用户名: 密码: 验证码:
泡沫金属填充套管换热器内流体流动和传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔泡沫金属是近几十年发展起来的一种兼具功能和结构双重属性的新型工程材料,是一种由金属固体骨架和连续或不连续的孔构成的功能性材料。其具有优良的力学、热物理、电学和声学等特性。多孔泡沫金属分为开孔和闭孔两种形式。其中开孔泡沫金属在强化传热技术中具有以下特点:(1)质量轻、强度高、硬度大;(2)比表面积大,这使流体流过时可得到很大的接触面积,将热量传递给泡沫金属固体骨架,从而储存能量强化传热;(3)与流动方向相垂直的孔棱可将边界层隔断并使流体相互混合,强化流体湍流程度;(4)开孔是相互连通的,充分利用了所有的面积。因此开孔泡沫金属可用来制造质量更轻、更加紧凑、传热效率更高的换热器。
     多孔泡沫金属作为一种新型功能材料,其性能目前还处于研究、开发阶段,还未得到广泛应用,本文着重进行泡沫金属填充套管换热器内流体流动和传热的研究。主要研究工作:
     (1)多孔泡沫金属性能的理论研究,重点对描述泡沫金属的基本参数进行了理论分析,得出了表示泡沫金属中流体流动的流动参数,为实验和数值模拟提供理论依据。
     (2)多孔泡沫金属强化传热实验研究,设计了泡沫金属填充套管换热器实验装置及其传热数据采集系统,将泡沫金属填充在内管中。
     (3)对泡沫金属填充套管换热器传热采用有限体积法进行数值分析,通过Gambit建立了实验中套管换热器装置的三维模型,并通过Fluent对其流体流动及传热特性进行分析。
     经理论分析、实验研究和数值模拟结果如下:
     (1)数值模拟结果与实验结果吻合,传热速率和压降均随孔密度或流速的增大而增大。其中填充铝泡沫后压降虽大于空管,但强化传热效果显著。通过对换热器压降和传热性能的综合分析,得出填充铝泡沫后换热器的综合性能比普通套管换热器更好。
     (2)对泡沫金属填充水-水套管换热器的数值模拟,分析了孔隙率、雷诺数、管径、基体材料等对换热器内的流动和换热的影响。结果显示泡沫金属的换热能力和流动阻力随孔隙率的减小而增大,随雷诺数的增大而显著增大;对于压降:当基于渗透率的雷诺数(Re K)小于20时,主要受渗透率的影响,当Re K超过20时,主要受惯性系数影响;不受管径大小、泡沫金属材料的影响,这说明压降主要由泡沫金属固体骨架的三维结构引起而非管壁摩擦所致;对于换热:随着雷诺数、管径或基体金属传热系数的增大,总传热系数也显著提高。但当雷诺数超过10000后,总传热系数的提高显著变小并开始趋于稳定。
     (3)引入热阻和泵功率对填充泡沫金属后的套管换热器的综合性能进行比较,引入性能因子,得出填充泡沫金属后,换热器效率明显提高。
     研究结果可为泡沫金属填充套管换热器内流体流动和传热特性分析提供可靠依据,对过程强化技术及高效换热器的优化设计也有着重要的意义。
Metal foams are a class of porous material with both functional and structural properties, which is developed in recent decades. The metal foams are functional materials made of metal matrix and continuous or discontinuous gas with novel mechanical, thermal, electrical and acoustic properties. Metal foams can be divided described as open- or closed-cell. Open-cell metal foams have the following characteristics in the enhanced heat transfer technology: (1) lightweight, offering high strength and rigidity; (2) high internal surface area, so when fluid flows through metal foams, it can get greatly contact areas. The rate of heat transfer is enhanced by conducting the heat to the material struts.(3) Normal foam ligaments in the flowing direction results in boundary layer disruption and mixing and strengths the degree of fluid turbulence. (4) All open-cells are connected, so all surface area can be fully used. From above on, open-cell metal foams can be used to manufacture lighter, more compact, more efficient heat exchanger.
     Porous metal foams are still in the research, development stage and have not yet been widely applied as a new functional material. In this paper the fluid flow and heat transfer of tube heat exchanger filled with metal foams was researched. The main research work and its results include:
     The first part, theoretical analysis for the basic parameters of metal foams was worked. The results show the flow parameters for aluminum foams. This part is experiment and numerical simulation’s precondition.
     The second part, an experimental research device and a data acquisition system were designed. Hot air flows in the inside square pipe, and cool water flows in the outside tube. AL foams were filled in the inner pipe in the double-pipe heat exchanger.
     The third part, built three-dimensional model of the tube heat exchanger for the experimental test section by Gambit, and simulated analysis for fluid flow and heat transfer property in the tube heat exchanger by Fluent.
     The theoretical analysis, experimental investigation and numerical simulation results are as follows:
     The first part shows that numerical simulations are consistent with the experiments. Both pressure drop and heat transfer rate increase with increasing the flow rate or the pore density. The filled Al foam enhances the heat transfer greatly but also raises the pressure drop. Comprehensively considering pressure drop and the performance of heat transfer, the heat exchanger filled with the Al foam is much better than that without any foam.
     The second part simulated the water-water double-pipe heat exchanger with metal foam filled in the both pipes. Porosity, Reynolds number, diameter, the thermal conductivity of base material relationship with fluid flow and heat transfer in metal foams were analyzed. Results show both pressure drop and heat transfer rate increase with increasing porosity or Reynolds number. For pressure: when Reynolds based on permeability less than 20, the pressure drop over the metal foams is dominated by permeability, when it more than 20, the pressure drop is dominated by inertial coefficient; the pressure drop of water through two pipes of different diameters or different thermal conductivity of base material but the same porosity is almost identical indicating that the pressure drop is mainly caused by the solid structure of the metal foam rather than the pipe wall. For heat transfer: when the Reynolds number more than 10,000, with the Reynolds number increases, the overall heat transfer coefficient was significantly increase and stabilize, especially for high porosity of the foam metal; With the increase of diameter or heat transfer coefficient of base metal , overall heat transfer coefficient is also significantly increased.
     The third part, overall performance of double-pipe heat exchanger with metal foam was compared by introducing the thermal resistance and pumping-power, and the performance factors (I ) show the overall performance is improved significantly.
     The results can provide a reliable basis for the fluid flow and heat transfer character in tube heat exchanger filled with metal foams. The results also have very important significance for process intensification technology and optimal design of efficient heat exchanger.
引文
[1] Sosnick B.Process for making foamlike mass of metal:US,2434775[P].1948.
    [2] Degischer H P, Krist B.多孔泡沫金属[M].左孝青,周芸译.北京:化学工业出版社,2005:105-145.
    [3]汪双凤,李炅,张伟保.开孔泡沫金属用于紧凑型热交换器的研究进展[J].化工进展,2008,27(5):675-678.
    [4] Banhart W.Manufacture. Characterization and Application of Cellular Metals and Metal Foams.Progress in Materials Science,2001,A6:559-632.
    [5] Brothers A H,Dunand D C. Amorphous metal foams[J].Scripta Materialia,2006,54(4):513-520.
    [6] Elliot J C泡沫铝用增粘剂[P]. US,Patent 2751289,1956.
    [7]刘志东,王景丽,黄因慧等.泡沫金属的制备方法及应用[J].航空精密制造技术,2008,44(1):59-62.
    [8]田庆华,李钧,郭学益.金属泡沫材料的制备及应用[J].电源技术,2008,32(6):417-420
    [9]毕于顺,韩雯雯,左孝青等.多孔泡沫金属的制备方法及应用前景[J].有色金属加工,2007,36(2):31-33.
    [10]陈文革,张强.泡沫金属的特点、应用、制备与发展[J].粉末冶金工业,2005,15(2):37-42.
    [11]左孝青,孙加林.泡沫金属的性能及应用研究进展[J].昆明理工大学学报(理工版),2005,30(1):13-17.
    [12]刘三星,赵子龙,杨仕福等.泡沫金属的力学性能研究[J].太原科技大学学报,2009,30(1):40-43.
    [13]高洪吾,刘宇,田臻等.泡沫铝的孔隙率对压缩性能的影响[J].中国材料科技与设备,20(3):73-76.
    [14]曹立宏,马颖.多孔泡沫金属材料的性能及其应用[J].甘肃科技,2006,22(6):117-119.
    [15]郭芳芳,张洪涛.泡沫金属的吸声性能及其应用[J].江西蓝天学院学报,2008,3(7):29-31.
    [16]卢天健.多孔泡沫材料的声吸收特性[J].西安交通大学学报,2007,41(9):1003-1011.
    [17] lain D J, Dupem,卢天健等.声学多孔材料的孔结构优[J].西安交通大学学报,2007,41(11): 125l-1256.
    [18]李雯霞.多孔泡沫金属的制备和性能[J].中国铸造装备与技术[J].2009,5:9-13.
    [19] Arisetty S, Prasad A K, Advani S G. Metal foams as flow field and gas diffusion layer in direct methanol fuel cells[J].Power Sources.2007,165:49–57.
    [20] Kumar A,Reddy R G. Polymer electrolyte membrane fuel cell with metal foam in the gasflow-field of bipolar/end plates[J]. New Mater. Electrochem.2003,6:231–236.
    [21]刘培生,梁开明,顾守仁等.多孔金属电极基体材料[J].稀有金属,2000,24(6):440-444
    [22]刘培生.多孔材料引论[M].北京:清华大学出版社,2004:33.
    [23] Mikami I, Yoshinaga Y, Okuhara T. Rapid removal of nitrate in water by hydrogenation to ammonia with Zr-modified porous Ni catalysts [J]. Applied Catalysis B:Environmental,2004,(49):173-179.
    [24]丁震,冯小刚,陈晓东等.金属泡沫镍负载纳米TiO2光催化降解甲醛和VOCs[J].环境科学,2006,27(9):1814-1819.
    [25]刘培生,周茂奇,刘安东等.多孔泡沫金属负载多沟道结Ti02光催化膜系统[J].稀有金属材料与工程,2009,38:250-253
    [26] Boomsma K, Poulikakos D, Zwick F, Metal foams as compact high performance heat exchangers[J]. Mechanics of Materials,2003,35:1161-1176.
    [27] Klett J, Stinton D, Ott R, et al. Heat exchangers/radiators utilizing graphite foams, Oak Ridge National Laboratory, US Department of Energy, 2001.
    [28] Mahjoob S, Vafai K. A synthesis of fluid and thermal transport models for metal foam heat exchangers[J]. International Journal of Heat and Mass Transfer,2008.
    [29] Youchison D L, Lutz T J, Williams B et al. High heat flux testing of a helium-cooled tungsten tube with porous foam[J]. Fusion Engineering and Design ,2007,82: 1854–1860.
    [30] Bhattacharya A, Mahajan R L. Finned metal foam heat sinks for electronics cooling in forced convection[J].ASME J.Electronic Packaging,,2002,(124)155-163.
    [31] Leong K C, Jin L W. Effect of oscillatory frequency on heat transfer in metal foam heat sinks of various pore densities[J]. Heat Mass Transfer.2006,4:671–681.
    [32]任新见,张晓忠,李世民.钢板一泡沫金属一钢板叠合结构抗爆机理初探[J].爆破,2009,26(1): 25-28.
    [33]牛文娟,白晨光,邱贵宝等.泡沫钛及其合金制备方法研究进展[J].粉末冶金技术,2009,27(4): 301-304.
    [34] Antohe B V, Lage J L, Price D C et al. Experimental determination of permeability and inertia coefficients of mechanically compressed aluminum porous matrices[J]. Journal of Fluids Engineering,1997,119:404-412.
    [35] Lage J L,Antohe B V,Nield D A. Two types of nonlinear pressure-drop versus flow-rate relationobserved for saturated porous media[J]. Journal of Fluids Engineering,1997,119:700-706.
    [36] Bastwros A F. Effectiveness of open cell metallic foams for high power electronic cooling[C]. Anaheim:Symposium on the Thermal Management of Electronics,1998.
    [37]邱海平,施明恒.泡沫铝翅片传热和流动特性的实验研究[J].工程热物理学报,2005,26(6):1016-1018.
    [38] Khayargoli P,Loya V,Lefebvre L P,Medraj M. The impact of microstructure on the permeability of metal foams[C]. Proceeding of CSME Forum,2004: 220-228.
    [39] Paek J, W,Kang B H, Kim S Y, et al. Effective thermal conductivity and permeability of aluminum foam materials[J]. Journal of Thermophysics and Heat Transfer,2000,21(2):453–464
    [40] Liu J F, Wu W T, Chiu W C, et al. Measurement and correlation of friction characteristic of flow through foam matrixes[J]. Thermal Fluid Science, 2006,30: 329–336.
    [41] Vafai K, Tien C L, Boundary and inertia effects on convective mass transfer in porous media[J]. Heat Mass Transfer,1982,25(8):1183–1190.
    [42] Plessis P D, Montillet A, Comiti J, et al. Pressure drop prediction for flow through high porosity metallic foams[J]. Chemical Engineering Science, 1994, 49(21):3545–3553.
    [43] Dukhan N. Correlations for the pressure drop for flow through metal foam[J] Experiments in Fluids, 2006,41:665–672.
    [44] Lu W, Zhao C Y, Tassou S A, et al. Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes[J]. International Journal of Heat and Mass Transfer, 2006,49:2751–2761.
    [45]陆威,赵长颖,屈治国.金属泡沫填充水平圆管内单相对流换热研究[J].工程热物理学报,2008,29(11):1895-1897.
    [46] Fourie J G, Du Plessis J.P, Pressure drop modelling in cellular metallic foams[J]. Chem. Eng. Sci. 2002,28: 2781–2789.
    [47] Jin L,Leong K C . Heat transfer performance of metal foam heat sinks subjected to oscillating flow[J]. Transactions on Components and Packaging Technologies,2006,29(4):856-863.
    [48] Boomsma K,Poulikakos D. The effects of compression and pore size variations on the liquid flow characteristics in metal foams[J]. Journal of Fluids Engineering,2002,124:263-272.
    [49] Phanikumar M S,Mahajan R L. Non-darcy natural convection in high porosity metal foams[J]. Int. Journal of Heat and Mass Transfer,2002,45:3781-3793.
    [50] Kays W M, Crawford M E, Weigand B.对流传热与传质[M].陈熙,翟殿春,译.北京:科学出版社,1986.
    [51] Calmidi V V, Mahajan R L. Forced convection in high porosity metal foams[J]. ASME J.Heat Transfer,2000,122:557–565.
    [52] Giani L, Groppi G, Tronconi E. Heat transfer characterization of metallic foams[J]. Industrial and Engineering Chemistry Research ,2005,44:9078–9085.
    [53] Kim S Y, Kang B H, Kim J H. Forced convection from aluminum foam materials in an asymmetrically heated channel[J]. Heat Mass Transfer, 2001,44:1451–1454.
    [54] Klett J, Stinton D, Ott R, et al. Heat exchangers/radiators utilizing graphite foams, Oak Ridge National Laboratory, US Department of Energy, 2001.
    [55] Dukhan N, Quinones P. Convective heat transfer analysis of open cell metal foam for solar air heaters, Proceeding of International Solar Energy Conference USA , 2003.
    [56] Kaviany,M. Laminar-flow through a porous channel bounded by isothermal parallel plates[J]. International Journal of Heat and Mass Transfer, 1985,28:851–858.
    [57]闫长海,孟松鹤等.开孔金属泡沫的传热分析[J].功能材料,2006,8(37):1292-1294.
    [58] Gibson L J ,Ashy M D. Cellular Solid ,2nd Edition[M]. Cambridge:Cambridge University Press, 1999.
    [59] Lu T J,Stone H A,Ashby M F. Heat transfer in open-cell metal foams[J]. Acta Materialia,1998,46:3619-3635.
    [60] Krishnan S,Murthy J Y,Garimella S V. Direct simulation of transport in open-cell metal foam[J]. ASME J.Heat Transfer,2006,(128)793-799.
    [61] Boomsma K,Poulikakos D,Ventikos Y. Simulation of flow through open cell metal foams using an idealized periodic cell structure[J]. Heat and Fluid Flow,2003,(24):825-834.
    [62] Boomsma K,Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam[J].Heat and Mass Transfer,2001,(44)827-836.
    [63] Calmidi V V. Transport phenomena in high porosity metal foams. Ph.D.Thesis,University of Colorado,Boulder,CO,1998.
    [64] Kaviany, M., Principles of Heat Transfer in Porous Media.Springer-Verlag, New York. 1995.
    [65]贝尔.J著,李竞生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑出版社,1983:91-97.
    [66] Chauveteau G, Thirriot C.La Houille B1anche, 1967, 22:1
    [67] Ergun, S.Chem. Eng.Pro,1952,48:89
    [68] Macdonald IF, El-Sayed M S, Mow K, et al. Flow through porous media-Ergun equation revised[J].Ind Eng Chem Fundam. 1979,18:199~208.
    [69] Brinkman HC. On the permeability of media consisting of closely packed porous particles [J]. Appl Sci Res, 1947, A1:27~34;1948,A1:81~87.
    [70] Hong J T, Tien C L, Kaviany M. Non-Darcian effects on vertical-plate natural convection in porous media with high porousities[J]. Int J Heat and Mass Transfer, 1985,28:2149~2157.
    [71]胡玉坤,丁静.多孔介质内部传热传质规律的研究进展[J].广东化工,2006,33(163):44-47.
    [72] Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam[J]. International Journal of Heat and Mass Transfer, 2001,44: 827-836
    [73] Amiri A., Vafai K., Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media[J], Int. J. Heat Mass Transfer. 1994, 37 (6): 939-954
    [74] Yu Qijun, Straatman G S, Thompson Brian E. Carbon-foam finned tubes in air-water heat exchangers[J]. Applied Thermal Engineering, 2006,26: 131-143
    [75] Yu Qijun,Thermal engineering model for air-water heat exchangers made of carbon foam finned tubes,M.E.Sc.Thesis,The University of the American Society of the Civil Engineers, ASCE,HY5,1964: 1-11
    [76]王福军.计算流体动力学分析[M].清华大学出版社,2004.
    [77]刘霞,葛新锋. Fluent软件及其在我国的应用能源研究与利用[J]. 2003,2
    [78]李勇,刘志安,安亦然.介绍流体力学通用软件一fluent[J].水动力学研究.2001,16(2): 254-258.
    [79]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:20.
    [80]赵玉新.Fluent中文帮助完整版[EB/OL]. www.ceclub.cn
    [81] Edmundo C R. Modeling of heat transfer in open cell metal foams,Master Thesis, University of Puerto Rico, 2004.
    [82] Zhao C Y, Kim T, Lu T J,et al. Thernal transport in high porousity cellular metal foams[J].Journal of Thermophysics and Heat Transfer,2004,18(3):309-317.
    [83]田原,赵长颖,李增耀等.两种拓展达西模型对金属泡沫填充管中流动与传热的影响[J].工程热物理学报,2008,29(8):1380-1382.
    [84] Dukhan N, Chen K C. Heat transfer measurements in metal foam subjected to constant heat flux[J]. Experimental Thermal and Fluid Science 2007,32: 624–631.
    [85] Lu T J, Stone A, Ashby M F. Heat transfer in open-cell metal foam[J], Acta Materialia 1998,46 (10) :3619–3635

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700