mpact Engineering,2000,24(5):475-507.
    [18]Meguid S.A, Stranart J.C, Heyerman J. On the layered micromechanical three-dim ensional finite element modelling of foam-filled columns[J]. Finite Elements in An alysis and Design,2004,40(9):1035-1057.
    [19]Abramowicz W, Jones N. Dynamic progressive buckling of circular and square tu bes[J]. International Journal of Impact Engineering,1986,4(4):243-270.
    [20]Gupta N.K, Venkatesh. Experimental and numerical studies of dynamic axial com pression of thin walled spherical shells[J]. International Journal of Impact Engine ering,2004,30(8-9):1225-1240.
    [21]许坤,寇东鹏等.泡沫铝填充薄壁方形铝管的静态弯曲崩毁行为[J].固体力学学报,2005,26(3):261-266.
    [22]Jensen, Langseth M, Hopperstad S.O. Stochastic simulations of square aluminium tubes subjected to axial loading[J]. International Journal of Impact Engineering,20 07,34(10):1619-1636.
    [23]刘建英.泡沫铝夹芯结构汽车保险杠的研究及结构优化[D].阜新:辽宁工程技术大学,2004.
    [24]Bi Jing, Fang Hongbing, Wang Qian, Ren Xuchun. Modeling and optimization of foam-filled thin-walled column for crashiworthiness designs[J]. Finite Elements in Analysis and Design,2010,46(9):698-709.
    [25]尚晓江,苏建宇等ANSYS LS-DYNA动力分析方法与工程实例[M].北京,中国水 利水电出版社,2008:136-137.
    [26]Hanssen G.A, Hopperstad S.O, Langseth M..Validation of constitutive models appl icable to aluminium foams[J].International Joural of Impact Engineering,2002,44(2): 359-406.
    [27]Singha Majit, Sunejaa H.R, Bolaa M,S, Prakashb S. Dynamic tensile deformation and fracture of metal cylinders at High strain rates[J]. International Journal of I mpact Engineering,2002,27(10):939-954.
    [28]吴刚,吕志强等.轴向冲击作用下泡沫填充圆管吸能特性研究[J].噪声与振动控制,2008,6(3):161-164.
    [29]桂良进,范子杰,王青春.泡沫填充圆管的轴向压缩能量吸收特性[J].清华大学出版社(自然科学版),2003,43(11):1526-1529.
    [30]张善元,刘志芳,路国运.弹性固体中的非线性波.中国建材工业出版社,北京,2006.
    [31]王志华,朱峰,赵隆茂.多孔金属夹芯结构动力学行为及其应用.兵器工业出版社,北京,2010.
    [32]宋强.泡沫金属填充薄壁金属方筒在冲击载荷作用下的数值模拟[D].太原理工大学硕士学位论文,2011.
    [33]刘培生.泡沫金属在单双向拉压载荷作用下的表征分析[J].中国有色金属学报,2008,18(11):2062-2067.
    [34]刘培生.三维网状泡沫金属杨氏模量和泊松比的数理表征[J].稀有金属材料与工程,2009,38(3):240-244.
    [35]Zhang Xiong, Cheng Gengdong. A comparative study of energy absorption charac teristics of foam filled and multi-cell square columns[J]. International Journal of I mpact Engineering,2007,34[11]:1739-1752.
    [36]Dannemann A. Kathryn, Jr.Lankford James. High strain rate compression of close d-cell aluminum foams[J]. Materials Science and Engineering,2000,93(11):157-1 64.
    [37]Tarigopula V, Langseth M, Hopperstad O.S, Clausen A.H.Axial crushing of thin-walled high-strength steel sections[J]. International Journal of Impact Engineering, 2006,32(5):847-882.
    [38]Langseth M, Hopperstad O.S, Berstad T. Crashworthiness of aluminium extrusions :validation of numerical simulation effect of mass ratio and impact velocity[J]. Int ernational Journal of Impact Engineering,1999,22(9-10):829-845.
    [39]Santosa P.Sigit, Wierzbicki Tomaszi, Hanssen G.Arve, Langseth Magnus.Experime ntal and numerical studies of foam-filled sections[J]. International Journal of Impa ct Engineering,2000,24(5):509-534.
    [40]Gupta,N.K, Venkatesh. Experimental and numerical studies of impact axial compr ession of thin walled conical shells[J]. International Journal of Impact Engineering ,2007,34(4):708-720.
    [41]Peroni Lerenzo, Avalle Massimiliano, Peroni Marco. The mechanical behaviour of aluminium foam structures in different loading conditions[J]. International Journal of Impact Engineering,2008,35(7):644-658.
    [42]Abramowicz W, Jones N. Transition From Initial Global Bending to Progressive Buckling of Tubes Loaded Statically and Dynamically[J]. International Journal of Impact Engeering,1997,19(5):415-437.
    [43]Reyes A, Langseth M, Hopperstad O.S.Crashworthiness of aluminum extrusions s ubjected to oblique loading:experiments and numerical analyses[J]. International Jo urnal of Mechanical Sciences,2002,44(9):1965-1984.
    [44]Hou Shujuan,Li Qing,Long Shuyao,Yang Xujing,Li Wei.Crashworthiness design for foam filled thin-wall structures[J].Material and Design,2009,30(6):2024-2032.
    [45]Reid S R, Goudie K. Denting and bending of tubular beams under local loads[J]. Structual Failure, New York,Wiley,1989,10(3):331-364.
    [46]Abranmowicz W, Jones N. Dynamic progressive buckling of circular and square tubes[J]. International Journal of Impact Engineering,1986,4(4):243-270.
    [47]Marineema, Ashabym F. Applying the investment methodology for materials(IMM) to aluminum foams[J]. Materials and Design,2002,23(3):307-319.
    [48]中岛英雄.轻而强度好的多孔金属.功能材料,2000,20(4):27-33.
    [49]王青春等.利用LS-DYNA计算结构准静态压溃的改进方法[J].力学与实践,2003,25(3):20-23.
    [50]张铱鼢,赵隆茂.非均匀泡沫金属材料在冲击载荷下的变形模拟[J].爆炸与冲击,2 006,26(1):36-38.
    [51]巫祖烈,徐秀霞,刘亮,李世亚,周兵.防撞吸能材料金属泡沫铝压缩及吸能性能试验研究[J].交通科技,2008,229:74-77.
    [52]黄西成,陈裕泽等.撞击作用下泡沫铝填充结构吸能特性[J].解放军理工大学学报(自然科学版),2007,8(5):470-473.
    [53]宋宏伟,虞钢等.多孔材料填充薄壁结构吸能的相互作用效应[J].力学学报,2005,37(6):697-703.
    [54]席国胜,何德坪,李鲲鹏.高比强泡沫铝合金中空层合圆管的性能[J].材料研究学报2003,17(2):162-168.
    [55]王二恒,虞吉林等.泡沫铝材料准静态本构关系的理论和实验研究[J].力学学报,2004,36(6):673-679.
    [56]程和法,黄笑梅,徐玲.泡沫铝镁合金的压缩与吸能性的研究.兵器材料科学与工程,2002,25(6):12-14.
    [57]H.P.蒂吉厮切,B.克雷兹特,左孝云等.多空泡沫金属[M].北京,化学工业出版社,2005:147-164.
    [58]曹立宏,马颖.多孔泡沫金属材料的性能及其应用[J].甘肃科技,2006,22(6):117-119.
    [59]于英华,杨春红.泡沫铝夹芯结构的研究现状及发展方向[J].机械工程师,2006,3(3):43-45.
    [60]胡清寒.适用于更轻量化车辆的泡沫铝材料[J].汽车工艺与材料,2008,3(6):28-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700