用户名: 密码: 验证码:
梯度多孔Ti-Mg基生物复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬组织材料是生物材料的重要分支。目前,人体植入用钛合金的弹性模量仍远高于人骨,引入孔隙可以降低钛合金的弹性模量,且生物组织易长入多孔结构中,但钛合金的力学性能会随着孔隙的引入而急剧降低。本文根据生物医用钛合金开发的现状和存在的问题开展了梯度多孔Ti-Mg基复合材料的研究工作。
     用碳酸氢铵为造孔剂通过粉末冶金工艺制备出了多孔Ti-Mg基复合材料,并通过调整每一层中造孔剂的含量制备出与人体骨骼结构相似的梯度多孔Ti-Mg基复合材料。通过金相显微镜、扫描电镜、力学试验机、X射线衍射仪等设备对该复合材料的结构与性能进行了表征。
     研究表明,随着造孔剂含量的增加,多孔Ti-Mg基复合材料的孔径、孔隙率和开孔隙率迅速增大,而强度和模量呈线性降低。当造孔剂添加量为25mass%时,其孔隙率超过50%。造孔剂含量相同(25mass%)时,随着造孔剂粒径的增加,多孔Ti-Mg基复合材料的开孔隙率呈线性升高,强度和模量呈线性降低。随着Zr含量从1mass%增加到30mass%,复合材料的强度和模量先升高,而后趋于稳定,含Zr复合材料中最佳Zr含量为10mass%。与实际骨骼结构相似的梯度试样,随着梯度层数的增加,试样的强度和模量先升高后降低,其中五层梯度多孔试样的弯曲与压缩强度和模量最高,为168.28MPa和2.24GPa与105.14MPa和2.43GPa,心部层开孔隙率超过90%。与实际骨骼孔隙结构相反的梯度弯曲试样,其弯曲强度和模量低于均匀孔隙试样。经模拟体液浸泡的五层梯度多孔弯曲试样表面会沉积白色物质并长出草叶状物质。随着浸泡时间的延长,梯度试样的弯曲力学性能先下降后趋于稳定。
Hard tissue material is an important branch of bio-materials. The Yang’s modules of titanium alloys used for implants of human bones are much higher than those of natural bones. The introduction of pores in titanium alloys can decrease the Yang’s module, and the porous microstructure benefits for biological tissue to grow into. However, the mechanical properties of titanium alloys degrade intensively. Based on the problems mentioned, the fabrication and properties of gradient porous Ti-Mg matrix composites were studied in this work.
     The porous Ti-Mg matrix composites were prepared by powder metallurgy using NH4HCO3 as pore former. The gradient porous Ti-Mg matrix composites with similar structure to the natural bones were fabricated by controlling the pore content in every layer of the structure. The microstructures and the mechanical properties of the composites were characterized respectively by means of optical microscope (OM), scanning electron microscope (SEM), mechanical testing machine and X-ray diffraction (XRD).
     The results showed that the pore diameter, porosity and open porosity of Ti-Mg matrix composites increased with the increasement of pore former, while the strength and Yang’s modulus linearly decreased. The porosity of Ti-Mg matrix composites reached over 50% when the added content of pore former was 25mass%. It was found that the open porosity of Ti-Mg matrix composites linearly increased with the particle size of pore former, leading to the linear decrease of their strength and Yang’s modulus. With the addition of Zr from 1mass% to 30mass%, the strength and Yang’s modulus of porous Ti-Mg matrix composites raised at fist, and subsequently tended to stability, in which the optimum proportion of Zr was 10mass%. The strength and modulus of the composites owning the similar structure to natural bones increased up to a maxium value with the initial increased of the number of gradient layers and then decreased with a further increased. The porous Ti-Mg matrix composites of five gradient layers possessed the maximum flexural and compression strength and Yang’s modulus of 168.28MPa, 2.24GPa and 105.14MPa, 2.43GPa, respectively. The open porosity of the inner layer was higher than 90%. The gradient porous Ti-Mg matrix composites with opposite structures to natural bones had less flexural strength and modulus than uniform porous samples. When the gradient porous Ti-Mg matrix composites immersed in the SBF, the white and grass-like substance can be found on the surface. The flexural strength and Yang’s modulus of the samples were reduced, and then ultimately tended to be stable by the immersing time prolonged.
引文
[1]杨飞,王身国.中国生物医用材料的科研与产业化现状[J].新材料产业, 2010, (7): 42-45.
    [2]李世普.生物医用材料导论[M].湖北:武汉工业大学出版社, 2000: 8.
    [3] Karen J L B, Scott P, James F K. Biomaterial developments for bone tissue engineering[J]. Biomaterials, 2000, 21(23): 2347-2359.
    [4]牛金龙,张镇西,蒋大忠.多孔羟基磷灰石生物陶瓷的合成和特性研究进展[J].生物医学工程学杂志, 2002,19(2): 302-305.
    [5]顾汉卿,徐国风.生物医学材料学[M].天津:科技翻译出版社, 1993: 1-8.
    [6] Chapman M W, Bucholz R, Cornell C. Treatment of acute fracture with a collagen-calcium phosphate graftmaterial[J]. Bone Jt Surg, 1997, 79(4): 495-502.
    [7] Ishaug Riley S L, Crane G M, Gurlek A, et al. Ectopic bone formation by marrow stromal osteoblast transplanation using poly (DL-lactic-co-glycolic acid) foams implanted into the rat mesentery[J]. J Biomed Mater Res, 1997, 36(1): 1-8.
    [8] Duchetne P, Qiu Q. Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function[J]. Biomaterials, 1999, 20(23-24): 2287-2303.
    [9]冯颖芳,康浩方,张震.钛合金医用植入物材料的研究及应用[J].稀有金属, 2001, 25(5): 349-354.
    [10]钱九红.外科植入物用纯钛及其合金[J].稀有金属, 2001, 25(4): 303-306.
    [11] Tar?k A, Sakir B. Processing of porous TiNi alloys using magnesium as space holder[J]. Journal of Alloys and Compounds, 2009, 478(1-2): 705-710.
    [12] Santos D R, Pereira M S, Cairo C A, et al. Isochronal sintering of the blended elemental Ti–35Nb alloy[J]. Materials Science and Engineering, 2008, 472(1-2): 193-197.
    [13] Nobuhito S, Mitsuo N, Toshikazu A, et al. Effect of Ta content on mechanical properties of Ti–30Nb–XTa–5Zr[J]. Materials Science and Engineering, 2005, 25: 370 -376.
    [14] Delvat E, Gordin D M, Glorianta T, et al. Microstructure, mechanical properties and cytocompatibility of stable beta Ti–Mo–Ta sintered alloys[J]. Journal of the Mechanical Behavior of Biomedical Materals, 2008, 1(4): 345-351.
    [15]谢华生,刘时兵,苏贵桥.植入用Ti–Nb合金弹性模量及力学性能与显微组织的研究[J].铸造, 2005, 4(54): 843-845.
    [16] Ninomi M, Kuroda D, Fukunaga K, et al. Corrosion wear fraeture of newβtype biomedica1 titanium alloys[J]. Materials Science and Engineering: A, 1999, 263(2): 193-199.
    [17]阮建明, Grant M H,黄伯云.金属毒性研究(I)[J].中国有色金属学报, 2001, 11(6): 960-965.
    [18]阮建明, Grant M H,黄伯云.金属毒性研究(Ⅱ)[J].中国有色金属学报, 2002, 12(1): 14-19.
    [19]宁聪琴,周玉.医用钛合金的发展及研究现状[J].材料科学与工艺, 2002, 10(l): 100-106.
    [20] Tengvall P, Lundstrom I. Physico-chemical considerations of titanium as a biomaterial[J]. Clin-Mater, 1992, 9(2): 115-134.
    [21] Niinomi M. Mechanical properties of biomedical titanium alloys[J]. Materials science and engineering A, 1998, 243(1-2): 231-236.
    [22] Uhthoff H K, Finneagan M. The effects of metal plates on posttraumatic remodelling and bone mass[J]. J Bone Joint Surg Br, 1983, 65(1): 66-71.
    [23] Moyen B J, Lathey P J, Weinberg E H, et al. Effects on intact femora of dogs of the application and removal of metal plates. A metabolic and structural study comparing stiller and more flexible plates[J]. J Bone Joint Surg, 1978, 60 (7): 940-947.
    [24] Uhthoff H K, Finneagan M. The effects of metal plates on post-traumatic remodeling and bone mass[J]. J Bone Joint. Surg, 1983, 65(1): 66-71.
    [25] Asaoka K, Kuwayama N, Okuno O, et al. Mechanical properties and biomechanical compatibility of porous titanium for dental implants[[J]. J Biomed Mater Res, 1985, 19(6): 699-713.
    [26] Becher B S, Bolton J D, Youseffi M, et al. Production of porous sintered Co-Cr-Mo alloys for possible surgical implant applications Part 1: compaction, sintering behaviour, and properties[J]. Powder Metallurgy, 1995, 38 (3): 201-208.
    [27] Wen C E, Yamada Y, Shimojima K, et al. Novel titanium foam for bone tissue engineering[J]. J Mater Res, 2002, 17(10):2633-2639.
    [28] Lopez-Heredia M A, Sohier J, Gaillard C, et al. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering[J]. Biomaterials 2008,29(17):2608-2615.
    [29]李永华.多孔NiTi形状记忆合金的燃烧合成及其性能研究[D].沈阳,中科院沈阳金属研究所, 2002.
    [30]刘培生,李铁潘,傅超,等.多孔金属材料的应用[J].功能材料, 2001, 32(1): 12-15.
    [31]汤慧萍,张正德.金属多孔材料发展现状[J].稀有金属材料与工程, 1997, 26(1): 1-6.
    [32]陈雯,刘中华,朱诚意,等.泡沫金属材料的特性、用途及制备方法[J].有色矿冶, 1999, 1(15): 33-36.
    [33]刘培生,黄林国.多孔金属材料制备方法[J].功能材料, 2002, 1(33): 5-8.
    [34]闵少雄,靳安民.国外医学生物医学工程分册[M].天津:天津大学,2000, 353-357.
    [35] Seah K H W, Thampuran R and Teoh S H. The Influence of Pore Morphology on corrosion[J]. Corrosion Science. 1998, 4(5): 547-556.
    [36] Wen C E, Yamada Y, Shimojima K, et al. Processing and mechanical properties of autogenous titanium implant materials [J]. Journal of Materials Science: Materials in Medicine, 2002, 13(4): 397-401.
    [37]杨涵崧.生物活性多孔钛医学材料的研究[D].佳木斯:佳木斯大学, 2007.
    [38]许庆彦,熊守美.多孔钛的制备工艺方法综述[J].铸造, 2005, 9(3): 840-843.
    [39]胡曰博,张新娜,孙文兴,等.泡沫钛材料的制备与应用研究进展[J].稀有金属材料与工程, 2009, 38(23): 297-301.
    [40]白珍辉,尉海军,蒋利军,等.泡沫钛材料国内外研究现状及展望[J].金属功能材料, 2009, 16(3): 62-66.
    [41]左孝青,孙加林.泡沫金属制备技术研究进展[J].材料科学与工程学报, 2004, 22(3): 452-456.
    [42]张勇,舒光冀.用低压渗流法制备泡沫铝合金[J].材料科学进展, 1993, 7(6): 473-477.
    [43]许庆彦,陈玉勇,李庆春.多孔泡沫金属的研究现状[J].铸造设备研究, 1997, (1): 18-24.
    [44]王录才,陈新.熔模铸造法通孔泡沫铝制备工艺研究[J].铸造, 1999, (1): 8-10.
    [45] Kulkarni S B, Ramakrishnan P. Foamed Aluminum. Inter[J]. Journal of Powder Metallurgy, 1973, (9):41-45.
    [46] Shapovalov V. Porous Metals[J]. MRS Bull, 1994, 19(4):24-27.
    [47] Han F H, Zhu Z G. Metallic foam Materials[J]. Metallurgical and Materials Transactions: A Physieal Metallurgy and Materials Seienee, 1999, 30(6):165-170.
    [48] Liu P S, Liang K M. Functional materials of porous metals made by P/M, electroplating and some other techniques[J]. Journal of Materials Science, 2001, 36(21): 5059-5072.
    [49]刘培生,梁开明,顾守仁,等.多孔金属电极基体材料[J].稀有金属, 2000, 24(6): 440-444.
    [50]李众利.复合BMP三维连通多孔钛在人工假体表面修饰中的应用[D].北京:中国人民解放军军医进修学院, 2006.
    [51]王德庆,石子源.泡沫金属的生产、性能与应用[J].大连铁道学院学报, 2001, 22(2): 79-86.
    [52] Liu P S, Yu B, Hu AM, et al. Techniques for preparation f porous metals [J]. J Maer SciTechnol, 2002, 18(4): 299-305.
    [53] Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science[J]. Elsevier Science, 2001, 46(6): 559-632.
    [54]张流强,常富华.低密度金属泡沫的研制[J].功能材料, 1996, 27(1): 88-91.
    [55]常富华,张流强.金属泡沫Al激光靶的研制[J].原子能科学技术, 1999, 33(4): 309-313.
    [56]韩杰才,王华彬,杜善义.自蔓延高温合成的理论与研究方法[J].功能材料, 1997,28(2): 115-121.
    [57]张小明,殷为宏,王学成. SHS法制备高孔隙度TiNi合金[J].稀有金属材料与工程, 2000, 29(1): 61-63.
    [58] Yook S W, Yoon B H, Kim H E, Koh Y H, Kim Y S. Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries[J]. Materials Letters, 2008, 62(30): 875-881.
    [59] Oh I H, Nomura N, Masahashi N, Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering[J]. Scripta Materialia, 2003, 49(12): 1197-1202.
    [60] Gu Y W, Yong M S, Tay B Y, et al. Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2[J]. Materials Science and Engineering: C, 2009, 29(5): 1515-1520.
    [61] Niu W J, Bai C G, Qiu G B, et al. Processing and properties of porous titanium using space holder technique[J]. Materials Science and Engineering A, 2009, 506(1-2): 148-151.
    [62] Wang X J, Li Y C, Xiong J Y, et al. Porous TiNbZr alloy scaffolds for biomedical applications[J]. Acta Biomaterialia, 2009, 5(9): 3616-3624.
    [63] Xiong J Y, Li Y C, Wang X J, et al. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti–18Nb–4Sn alloy for biomedical applications[J]. Acta Biomaterialia, 2008, 4(6): 1963-1968.
    [64] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties, seconded[D]. Cambridge University Press, Cambridge, 1997.
    [65]杨云志,陈治清.梯度材料设计的现状与展望[J].兵器材料科学与工程, 1998, 21(6): 49-53.
    [66]孙涛,奚正平,汤慧萍,等.过滤用粉末烧结梯度多孔材料[J].稀有金属材料与工程, 2008, 37(A04): 509-513.
    [67] Beve M B R, Duwez P F. Gradients in composite materials[J]. Materials Science and Engineering, 1972, (10): 1-8.
    [68] Shen M, Bever M B. Gradients in polymeric materials[J]. Journal of Material Science, 1972, 7(7): 741-746.
    [69]赵军,艾兴,张建华.功能梯度材料的发展及展望[J].材料导报, 1997, 11(4): 57-60.
    [70]张芳,黄志良.梯度多孔陶瓷的研究进展[J].武汉工程大学学报, 2009, 31(9): 42-44.
    [71] Mortensen A, Suresh S. Functionally graded metals and metal-ceramic composites: Part 1 processing[J]. International Materials Reviews, 1995, 40 (6): 239-265.
    [72] Neubrand A, R?del J, Metallkd Z. Gradient materials: An overview of a novel concept[J]. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques,1997, 88 (5): 358-371.
    [73] Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials[J]. Materials Science and Engineering A, 2003, 362(1-2): 81-106.
    [74]叶波,李庆余,赵恒勤.梯度功能材料制备方法研究现状与展望[J].矿产保护与利用, 2004, (4): 47-51.
    [75] Mao X G, Sun D. Graded/Gradient Porous Biomaterials[J]. Materials, 2010, 3(1): 26-47.
    [76] Pompe W, Lampenscherf S, Robler S, et al. Functionally graded bioceramics[J]. Mater. Sci. Forum 1999, 308–311, 325-330.
    [77] Boughton P, Ferris D, Ruys A J. Biomaterials—A ceramic-polymer functionally graded material: A novel disk prosthesis[J]. Ceram. Eng. Sci. Proc. 2001, 22(4), 593-600.
    [78]李刚,梁超.梯度性材料:复合材料的未来[J].山东科学, 2005, (1): 7.
    [79]杨保军,奚正平,汤慧萍,等.梯度多孔金属材料制备及应用的研究进展[J].粉末冶金工业, 2008, 18(2): 28-32.
    [80]汤慧萍,张正德.金属多孔材料发展现状[J].稀有金属材料与工程, 1997, 26(1): 1-6.
    [81]汤慧萍,谈萍,奚正平,等.烧结金属材料研究进展[J].稀有金属材料与工程, 2006, 35(A02): 428432.
    [82]沈君权.多孔梯度陶瓷[J].现代技术陶瓷, 1994, 15(4): 31-37.
    [83] Qi J Q. Fabrication on Ceramics with GradedPores by Centrifugal-Gelcasting Technique [D]. Beijing: China building materialsacademy, 2007.
    [84]李述军.新型医用β钛合金组织与性能的研究[D].沈阳:中国科学院金属研究所, 2004.
    [85]耿芳,谭丽丽,张炳春,等.多孔镁作为新型骨组织工程材料的研究探索[J].材料导报, 2007, 21 (5): 76-85.
    [86]师昌绪.材料科学与工程手册(上册).北京:化学工业出版社, 2004.
    [87] Okazaki Y, Ito Y, Ito A, et al. Effeet of alloying Elements on meehanical properties of titanium alloys for medical implants[J]. Materials Transactions, JIM, 1993, 12(34): 1217-1222.
    [88]胡赓祥,蔡珣.材料科学基础(M).上海:上海交通大学出版社, 2000.
    [89] Bram M, Stiller C, Buchkremer H P, et al. High porosity titanium, stainless steel, and superalloy parts[J]. Advanced Engineering Materials, 2000, 2 (4): 196-199.
    [90]王志刚.纯钛表面多孔化及生物活化的研究[D].济南:山东大学, 2006.
    [91]贾宝强.熔、溶脱盐造孔法制备金属通孔多孔材料的研究[D].西安:西安理工大学, 2005.
    [92]张流强,常富华.低密度金属泡沫的研制[J].功能材料, 1996, 27(1): 88-91.
    [93] Chen L J, Li T, Li Y M, et al. Porous titanium implants fabricated by metal injection molding. Transactions of Nonferrous[J]. Metals Society of China, 2009, 19(15): 1174-1179.
    [94] Thieme M, Wieters K P, Bergner F, et al. Titanium powder sintering for preparation of a porous FGM destined as a skeletal repalacement implant[J]. Materials Science Forum, 1999, (308): 374-380.
    [95]宝鸡有色金属研究所.粉末冶金多孔材料(上册), (下册)[M].北京:北京冶金工业出版社,1979, 388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700