用户名: 密码: 验证码:
选区激光熔化制备多孔316L不锈钢和多孔钛的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选区激光熔化是一种典型的快速原型制造技术,可以在没有工装夹具或模具的条件下,利用激光束将粉体材料熔融堆积而快速成形出任意复杂形状的三维零件。本文将选区激光熔化技术引入多孔金属制备领域,选用316L不锈钢、钛为基体,以NH_4HCO_3、TiH_2粉末为造孔剂,成功制备出了多孔316L不锈钢和多孔Ti。利用XRD、SEM、EDX等分析和检测手段,研究了获得的多孔结构的物相、显微组织和成分,分析了造孔剂种类、含量及激光功率与扫描速率等激光工艺参数对成形的多孔试样显微组织特征和性能的影响规律;并阐述了不同造孔剂组分和激光工艺条件下多孔结构的成形机制。
     使用NH_4HCO_3粉末作为造孔剂成形多孔316L不锈钢时,在优化的工艺条件(NH_4HCO_3造孔剂含量为4.0 wt.%、激光功率800 W、扫描速率0.01 m/s)下,获得了新颖的蜂窝状微孔结构。该多孔结构中孔隙分布均匀,孔径在2~5μm之间,开孔孔隙率达到45%,多孔结构中不存在造孔剂残余物,具有较高的化学纯度。
     使用TiH_2粉末作为造孔剂成形多孔316L不锈钢时,在激光功率650 W、扫描速率0.03 m/s工艺条件下,制备出平均孔径在亚毫米量级(约250~300μm)的多孔不锈钢,当TiH_2造孔剂含量由2 wt.%增至10 wt.%时,多孔试样的孔隙率由28.7%增加到38.7%;此外,还研究了SiC陶瓷颗粒的加入对316L不锈钢/TiH_2混合粉体SLM成形多孔结构的影响,研究表明SiC陶瓷的加入有利于获得较高的孔隙率,但同时也恶化了粉体成形性能。
     对TiH_2/Ti粉末体系进行了SLM实验研究,在TiH_2组分含量60 wt.%及激光功率1000 W、扫描速率0.02 m/s工艺条件下,成形出孔隙率为42.8%、平均孔径约350μm的多孔Ti试样,且大部分孔隙为近圆形,孔径分布较为均匀,分布范围为~200– ~600μm。研究发现,在激光工艺过程中TiH_2粉末除了充当造孔剂外,还可提供保护气氛,粉体成形时未发生显著氧化,保证了获得的多孔Ti结构具有较高的化学纯度。
     研究还发现,所用扫描速率对成形的多孔Ti试样的孔隙率及孔壁显微硬度有重要影响。在TiH_2含量60 wt.%、激光功率固定为1000 W的实验条件下,当扫描速率由0.01 m/s增加到0.03 m/s时,多孔试样的孔隙率由32.4%增大到47.2%,而扫描速率进一步增至0.05 m/s时,多孔试样的孔隙率下降至18.4%;而多孔试样孔壁显微硬度随扫描速率的变化趋势与上述孔隙率的变化趋势相反,当扫描速率从0.01 m/s增加至0.03 m/s时,孔壁显微硬度从442.3 HV_(0.025)降至403.6 HV_(0.025);扫描速率进一步增加至0.05 m/s时,孔壁显微硬度增加至430.9 HV_(0.025)。
Selective Laser Melting (SLM), as a typical Rapid Manufacturing (RM) technique, enables the quick production of complex shaped three-dimensional (3D) components by layerwise fusing powder materials with a scanning laser beam, without the use of fixture or tooling. In the present paper, SLM method is introduced into the field of porous metals fabrication. 316L stainless steel base and titanium base porous metals were successfully prepared using NH_4HCO_3 and TiH_2 powders as the pore-forming agents. Phases, microstructures and compositions of the processed porous structures were investigated using XRD, SEM and EDX. The effects of componential (the types and contents of pore-forming agents) and processing conditions (laser powder and scanning speed) on microstructural features of the obtained porous structures and their properties were analyzed. The formation mechanisms of porous structures under various ingredients of pore-forming agents and laser processing conditions were also elucidated.
     The selective laser melting of a blended powder system consisting of 316L stainless steel powder and gas-generating powder NH_4HCO_3 was performed. A novel honeycomb-like microcellular structure possessing unusually micrometer scaled pores was prepared, with the addition of 4.0 wt.% NH_4HCO_3 powder and using optimized processing conditions (laser power of 800 W and scanning speed of 0.01 m/s). The obtained porous structure presented a uniform pore distribution in the range of ~2 to ~5μm and had an open porosity of 45%. A high chemical purity was also yielded for this porous structure without the detection of residual gas-generating agent.
     Porous 316L stainless steel with sub-millimeter scaled pores (~250 to ~300μm) was prepared with the addition of TiH_2 pore-forming agent, using a laser power of 650 W and a scanning speed of 0.03 m/s. As the content of TiH_2 powder rose from 2 wt.% to 10 wt.%, the porosity of the porous samples increased accordingly from 28.7% to 38.7%. The role of SiC ceramic particles addition on the SLM-processed porous structures from 316L stainless steel and TiH_2 blended powder was also investigated. The results showed that the SiC addition was favorable to achieve a high porosity, but was infaust for degrading the forming property.
     The selective laser melting of the TiH_2-Ti blended powder was carried out. Porous titanium samples characterized by a porosity of 42.8% and an averaged pore size of 350μm were obtained with 60 wt.% TiH_2 addition, at a laser power of 1000 W and a scanning speed of 0.03 m/s. The majority of the pores in the porous structures exhibited a near-round shape, and the pore sizes distributed uniformly in the range of ~200 to ~600μm.
     The experimental results also revealed that the applied scanning speed exerted a significant effect on the porosity of porous Ti samples and the microhardness of Ti walls. With 60 wt.% TiH_2 powder addition and the laser power fixed at 1000 W, the porosity of porous samples increased from 32.4% to 47.2% when the applied scanning speed rose from 0.01 m/s to 0.03 m/s. As the scanning speed further increased to 0.05 m/s, the porosity decreased to 18.4%. In contrast, the changes of the microhardness of Ti walls with the scanning speed showed a reverse tendency. When the scanning speed rose from 0.01 m/s to 0.03 m/s, the microhardness of Ti walls declined from 442.3 HV_(0.025) to 403.6 HV_(0.025). While as the scanning speed further increased to 0.05 m/s, the microhardness value of Ti walls increased slightly to 430.9 HV_(0.025).
引文
[1]刘培生.多孔材料引论[M].北京,清华大学出版社, 2004: 1~2.
    [2] Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams [J]. Progress in Materials Science, 2001, 46(6): 559~632.
    [3] Nakajima, H. Fabrication, properties and application of porous metals with directional pores [J]. Progress in Materials Science, 2007, 52(7): 1091~1173.
    [4]何德坪,何思渊,王权,等.铝合金熔体泡沫化过程及多样化的泡沫铝合金[J].中国科学(B辑:化学)), 2009, 39(2): 97~105.
    [5]张华伟,李言祥,刘源. Gasar工艺获得均匀藕状多孔结构的气压选择[J].金属学报, 2006, 42(11): 1171~1176.
    [6]刘培生,马晓明.多孔材料检测方法[M].北京,冶金工业出版社, 2006: 13~122.
    [7] Degischer H P, Kriszt B. Handbook of cellular metals: production, processing, applications [M]. Weinheim, Wiley-VCH, 2002: 125~216.
    [8] Bidault F, Brett D J L, Middleton P H, et al. A new application for nickel foam in alkaline fuel cells [J]. International Journal of Hydrogen Energy, 2009, 34(16): 6799~6808.
    [9]曹立宏,马颖.多孔泡沫金属材料的性能及其应用[J].甘肃科技, 2006, 22(6): 117~121.
    [10]刘培生,李铁藩,傅超,等.多孔金属材料的应用[J].功能材料, 2001, 32(1): 12~15.
    [11] Ashby M F, Evans A, Fleck N A, et al. Metal foams: a design guide [M]. Oxford, Butterworth-Heinemann, 2000: 3~7.
    [12]许庆彦,熊守美.多孔金属的制备工艺方法综述[J].铸造, 2005, 54(9): 840~843.
    [13] Banhart J. Metal Foams: Production and stability [J]. Advanced Engineering Materials, 2006, 8(9): 781~794.
    [14] Shapovalov V I. Method for manufacturing porous articles [P]. US Patent, No. 5181549, 1993.
    [15] Liu Y, Li Y X. A theoretical study of Gasarite eutectic growth [J]. Scripta Materialia, 2003, 49(5): 379~386.
    [16] Shapovalov V, Boyko L. Gasar-a new class of porous Materials [J]. Advanced Engineering Materials, 2004, 6(6):407~410.
    [17] Liu Y, Li Y X, Wan J, et al. Metal-gas eutectic growth during unidirectional solidification [J]. Metallurgical and Materials Transactions A, 2006, 37A(9): 2871~2878.
    [18] Drenchev L, Sobczak J, Sobczak N, et al. A comprehensive model of ordered porosity formation[J]. Acta Materialia, 2007, 55(19): 6459~6471.
    [19] Proa-Flores P M, Drew R A L. Production of aluminum foams with Ni-coated TiH_2 powder [J]. Advanced Engineering Materials, 2008, 10(9): 830~834.
    [20] Markaki A E, Clyne T W. The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams [J]. Acta Materialia, 2001, 49(9): 1677~1686.
    [21] Nakajima H, Ide T. Fabrication of porous copper with directional pores through thermal decomposition of compounds [J]. Metallurgical and Materials Transactions A, 2008, 39A(2): 390~394.
    [22] Kennedy A R. The effect of TiH_2 heat treatment on gas release and foaming in Al-TiH_2 preforms [J]. Scripta Materialia, 2002, 47(11): 763~767.
    [23] Lehmhus D, Rausch G. Tailoring titanium hydride decomposition kinetics by annealing in various atmospheres [J]. Advanced Engineering Materials, 2004, 6(5): 313~330.
    [24] Yang Z M, Fang J X, Ding B J. Effect of SiO_2 coating layer morphology on TiH_2 gas release characteristic [J]. Journal of Colloid and Interface Science, 2005, 290(2): 305~309.
    [25] Nakamura T, Gnyloskurenko SV, Sakamoto K, et al. Development of New Foaming Agent for Metal Foam [J]. Materials Transactions, 2002, 43(5): 1191~1196.
    [26] Cambronero L E G, Ruiz-Roman J M, Corpas F A, et al. Manufacturing of Al-Mg-Si alloy foam using calcium carbonate as foaming agent [J]. Journal of Materials Processing Technology, 2009, 209(4): 1803~1809.
    [27] Williams J M, Adewunmi A, Schek R M, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering [J]. Biomaterials, 2005, 26(23): 4817~4827.
    [28] Savalani M M, Hao L, Zhang Y, et al. Fabrication of porous bioactive structures using the selective laser sintering technique [J]. Proceedings of the Institution of Mechanical Engineers, Part H, Journal of Engineering in Medicine, 2007, 221(H8): 873~886.
    [29] Shishkovsky I V, Volova L T, Kuznetsov M V, et al. Porous biocompatible implants and tissue scaffolds synthesized by selective laser sintering from Ti and NiTi [J]. Journal of Materials Chemistry, 2008, 18(12): 1309~1317.
    [30]黄树槐,肖跃加,莫健华,等.快速成形技术的展望[J].中国机械工程, 2000, 11(1-2): 195~200.
    [31] Cheah C M, Chua C K, Lee C W, et al. Rapid prototyping and tooling techniques: a review of applications for rapid investment casting [J]. International Journal of Advanced Manufacturing Technology, 2005, 25(3-4): 308~320.
    [32]朱林泉,白培康,朱江淼.快速成型与快速制造技术[M].北京,国防工业出版社, 2003: 3~10.
    [33] Ferreira J C, Mateus A. A numerical and experimental study of fracture in RP stereolithography patterns and ceramic shells for investment casting [J]. Journal of Materials Processing Technology, 2003, 134(1): 135~144.
    [34] Yi S P, Liu F, Zhang J, et al. Study of the key technologies of LOM for functional metal parts [J]. Journal of Materials Processing Technology, 2004, 150(1-2): 175~181.
    [35] Chung H, Das S. Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering [J]. Materials Science and Engineering A, 2006, 437(2): 226~234.
    [36] Zein I, Hutmacher D W, Tan K C, et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications [J]. Biomaterials, 2002, 23(4): 1169~1185.
    [37]顾冬冬.激光烧结铜基合金的关键工艺及基础研究[D].博士学位论文,南京:南京航空航天大学, 2007.
    [38]顾冬冬,沈以赴,杨家林,等.多组分铜基金属粉末选区激光烧结致密化机理[J].中国有色金属学报, 2005, 15(4): 596~602.
    [39] Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features [J]. Materials Science and Engineering A, 2006, 428(1-2): 148~158.
    [40] Abe F, Osakada K, Shiomi M, et al. The manufacturing of hard tools from metallic powders by selective laser melting [J]. Journal of Materials Processing Technology, 2001, 111(1-3): 210~213.
    [41] Kruth J P, Froyen L, Van Vaerenbergh J, et al. Selective laser melting of iron-based powder [J]. Journal of Materials Processing Technology, 2004,149(1-3): 616~622.
    [42] Mazumder J, Dutta D, Kikuchi N, et al. Closed loop direct metal deposition: art to part [J]. Optics and Lasers in Engineering, 2000, 34(4-6): 397~414.
    [43] Pinkerton A J, Li L. Multiple-layer laser deposition of steel components using gas- and water-atomised powders: the differences and the mechanisms leading to them [J]. Applied Surface Science, 2005, 247(1-4): 175~181.
    [44] Wang L, Felicelli S. Analysis of thermal phenomena in LENSTM deposition [J]. Materials Science and Engineering A, 2006, 435-436: 625~631.
    [45] Ye R Q, Smugeresky J E, Zheng B L, et al. Numerical modeling of the thermal behavior during the LENS? process [J]. Materials Science and Engineering A, 2006, 428(1-2): 47~53.
    [46] Simchi A, Petzoldt F, Pohl H. Direct metal laser sintering: Material considerations and mechanisms of particle bonding [J]. International Journal of Powder Metallurgy, 2001, 37(2): 49~61.
    [47] Kruth J P, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting [J]. Rapid Prototyping Journal, 2005, 11(1): 26~36.
    [48] Gu D D, Shen Y F. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods [J]. Materials & Design, 2009, 30(8): 2903~2910.
    [49] Simchi A, Pohl H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder [J]. Materials Science and Engineering A, 2003, 359(1-2): 119~128.
    [50] Gu D D, Shen Y F. Processing conditions and microstructural features of porous 316L stainless steel components by DMLS [J]. Applied Surface Science, 2008, 255(5): 1880~1887.
    [51] Xie J W, Fox P, O’Neill W, et al. Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels [J]. Journal of Materials Processing Technology, 2005, 170(3): 516~523.
    [52] Pogson S, Fox P, O’Neill W, et al. The direct metal laser remelting of copper and tool steel powders [J]. Materials Science and Engineering A, 2004, 386(1-2): 453~459.
    [53]陈静,杨海欧,李延民,等.激光快速成形过程中熔覆层的两种开裂行为及其机理研究[J].应用激光, 2002, 22(3): 300~304.
    [54] Hollander D A, von Walter M, Wirtz T, et al. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming [J]. Biomaterials, 2006, 27(7): 955~963.
    [55] Ryan G E, Pandit A S, Apatsidis D P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique [J]. Biomaterials, 2008, 29(27): 3625~3635.
    [56] Lopez-Heredia M A, Goyenvalle E, Aguado E, et al. Bone growth in porous titanium implants made by rapid prototyping [J]. Key Engineering Materials, 2006, 309-311: 1099~1102.
    [57] Yadroitsev I, Shishkovsky I, Bertrand P, et al. Manufacturing of fine-structured 3D porous filter elements by selective laser melting [J]. Applied Surface Science, 2009, 255(10): 5523~5527.
    [58] Warnke P H, Douglas T, Wollny P, et al. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering [J]. Tissue Engineering Part C: Methods, 2009, 15(2): 115~124.
    [59] Lewis M, Robin C S, Wesley K B, et al. Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 89B(2): 325~334.
    [60] Stamp R, Fox P, O’Neill W, et al. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting [J]. Journal of Materials Science: Materials in Medicine, 2009, 20(9): 1839~1848.
    [61]吴鹏,沈以赴. 316不锈钢藕状多孔结构的选区激光烧结制备[J].稀有金属材料与工程, 2007, 36(6): 1070~1073.
    [62] Shen Y F, Gu D D, Wu P. Development of porous 316L stainless steel with controllable microcellular features using selective laser melting [J]. Materials Science and Technology, 2008, 24(12): 1501~1505.
    [63] Fischer P, Romano V, Weber H P, et al. Sintering of commercially pure titanium powder with a Nd:YAG laser source [J]. Acta Materialia, 2003, 51(6): 1651~1662.
    [64] Sumita M, Hanawa T, Teoh S H. Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials—review [J]. Materials Science and Engineering C, 2004, 24(6-8): 753~760.
    [65] Bakan HI. A novel water leaching and sintering process for manufacturing highly porous stainless steel [J]. Scripta Materialia, 2006, 55(2): 203~206.
    [66] Alvarez K, Sato K, Hyun S K, et al. Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications [J]. Materials Science and Engineering C, 2008, 28(1): 44~50.
    [67]顾冬冬,沈以赴.添加La2O3对激光烧结(WC-Co)p/Cu金属基复合材料组织和成形性能的影响[J].金属学报, 2007, 43(9): 968~976.
    [68]谢善骁,朱霞云.渗碳和碳氮共渗[M].北京,国防工业出版社, 1982: 1~12.
    [69] Niu H J, Chang I T H. Instability of scan tracks of selective laser sintering of high speed steel powder [J]. Scripta Materialia, 1999, 41(11): 1229~1234.
    [70] Wang X C, Laoui T, Bonse J, et al. Direct selective laser sintering of hard metal powders: Experimental study and simulation [J]. International Journal of Advanced Manufacturing Technology, 2002, 19(5): 351~357.
    [71] Boccalini M, Goldenstein H. Solidification of high speed steels [J]. International Materials Reviews, 2001, 46(2): 92~115.
    [72] Cachinho S C P, Correia R N. Titanium porous scaffolds from precursor powders: rheological optimization of TiH_2 slurries [J]. Powder Technology, 2007, 178(2): 109~113.
    [73]左孝青,周芸,赵国宾,等. CaCO_3发泡剂制备泡沫铝工艺研究[J].稀有金属, 2004, 28(1): 195~198.
    [74]周全,陈乐平.熔体发泡法制备泡沫镁材料的研究[J].特种铸造及有色合金, 2009, 29(3): 224~228.
    [75] Gu D D, Shen Y F, Liu M C, et al. Numerical simulations of temperature field in direct metal laser sintering process [J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2004, 21(3): 225~233.
    [76]梁芳慧,王克光,周廉.不同过饱和钙化溶液中多孔钛表面磷灰石层的形成[J].稀有金属材料与工程, 2004, 33(2): 166~170.
    [77]邹鹌鸣,张二林,曾松岩.纤维烧结多孔钛及其表面生长仿生Ca-P涂层[J].稀有金属材料与工程, 2007, 36(8): 1394~1398.
    [78]李士同,朱瑞富,甄良,等.烧结温度对多孔钛组织结构与性能的影响[J].材料热处理学报, 2009, 30(2): 93~97.
    [79]李虎,虞奇峰,张波,等.浆料发泡法制备生物活性多孔钛及其性能[J].稀有金属材料与工程, 2006, 35(1): 154~157.
    [80] Lee J H, Kim H E, Koh Y H. Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer [J]. Materials Letters, 2009, 63(23): 1995~1998.
    [81] Niu W, Bai C, Qiu G, et al. Processing and properties of porous titanium using space holder technique [J]. Materials Science and Engineering A, 2009, 506(1-2): 148~151.
    [82]刘学斌,马蓦,王秀锋,等.开孔泡沫钛力学性质的温度相依性[J].稀有金属材料与工程, 2008, 37(2): 277~280.
    [83] Li R D, Liu J H, Shi Y S, et al. 316L stainless steel with gradient porosity fabricated by selective laser melting [J]. Journal of Materials Engineering and Performance, 2009, DOI: 10.1007/s11665-009-9535-2.
    [84]张文钺.焊接冶金学(基本原理)[M].北京,机械工业出版社, 1993: 37~40.
    [85] Kathuria Y P. Nd-YAG laser assisted aluminum foaming [J]. Journal of Materials Processing Technology, 2003, 142(2): 466~470.
    [86] Drenchev L, Sobczak J, Asthana R, et al. Mathematical modelling and numerical simulation of ordered porosity metal materials formation [J]. Journal of Computer-Aided Materials Design, 2003, 10(1): 35~54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700