用户名: 密码: 验证码:
泡沫金属填充薄壁金属方筒在冲击载荷作用下的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝泡沫填充薄壁金属筒的复合填充结构广泛地应用于在减轻构件质量的前提下提高构件的抗冲击性能和能量吸收能力。本文采用有限元显式动力分析程序LS-DYNA来研究铝泡沫填充薄壁金属筒的复合结构在轴向冲击载荷作用下的变形和能量吸收特性。模拟从模型的长宽比、外层金属筒的宽厚比和填充用的泡沫金属的密度三个方面进行,并模拟了复合填充筒保险杠受冲击后的响应。选择LS-DYNA材料库中24号piecewise linear plastic hardening(分段线性塑性硬化)模型和63号crushable foam material(冲击泡沫)材料模型分别模拟铝金属筒和泡沫铝两种材料;用壳163单元和固体164单元分别对薄壁金属筒和泡沫金属进行网格划分;并在模拟时引入了trigger机制,它能使构件受冲击后的变形更加的平稳,但不会改变结构总的变形吸收能。考虑到模型的对称性,建立了1/4模型,并添加了相应的对称约束、接触和边界条件,减少了模拟的时间,增加了模拟的准确性。与单独的薄壁金属筒或铝泡沫金属相比,二者组成的复合结构能够在减轻重量的前提下提高整体构件的刚度,缩短由冲击引起的褶皱长度,增加构件的比吸收能,所以能有效的将峰值应力控制在破坏应力以下。
     模拟实验的结果与实验结果吻合,证实了试验方法的准确性。模拟结果显示了:
     (1)将泡沫金属填充进薄壁金属筒构成填充件,与单独使用泡沫金属或者薄壁金属筒相比,可以大幅度的减小米赛斯平均应力的大小,增加撞击时吸收的能量。
     (2)试件长度越长,填充泡沫金属的密度越小,薄壁金属筒的厚度越薄,在冲压时形成的褶皱越多,褶皱的规则性越好,外层薄壁金属筒被破坏的程度越小。填充不同密度分布的模型受压后产生的褶皱的个数较单独填充低密度泡沫金属时少,但比单独填充高密度泡沫金属时多。
     (3)外侧薄壁金属筒的厚度越大,撞击后填充件的米赛斯平均应力越大;内部充填的泡沫金属的密度的大小,填充不同密度分布的泡沫金属和模型的长径比对整体构件的平均应力影响不大。
     (4)增大外侧薄壁金属筒的厚度,增大填充的泡沫金属的密度都可以增加构件撞击后吸收的能量;填充件的长径比对构件撞击后吸收能量的多少影响不大。采用不同密度的泡沫金属分层填充的构件,在加载时间相同的条件下,构件吸收的能量几乎相同,并且所吸收的能量值介于用130kg/m3和250kg/m3泡沫金属单独填充时所吸收的能量之间。
     (5)用复合填充结构代替空金属筒做保险杠的吸能构件作用明显,既可以减小保险杠的变形量,又可以增大撞击时能量的吸收量。
Thin-walled metallic square tubes with aluminium foam filler was widely used in improving structure crashworthiness and reducing structure weight.Based on ansys ls-dyna simulations,researches were carried out to study the deformation and energy absorption of thin-walled metallic square tubes with aluminium foam filler subjected to impactload.The simulations was carried on from different length-width ratio,flakiness ratio of the metallic tube and different foam density-distribution and made a simulation about the response of the bumper with filled tube under impactload. The materials of metallic tube and aluminum foam were described by number 24 piecewise linear plastic hardening and number 63 crushable foam material model.Shell 163 and Solid 164 element were used to mesh the metallic tube and aluminum foam.Triggers were introduced in the simulation to make the deformation stable,but did not affect the total deformation of structure.The 1/4 model was established because of symmetry,the corresponding semmetry constraints, contact set and boundary conditions were appended in order to reduce simulation process time, increased the simulation accuracy.Compared to use the empty metallic square or aluminium foam square alone,this composite structure could decrease the weight while maintaining or even improving stiffness,shorten the length of fold caused by crushing and increase the specific absorbed energy value,so it was effective in energy absorption applications,keeping the peak force below the limit that causes damage.
     The numerical results were compared with the experimental result and gave an excellent agreement. So the experimental method was right.Conclusions were as follows:
     (1) Compared to using aluminium foam or metallic tubes alone, thin-walled metallic square with aluminium foam filler could greatly smaller von misses stress and bigger the amount of absorbing impacted-energy.
     (2) The longer the model length,the smaller the densities of aluminum foam filler,the thinner the thickness of metallic tube,when compressed,generated more and better regularity drapes, caused less degree destruction to the metallic tube.when impacted,the composite structure filled with different density distribution aluminum foam generated less drapes than the lower density aluminum foam filler,but more drapes than the higher density aluminum foam filler.
     (3) The thicker the lateral thin-walled metallic tube, when impacted,the bigger the Von misses stress;but the values of foam filler densities,different density distribution aluminum foam and the length-diameter ratio of the model had little effect on that.
     (4) Increasing the thickness of the thin-wall metallic tube or the value of aluminum foam density could strengthen the ability of absorption energy,but the length-diameter ratio of the model had little effect on that.The composite structure filled with different density distribution aluminum foam had a bigger ability of absorption energy than filled with lower density aluminum foam,but smaller than filled with higher density aluminum foam.
     (5) The effect of using composite structure instead of empty metal cylinder as the energy-absorbing component of bumper was obvious, this way could reduce the deformation of bumper and increase impacted absorbing energy.
引文
[1]Zhang Xiong,Cheng Gengdong.A comparative study of energy absorption characteristics of foam filled and multi-cell square columns[J]. International Journal of Impact Engineering,2007,34(11): 1739-1752.
    [2]Dannemann A.Kathryn,Jr.Lankford James.High strain rate compression of closed-cell aluminium foams[J].Materials Science and Engineering,2000,93(11):157-164.
    [3]Mantena P.Raju,Mann Richa.Impact and dynamic response of high-density structural foam used as filler inside circular steel tube[J].Composite Structures,2003,61(4):291-302.
    [4]Meguid S.A,Stranart J.C,Heyerman J.On the layered micromechanical three-dimensional finite element modelling of foam-filled columns[J].Finite Elements in Analysis and Design,2004,40(9): 1035-1057.
    [5]Tarigopula V,Langseth M,Hopperstad O.S,Clausen A.H.Axial crushing of thin-walled high-strength steel sections[J].International Journal of Impact Engineering,2006,32(5):847-882.
    [6]Langseth M,Hopperstad O.S.Berstad T.Crashworthiness of aluminium extrusions:validation of numerical simulation effect of mass ratio and impact velocity[J].International Journal of Impact Engineering,1999,22(9-10):829-854.
    [7]Singha Majit,Sunejaa H.R,Bolaa M.S,Prakashb S.Dynamic tensile deformation and fracture of metal cylinders at High strain rates[J].International Journal of Impact Engineering,2002,27(10):939-954.
    [8]Gupta N.K,Venkatesh.Experimental and numerical studies of dynamic axial compression of thin walled spherical shells[J].International Journal of Impact Engineering,2004,30(8-9):1225-1240.
    [9]Santosa P.Sigit,Wierzbicki Tomaszi,Hanssen G.Arve,Langseth Magnus.Experimental and numerical studies of foam-filled sections[J].International Journal of Impact Engineering,2000,24(5):509-534.
    [10]Gupta,N.K,Venkatesh.Experimental and numerical studies of impact axial compression of thin walled conical shells[J].International Journal of Impact Engineering,2007,34(4):708-720.
    [11]Jensen (?),Langseth M,Hopperstad S.O.Experimental investigations on the behaviour of short to long square aluminium tubes subjected to axial loading[J].International Journal of Impact Engineering, 2004,30(8-9):973-1003.
    [12]Meguid A.S,AttiaS.M,Stranart C.J,Wang W.Solution stability in the dynamic collapse of square aluminium columns[J].International Journal of Impact Engineering,2007,34(2):348-359.
    [13]Reyes A,Langseth M,Hopperstad O.S.Square aluminum tubes subjected to oblique loading[J]. International Journal of Impact Engineering,2003,28(10):1077-1106.
    [14]Langseth M,Hopperstad O.S.Static and Dynamic Axial Crushing of Square Thin-Walled Aluminium Extrusions[J].International Journal of Impact Engineering,1996,18(7):949-968.
    [15]Hanssen G.A,Langseth M,Hopperstad S.O.Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler[J].International Journal of Impact Engineering,2000, 24(5):475-507.
    [16]Hanssen G.A,Langseth M,Hopperstad S.O.Static and dynamic crushing of square aluminium extrusions with aluminium foam filler[J].International Journal of Impact Engineering,2000, 24(4):347-383.
    [17]Jensen 0,Langseth M,Hopperstad S.O.Stochastic simulations of square aluminium tubes subjected to axial loading[J].International Journal of Impact Engineering,2007,34(10):1619-1636.
    [18]Peroni Lorenzo,Avalle Massimiliano,Peroni Marco.The mechanical behaviour of aluminium foam structures in different loading conditions[J].International Journal of Impact Engineering,2008 35(7):644-658.
    [19]Abramowicz W,Jones N.Transition From Initial Global Bending to Progressive Buckling of Tubes Loaded Statically and Dynamically[J].International Journal of Impact Engineering,1997,19(5): 415-437.
    [20]Bi Jing,Fang Hongbing,Wang Qian,Ren Xuchun.Modeling and optimization of foam-filled thin-walled column for crashworthiness designs[J].Finite Elements in Analysis and Design,2010,46 (9):698-709.
    [21]Gumruk Recep,Karadeniz Sami.A numerical study of the influence of bump type triggers on the axial crushing of top hat thin-walled sections[J].Thin-Walled Structures,2008,46(10):1094-1106.
    [22]Reyes A,Langseth M,Hopperstad O.S.Crashworthiness of aluminum extrusions subjected to oblique loading:experiments and numerical analyses[J].International Journal of Mechanical Sciences,2002, 44(9):1965-1984.
    [23]Shahbeyka S,Petrinic N,Vafai A.Numerical modelling of dynamically loaded metal foam-filled square columns[J].International Journal of Impact Engineering,2007,34(3):573-586.
    [24]Hou Shujuan,Li Qing ,Long Shuyao,Yang Xujing,Li Wei.Crashworthiness design for foam filled thin-wall structures[J].Materials and Design,2009,30(6):2024-2032.
    [25]Zarei H.R,Kroger M.Optimization of the foam-filled aluminum tubes for crush box Application[J]. Thin-Walled Structures,2008,46(2):214-221.
    [26]Ahmad Z,Thambiratnam D.P.Crushing response of foam-filled conical tubes under quasi-static axial Loading[J].Materials and Design,2009,30(7):2393-2403.
    [27]Hanssen G.A,Langseth M,Hopperstad S.O.Static crushing of square aluminium extrusions with Aluminium foam filler[J].International Journal of Mechanical Sciences,1999,41(7):967-993.
    [28]Hanssen G.A,Hopperstad O.S,Langseth M. Validation of constitutive models applicable to aluminium foams[J].International Journal of Mechanical Sciences,2002,44(2):359-406.
    [29]Marineema,Ashabym F.Applying the investment methodology for materials (IMM) to aluminum foams[J]. Materials and Design,2002,23(3):307-319.
    [30]付全荣,张铱鈖等.多孔泡沫金属性能及在化工设备中的应用[D].太原:太原理工大学,2010.
    [31]Baumeister F. Industrialization of powder compact foaming process[J]. Advanced Engineering Materials,2002 (4):168-174.
    [32]BANHART,J. Manufacture,characterization and application of cellular metals and metal foams [J] Progress in Materials Science,2001,46 (3):559-632.
    [33]武小娟,孙伟成等.泡沫铝的制备与应用[J].新技术新工艺.材料与表面处理,2002(4):49-51.
    [34]吴刚,吕志强等.轴向冲击作用下泡沫铝填充圆管吸能特性研究[J].噪声与振动控制,2008,6(3):161-164.
    [35]谢中友,李剑荣等.泡沫铝填充薄壁圆管的三点弯曲实验的数值模拟[J].固体力学学,2007,28(3):26]-265.
    [36]张铱鈖,赵隆茂.非均匀泡沫金属材料在冲击载荷下的变形模拟[J].爆炸与冲击,2006,26(1):36-38.
    [37]屠永清,张存涛.泡沫铝填充钢管短柱工作性能研究[J].工业建筑,2007,37(1):494-496.
    [38]刘培生.泡沫金属在单双向拉压载荷作用下的表征分析[J].中国有色金属学报,2008,18(11):2062-2067.
    [39]桂良进,范子杰等.泡沫填充圆管的动态轴向压缩吸能特性[J].清华大学学报,200444(5):709-712.
    [40]刘培生.三维网状泡沫金属杨氏模量和泊松比的数理表征fJ].稀有金属材料与工程,2009,38(3): 240-244.
    [41]Abramowicz W, Jones N. Dynamic progressive buckling of circular and squaretubes[J].International Journal of Impact Engineering,1986,4(4):243-270.
    [42]于英华,杨春红.泡沫铝夹芯结构的研究现状及发展方向[J].机械工程师.2006,(3):43-45.
    [43]H.P.蒂吉厮切,B.克雷兹特,左孝云等.多孔泡沫金属[M].北京:化学工业出版社,2005:147-164.
    [44]桂良进,范子杰,王青春.泡沫填充圆管的轴向压缩能量吸收特性[J].清华大学出版社(自然科学版),2003,43(11):1526-1529.
    [45]曹立宏,马颖.多孔泡沫金属材料的性能及其应用[J].甘肃科技,2006,22(6):117-119.
    [46]胡清寒.适用于更轻量化车辆的泡沫铝材料[J].汽车工艺与材料,2008,3(6):28-32.
    [47]程慧静,张崇民等.泡沫铝的研究现状与应用展望[J].鞍山科技大学报,2005,28(6):410-414.
    [48]Seitzberger M,Rammerstorfer F G,etal.Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam[J].Inter2national Journal of Solids and Structures 2000,37(4):4125-4147.
    [49]许坤,寇东鹏等.泡沫铝填充薄壁方形铝管的静态弯曲崩毁行为[J].固体力学报,2005,26(3):261-266.
    [50]Reid S R,Goudie K.Denting and bending of tubular beams under local loads[J].Structural Failure, NewYork:Wiley,1989,10(3):331-364.
    [51]Kim A,Chen S S, Hasan M A,ChoS S. Bending behavior of thin-walled cylindrical tube filled with aluminum alloy foam [J]. Key Engineering Materials,2004,170(243):46-51.
    [52]刘建英.泡沫铝夹芯结构汽车保险杠的研究及结构优化[D]阜新:辽宁工程技术大学,2004.
    [53]尚晓江,苏建宇等.ANSYS LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2008:136-137.
    [54]赵利明,刘建英等.泡沫铝夹芯柱体材料在汽车保险杠中的应用[J].机械工程师,2006,(9):63-64.
    [55]刘建英,方月.泡沫铝夹芯柱体汽车保险杠碰撞的计算机仿真[J].河南工程学院学报(自然科学版),2008,20(1):37-39.
    [56]吴胜军.基于ANSYS的汽车保险杠碰撞的数值模拟[J].拖拉机与农用运输车,2008,35(4):18-20.
    [57]许亮,胡宁等.基于LS-DYNA的汽车保险杠仿真优化[J].机械与电子,2007,6(4):17-20.
    [58]王青春等.利用LS-DYNA计算结构准静态压溃的改进方法[J].力学与实践,2003,25(3):20-23.
    [59]于英华,杨春红等.泡沫铝填充管汽车保险杠的研究[J].辽宁工程技术大学学报,2006,25(6):907-910.
    [60]葛如海,王群山.汽车保险杠碰撞的数值模拟[J].江苏大学学报(自然科学版),2005,26(4):308-311.
    [61]陈文革,张强.泡沫金属的特点、应用、制备与发展[J].粉末冶金工业,2005,15(2):37-42.
    [62]任新见,张晓忠等.钢板-泡沫金属-钢板叠合结构抗爆机理初探[J].爆破,2009,26(1):25-28.
    [63]牛文娟,白晨光等.泡沫钛及其合金制备方法研究进展[J]..粉末冶金技术,2009,27(4):301-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700