用户名: 密码: 验证码:
基于PPLN波导的光脉冲波长转换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光波长转换器是密集波分复用(DWDM)、波分多址(WDMA)光纤通讯系统以及全光交换系统中的一个关键器件。利用在具有周期域反转结构的LiNbO3光波导(PPLN)中实现倍频波长转换和差频波长转换被认为是目前最好的波长转换方法之一,而基于级联倍频和差频效应的波长转换是实现全光波长转换的一种可行的方案,它具有转换效率较高、噪声指数低、转换波长范围宽等独特优点,能够实现输出波长可调、一对多通道、多波长同时转换等灵活多样的波长转换,有着广泛的应用前景。本文以级联倍频和差频效应的波长转换为研究对象,对在连续光和脉冲两种泵浦情况下的波长转换器进行了理论与实验研究,主要内容有:
     (1)在广泛查阅国内外参考文献的基础上,阐述了光波长转换器在未来的光通信系统中的重要地位与作用以及光波长转换器的常见种类,介绍了差频型波长转换器的实现原理和国内外研究发展现状。
     (2)在非线性光学理论、光波导理论和准相位匹配理论的基础上,推导了在准相位匹配条件下非线性光学介质和波导中三光波相互作用的耦合波方程组,并推导了在小信号近似条件下倍频光、差频光功率的解析式,得到了倍频转换效率、差频转换效率公式。考虑到脉冲在波导中传播受到走离效应、群速度色散效应的影响,推导了脉冲之间的级联二阶非线性耦合波方程组。
     (3)基于耦合波方程组,在频域和时域中分析了群速度失配导致的走离效应对脉冲波长转换的影响:倍频光脉冲的展宽、差频光脉冲的波形畸变和峰值相移、走离引起的带内串扰。计算分析了走离参量、波导尺寸、脉冲参数对波形变化的影响。针对走离效应的影响,提出了双向注入方式可改善转换光脉冲的波形畸变;提出采用泵浦光脉冲提前注入方式,可以减小带内串扰;设计了利用走离效应产生多个脉冲的装置,实现周期性序列脉冲的重复频率成倍增大。
     (4)对波长转换效率和转换带宽进行了数值分析和讨论,得到了波长转换效率随波导参数、信号光与泵浦光的功率、信号光与泵浦光的波长、注入的脉冲参数、脉冲之间的延迟等影响因素的变化曲线,以及转换带宽随信号光与泵浦光波长的变化规律,并对窄脉冲泵浦在提高泵浦带宽容限方面的优越性进行了理论上的阐述和分析。
     (5)研究了在基于级联的二阶非线性的差频波长转换器中注入较大的光功率时的参量过程和折射率变化。研究了参量振荡过程,得到了最优波导长度和最优注入光功率的表达式;分析了高功率注入时波导折射率的变化,提出了弥补强光泵浦所引起波矢失配的相应措施。
     (6)对基于PPLN光波导的1.55μm波段的DFG型光波长转换进行了实验研究。实现了连续泵浦下的波长转换,以及脉冲泵浦下的连续可调波长转换、一对多信道的波长转换,并对连续光泵浦和脉冲光泵浦两种情况下波长转换结果进行了频谱、波形上的对比分析,对泵浦带宽和转换带宽进行了测试。
All-optical wavelength converters (AOWCs) will play key roles in future DWDM and WDMA optical communication networks. Wavelength conversion exploiting cascaded second-harmonic and difference-frequency generation (cSHG/DFG) in periodically poled LiNbO3 (PPLN) waveguides has manifested its potential as one of the best solutions: in addition to high wavelength conversion efficiency, negligible spontaneous emission noise and broad conversion bandwidth, it can achieve a flexible wavelength conversion such as a tunable wavelength conversion, a single-to-multiple channel wavelength conversion and a multi-wavelength simultaneous wavelength conversion, which increases the flexibility in the management of the multi-channel WDM network. Theoretical and experimental research on cSHG/DFG-based all-optical wavelength conversion technology is presented in this paper. The main contents are as follows:
     (1) The important applications of AOWCs in future optical communication systems and several usual types of AOWCs are described. The principles and latest research progresses of DFG-AOWC are introduced.
     (2) The nonlinear couple-mode equations describing the optical wavelength conversion processes in quasi-phase matching (QPM) waveguides are derived based on optical waveguide, nonlinear optics and QPM theories. The expression of converted power and efficiencey in both SHG and DFG processes are addressed under the assumptions of plane wave approximation and slowly varying amplitudes, respectively. Furthermore, the nonlinear coupled-mode equations of wavelength conversion between pulses are derived when the group velocity and group-velocity dispersion (GVD) of pulses are considered.
     (3) The influence of walk-off between pulses due to group-velocity mismatching in wavelength conversion are analyzed in both frequency and time domain. The broadening of second-harmonic pulse, the converted waveform distortion with peak offset and the intraband crosstalk in pulsed-pumping wavelength-conversion are discussed with the change of waveguide dimensions and pulse parameter. And then a dual-direction wave-injected scheme is proposed to avoid waveform distortion and an advancing pump-injected scheme is demonstrated to minish intraband crosstalk. A novel scheme of utilizing the property of walk-off effect to produce several pulses in one-pulse-period are also introduced and researched.
     (4) The relationships of the conversion efficiency and conversion bandwidth with the waveguide dimensions, pump and signal power, pump and signal wavelength, pulse parameter and delaying between pulses etc. are numerically calculated and analyzed, and theoretical research on the mechanism of improving pump-wavelength tolerance with pulse pumping is presented as well.
     (5) The parametric-process and the photo-refractive-index-change in AOWC converters injected with high power are theoretically analyzed. The energy oscillates between pump, signal, second-harmonic and difference-frequency wave are demonstrated, and the expression of the optimum-waveguide-length is obtained. The potential application of pulse reshaping is pointed out as well.
     (6) The cSHG/DFG optical wavelength converters based on a periodically poled PPLN waveguide is experimentally realized. A tunable and single-to-dual channel wavelength converter pumping with picosecond pulses at a repetition rate of 40GHz is implemented, and the waveform distortion of converted pulse is illustrated in our experiments.
引文
[1] S. J. B. YOO. Wavelength conversion technologies for WDM network applications. IEEE Journal of Lightwave Technology, 1996, 14(6):955-965
    [2] S. Roberto, I. Eugenio, P. Emilia, et al. Optical transport networks employing all-optical wavelength conversion: limits and features. IEEE Journal on Selected Areas in Communications, 1996, 14(5):968-978
    [3] B. Ramamurthy and B. Mukherjee. Wavelength conversion in WDM networking. IEEE Journal on Selected Areas in Communications, 1998, 16(7):1061-1073
    [4] T. Durhuus, B. Mikkelsen, et al. All-optical wavelength conversion by semiconductor optical amplifiers. IEEE Journal of Lightwave Technology, 1996, 14(6):942-954
    [5] Zhang Xinliang, Huang Dexiu, et al. Performance improvement in XGM wavelength conversion based on a single-port-coupled SOA. Microwave and Optical Technology Letters, 2000, 26(5):286-288
    [6] M. F. C. Stephens, R. V. Penty, et al. Low-input power wavelength conversion at 10Gbit/s using an integrated amplifer/DFB laser and subsequent transmission over 375km of fiber. IEEE Photonics Technology Letters, 1998, 10(6):878-880
    [7] M. F. C. Stephens, R. V. Penty, et al. All-optical regeneration and wavelength conversion in an integrated semiconductor optical amplifier/distributed-feedback laser. IEEE Photonics Technology Letters, 1999, 11(8):979-981
    [8] A. D. Ellis, A. E. Kelly, D. Nesset, et al. Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier. Electronics Letters, 1998, 34(20):1958-1959
    [9] K. A. Rauschenbach, et al. All-optical pulse width and wavelength conversion at 10Gb/s using a nonlinear optical loop mirror. IEEE Photonics Technology Letters, 1994, 6(9):1130-1132
    [10] A. E. Kelly, I. D. Phillips, R. J. Manning, et al. 80Gbit/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer. Electronics Letters, 1999, 35(17):1477-1478
    [11] T. Fjelde, D. Wolfson, P. B. Hansen, et al. 20Gbit/s optical wavelength conversion inall-active Mach-Zehnder interferometer. Electronics Letters, 1999, 35(11):913-914
    [12] D. Wolfson, P. B. Hansen, et al. All-optical 2R regeneration based on interferometric structure incorporating semiconductor optical amplifier. Electronics Letters, 1999, 35(1): 59-60
    [13] M. E. Marchic, et al. Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers. Optics Letters, 1996, 21(23):1906-1908
    [14] A. Mecozzi, S. Scotti, et al. Four-wave mixing in traveling-wave semiconductor amplifiers. IEEE Journal of Quantum Electronics, 1995, 31(4):689-699
    [15] F. Girardin, J. Eckner, et al. Low-noise and very high-efficiency four-wave mixing in 1.55-mm-long semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1997, 9(6):746-748
    [16] C. M. Greco, F. Martelli, et al. Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1999, 11(6):656-658
    [17] Trefor J.Morga, Rodney S.Tucker, and Jonathan P. R. Lacey. All-optical wavelength translation over 80 nm at 2.5 Gb/s using four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technology Letters, 1999, 11(8):982-984
    [18] H. Yasaka, H. Ishii, K. Takahata, et al. Broad-band tunable wavelength conversion of high-bit-rate signals using super structure grating distributed Bragg reflector laser. IEEE Journal of Quantum Electronics, 1996, 32(3):463-469
    [19] N. Aawa, M. Suzuki, and S. Yamamoto. Novel wavelength converter using an electroabsorption modulator: Conversion experiments up to 40Gbit/s. Pro. Tech .Dig. OFC 97, 1997, 6:7
    [20] J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan. Interactions between lightwaves in a nolinear dielectric. Physics Review, 1962, 127:1918-1939
    [21] Sasson Somekh and Amnon Yariv. Phase matching by periodic modulation of the nonlinear optical properties. Optics Communications, 1972, 6(3):301-304
    [22] M. Yamada, N. Nada, M. Saitoh. First-order quasi-phased matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett, 1993, 62:435-6
    [23] E. J. Lim, M. M. Fejer and R. L. Byer. Second-harmonic generation of green light inperiodically poled planar lithium niobate waveguide. Electronics Letters, 1989, 25: 174-175
    [24]陈云琳,郭娟,刘晓娟等.准相位匹配周期极化掺镁铌酸锂490nm倍频连续输出.光子学报, 2004, 33(1):29-33
    [25]薛挺,于建,杨天新等.准相位匹配铌酸锂波导倍频特性分析与优化设计.物理学报, 2002, 51(3):00565-00572
    [26]陈云琳,徐京军等.外加电场极化法制备LiNbO3周期性畴反转的工艺研究.光学学报, 2001, 21(5):618-620
    [27]姚緋,陈云琳等.扫描电镜加工铌酸锂晶体电畴反转光栅的研究.电子显微学报, 1997, 16(2):148-151
    [28] Jonas Webjorn, Fredrik Laurell, and Gunnar Arvidsson. Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide. IEEE Photonics Technology Letters, 1989, 1(10):316-318
    [29] L. E. myers, R. C. Eckardt, et al. Quasiphase-matched optical parametric oscillators in bulk periodically poled LiNbO3. Journal of the Optics Society of America B, 1995, 12:2102-2106
    [30] Shi-nine Zhu, Yong-Yuan Zhu, Yi-kiang In, Nai-ben Ming. Experimental realization of second harmonic generation in a fibonacci optical superlattice of LiTaO3. Phys. Rev. Lett., 1997, 78:2752-2755
    [31] Chen Yuping, Chen Xianfeng, Zeng Xianglong, et al. First-Order quasi-phase- matched second harmonic generation in bulk periodically poled LiNbO3. Proc. SPIE, 1999. 4223
    [32] F. Yang, T. Steven, P. Stephan. Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate. Opt. Lett., 1999, 24: 133-135
    [33] R. Schiek, L. Friedrich, H. Fang, et al. Nonlinear directional coupler in periodically poled lithium niobate. Opt. Lett., 1999, 24:1617-1610
    [34] Z. S. Benaich, R. D. Pradhan, S. M. Mian, et al. Effects of interference in quasi phase-matched periodically segmented potassium titanyl phosphate waveguide. Appl. Phys. Lett., 1999, 75:3261-3263
    [35] N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, et al. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett., 2000, 84, 4345-4348
    [36] R. Schiek, L. Friedrich, H. Fang. Nonlinear directional coupler in periodically poled lithium niobate. Opt. Lett., 1999, 24:1617-1610
    [37] R. L. Byer. Quasi-phase matched nonlinear interactions and devices. J. Nonlinear Optical Physics & Materials, 1997, 6:549-591
    [38] V. Pruneri, R. Koch, P. G. Kazansky, at el. 49mW of cw blue light generated by first-order quasi-phase-matched frequency doubling of a diode-pumped 946-nm Nd:YAG laser. Opt. Lett., 1995, 20:2375-2377
    [39] S. Lin, Y. Tamaka, S. Takeuchi. Optical parametric amplification using the phase matching retracing behavior in MgO:LiNbO3 for generation of intense widely tunable mid infrared pulses. J. Appl. Phys., 1997, 36:3510-3514
    [40] B. A. Richman, K. W. Aniolek, T. J. Kulp, et al. Continuously tunable, single- longitudinal-mode, pulsed mid-infrared optical parametric oscillator based on periodically poled lithium niobate. J. Opt. Soc. Am. B., 2000,17:2102-2116
    [41] R. T. White, W. P. Bowen, I. T. Mckinnie, et al. Efficient tunable ultraviolet generation in periodically poled lithium niobate. Electron. Lett.,1999, 35:642-643
    [42] Y. Wang, V. Petrov, Y. J. Ding, et al. Ultra-fast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate. Appl. Phys. Lett., 1998, 73:873-875
    [43]薛挺,华勇,杨德伟等.周期极化铌酸锂THz波产生理论分析.光子学报, 2004, 30(10):1180-1186
    [44] C. Q. Xu, H. Okayama, K. Shinozaki, et al. Wavelength conversions -1.5μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides. Applied Physics Letters, 1993, 63(9):1170-1172
    [45] C. Q. Xu, H. Okayama, and T. Kamijoh. LiNbO3 quasi-phase matched wavelength converter and its module. in Proc. Eur. Conf. Optical Communications, 1998. 173-174
    [46] M. H. Chou, I. Brenner, K. R. Parameswaran, et al. Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelengthconversion by pump detuning. Electronics Letters, 1999, 35(12): 978-980
    [47] M. H. Chou, J. Hauden, M. A. Arbore, et al. 1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures. Optics Letters, 1998, 23:1004-1006
    [48] M. L. Bortz, S. J. Field, M. M. Fejer, et al. Non-critical quasi-phase matched second harmonic generation in an annealed proton exchanged LiNbO3 waveguides. Trans. on Quantum Electron, 1994, 30:2953
    [49] R. E. Stubkjaer, A. K. Hansen, H. N. Poulsen. Wavelength converter technology. IEICE. Trans. Commun, 1999, E82-B (2):390-400
    [50] K. Gallo, G. Assanto, G. Stegeman. Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides. Appl. Phys. Lett., 1997, 71:1020-1022
    [51] X.L Zeng, Xianfeng Chen, Yuxin Xia. Observation of all-optical wavelength conversion based on cascaded effect in periodically poled lithium niobate waveguide. Optics and Laser Techno, 2003, 35:187-190
    [52] X. L Zeng, Xianfeng Chen, Yuxin Xia. Theoretical analysis of optimal all-optical converter based on periodically poled LiNbO3 waveguide. Optical Fiber and Planar Waveguide Technology, Proc. SPIE, 2001, 4579:107-110
    [53] Zeng Xianglong, Chen Xianfeng, Wu Fei, et al. Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings. Optics Communications, 2002, 204:407-411
    [54] Xueming Liu, Hanyi Zhang and Yili Guo. Theoretical analyses and optimizations for wavelength conversion by quasi-phase-matching difference frequency generation. IEEE Journal of Lightwave Technology, 2001, 19 (11):1785-1792
    [55] G. P. Banfi, P. K. Datta, V. Degiorgio, et al. Wavelength shifting and amplification of optical pulses through cascaded second order processes in periodically poled lithium niobate. Applied Physics Letters, 1998, 73(2):136-138
    [56] C. G. Trevino-Palacios, G. I. Stegeman, P. Baldi, et al. Wavelength shifting using cascaded second order processes for WDM applications at 1.55μm. Electronics Letters, 1998, 34(22):2157-2158
    [57] I. Cristiani, G. P. Banfi, V. Degiorgio, and Tartara. Wavelength shifting of opticalpulses through cascaded second-order processes in a lithium-niobate channel waveguide. Applied Physics Letters, 1999, 75(9):1198-1200
    [58] I. Cristiani, V. Degiogio, L. Socci, F. Carbone, and M. Romagnoli, Polarization insensitive wavelength conversion in a lithium niobate wave guide by the cascading technique. IEEE Photonics Technology Letters, 2002, 14(5):669
    [59] Liu W, Sun J Q, Kurz J. Bandwidth and tenability enhancement of wavelength conversion by qusi-phase-matching difference frequency generation. Opt. Comm., 2003, 216:239-246
    [60] J. Wang, J. Sun, J. Li et al.. Single-to-dual channel wavelength conversion of picosecond pulses using PPLN-based double-ring fibre laser. Electron. Lett., 2006, 42:2-16
    [61] J.Sun, X.Yuan, D.Liu. Tunable wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides. Appl. Phys. B, 2005, 80:681-685
    [62] J.Sun, W.Liu, and J.Tian. Multchannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Pho.Tech.Lett., 2003, 15(12): 1743-1745
    [63] J.Sun, W.Liu. Mutiwavelength generation by utilizing second-order nonlinearity of LiNbO3 waveguides in fiber lasers. Opt. commun., 2003, 224:125-130
    [64] J.Sun, D.Huang, D.Liu. Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO3 waveguides. Opt. commun., 2006, 259:125-130
    [65]周敏娟,孙军强.基于铌酸锂光波导的全光波长转换.光通讯研究, 2006, 2: 68-70
    [66]李婧,孙军强.基于PPLN波导中倍频与差频效应的全光波长转换.光学与光电技术, 2006, 4(3): 10-13
    [67]罗勇峰,陈云琳,袁建伟等.准相位匹配级联二阶非线性全光波长转换研究.光学学报, 2005, 25(5):651-654
    [68]刘威.差频型全光波长转换器的研究:[硕士学文论文].武汉:华中科技大学, 2002
    [69] M.H.Chou, I.Brener, G.Lenz et al.. Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides. IEEE Pho.Tech.Lett., 2000, 12(1):82-86
    [70] H.Ishizuki, T.Suhara, M.Fujimura et al.. Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device. Opt. Quantum Electron., 2001, 33:953-961
    [71] G. Imeshev, M. A. Arbore, M. M. Fejer, et al. Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion. J. Opt. Soc. Am. B., 2000, 17:1420-1437
    [72] G..Imeshev. Tailoring of trafast frequency conversion with quasi-phase-matching gratings: [the Dissertation for the Doctor’s Degree]. USA: Stanford University, 2000
    [73] B.Chen, C.Q.Xu. Analysis of novel cascaded SFG+DFG wavelength conversions in quasi-phase-matched waveguides. IEEE J.Quantum Electron., 2004, 40(3):256-261
    [74] Yu S, Gu W Y. Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded SFG+DFG interactions. IEEE J.Quantum Electron, 2004, 40(11):1548-1554
    [75] K. R. Parameswaran, M. Fujimura, M. H. Chou et al. Low-power all-optical based on sum frequency mixing in APE waveguides in PPLN. IEEE Photon. Techno. Lett., 2000, 12: 654-656
    [76] Wang J, Sun J, Luo C, et al. Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum and difference frequency generation (cSFG/DFG) in a PPLN waveguide. Appl. Phys. B, 2006, 83:543-548
    [77] J. Wang, J. Sun, C. Luo, Q. Sun. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides. OPTICS EXPRESS, 2006, 13(19): 7406
    [78] S. J. B. Yoo, C. Caneau, R. Bhat, et al. Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding. Applied Physics Letters, 1996, 68(19):2609-2611
    [79] S. J. B. Yoo. Polarization independent multi-channel wavelength conversion by difference-frequency-generation in AlGaAs waveguides, in Applications of PhotonicTechnology. SPIE, 1998, 3491:39-44
    [80] S. J. B. Yoo, M. A. Koza, et al. Simultaneous wavelength conversion of 2.5 Gb/s and 10 Gb/s signal channels by difference-frequency-generation in an AlGaAs waveguide. OFC98, San Jose, California, 1998. 209-214
    [81] S. Koh, T. Kondo, Y. Shiraki, et al. GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices. Journal of Crystal Growth, 2001, 227-228: 183-192
    [82] N. Antoniades, S. J. B. Yoo, Krishna Bala, et al. An architecture for a wavelength- interchanging cross-connect utilizing parametric wavelength converters. IEEE Journal of Lightwave Technology, 1999, 17(7):1113-1125
    [83] S. J. B. Yoo and Krishna Bala. Parametric wavelength conversion and cross-connect architecture. SPIE Proceedings, All-Optical Communication Systems, Boston, 1996. 2919-2920
    [84] G. S. Kanter, et al. Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled Lithium–Niobate waveguide. IEEE Photonics Technology Letters, 2001, 13(4):341-343
    [85] M. C. Cardakli, et al. Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency-generation and optical buffers. IEEE Photonics Technology Letters, 2002, 14(2):200-202
    [86]范琦康,吴存恺,毛少卿.非线性光学.江苏:科学技术出版社, 1989. 212-269
    [87]叶培大,吴彝尊等.光波导技术基本理论.北京:人民邮电出版社, 1981. 97-258
    [88] T. Papakyriakopoulos, et al. 10×10GHz simultaneously modelocked multiwavelength fibre ring laser. Electronics Letters, 1999, 35(9): 717-718
    [89] J. Sun, Y. Zhang, X. Zhang. Multiwavelength lasers based on semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 2002, 14(5): 750-752
    [90] T. Suhara and H. Nishihara. Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings. IEEE Journal of Quantum Electronics, 1990, 26(7):1265-1270
    [91] Kiminori Mizuuchi and Kazuhisa Yamamoto. Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of agrating structure with located phase shifts. Optics Letters, 1998, 23(24):1880-1882
    [92]韦伟.周期极化铌酸锂晶体的制备极其相位匹配技术的应用研究:[博士学位论文].天津:天津大学硕士学位论文, 2005
    [93]赵红娥,刘思敏等. Fe:LiNbO3和(Fe,Tb)LiNbO3晶体中入射光强对光折变性质的影响.光学学报, 2003, 23(10):1176-1180
    [94]张鹏,赵建林等. Fe:LiNbO3晶体中不同强度分布的片光导致的折射率变化.中国科学G, 2005, 35(3):247-259
    [95]谢敬辉,王庆. Fe:LiNbO3晶体光折变性能分析计算.光学技术, 2000, 26(13): 268-269
    [96]李树奇,刘士国,孔勇发等.四价掺杂铌酸锂晶体抗光折变性能研究.人工晶体学报, 2006, 35(3):474-477
    [97]杨立森,刘思敏,张光寅等.快速响应的光致折射率改变效应的实验研究.物理学报, 2004, 53(02):0461-0467
    [98]朱晓峥,周军等.宽带准连续光纤激光在周期极化铌酸锂中倍频特性的研究.光学学报, 2004, 24(10):1330-1334
    [99]陈云琳,郭娟,刘晓娟等.周期极化掺镁不同组分LiNbO3晶体的研究物.物理学报, 2004, 53(01):0156-159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700