用户名: 密码: 验证码:
光子晶体光纤及其在传感领域的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤(PCF,又称微结构光纤)具有传统光纤无法比拟的诸多奇异特性和优势,引起了学术界和产业界的广泛关注,在短短的十几年内其相关研究取得了令人瞩目的成就。随着光子晶体光纤的理论分析方法趋于成熟,制造工艺日臻完善,新颖结构和特性的光子晶体光纤不断涌现和产品化,作为光电子功能器件的光子晶体光纤应用研究成为热点,特别是基于光子晶体光纤的传感技术研究在国际上备受关注。
     本论文的选题主要来源于国家973项目“基于微结构光纤的光电子功能器件的创新与基础研究”(编号:2003CB314906)和“基于微结构光纤的新型功能器件、异质兼容结构与光电子集成”(编号:2010CB327605)、国家自然科学基金项目“全固光子带隙光纤及全固光子带隙光纤光栅研究”(编号:10774077)、“基于光子带隙光纤的可调谐光电子器件”(编号:50802044)和“基于PPMgL微结构波导倍频的超短脉冲全光纤激光光源”(编号:50802044)以及澳大利亚研究委员会(ARC)开发类项目“超性能光纤通信器件的开发和研究”中的内容。在对光子晶体光纤的理论分析方法、各种奇异特性、功能材料选择性填充光子晶体光纤技术、声致光子晶体光纤光栅技术等内容深入研究的基础上,重点进行了基于光子晶体光纤的新型传感技术的理论和实验研究。主要研究内容和创新点如下:
     1.基于空芯光子带隙光纤的F-P干涉型传感技术研究。
     提出并研制了基于空芯光子带隙光纤的在线F-P干涉型温度不敏感应力传感器。实现了传感器长度仅为0.2mm,与普通光纤直径相同,集成度高,且对弯曲及温度等环境因素不敏感,应变灵敏度为1.55pm/με的微型传感器。
     提出了基于空芯光子带隙光纤F-P干涉型传感器的复用解调方案。从理论和实验上研究了其多路复用能力并提供了简便易行的解调方法。搭建了空芯光子带隙光纤应力传感系统。
     2.声致光子晶体光纤光栅的电调谐特性、温度调谐特性和折射率调谐特性研究。
     在对填充了液体的固芯光子带隙光纤中的传输模式进行详细数值分析和讨论的基础上,实验上利用电致声波在固芯光子带隙光纤上诱导产生了长周期光纤光栅,并研究其谐振波长和谐振强度的快速电调谐特性。
     提出并研制出结合了声致光纤光栅快速电调谐特性,光子带隙光纤带隙调谐特点和带隙内色散特性的高灵敏度折射率传感器,并进行了深入的相关理论和实验研究,理论结果和实验结果符合良好。实现的传感技术指标:温度灵敏度6.94 nm/℃,折射率灵敏度1.79×104 nm/RIU,探测极限8.4×10-6RIU,该技术指标是已报道的同类传感器中最高的。
     3.混合型光传导双折射光子晶体光纤及其应用研究。
     利用选择性填充技术,设计并研制出具有独特双折射特性的混合型导光光子晶体光纤,并对其特性进行了深入研究和分析。提出了基于该光纤的Sagnac干涉型滤波器,该滤波器具有干涉条纹波长间隔不同且温度、折射率等多参量可调谐的特点,有望在多参数传感测量等领域中得到应用。
     4.基于双物质聚合物光子晶体光纤的可调谐窄带滤波器和传感器研究。
     设计并研究了双物质聚合物光子晶体光纤的拉制工艺和传导特性,并成功拉制出该种光子晶体光纤。通过选择性填充该聚合物光纤,利用模式谐振耦合原理,实现了窄带带阻滤波器和填充折射率与基底材料折射率极相近的折射率传感器。根据聚合物光纤的最佳工作波长,我们在800 nm处获得了温度灵敏度为2 nm/℃,折射率灵敏度为2.81×103 nm/RIU可调谐窄带滤波器和传感器。
     5.具有特殊性质的全固光子晶体光纤的理论设计研究。
     设计了包层为方形栅格结构的全固大模场面积光子晶体光纤。结果表明,相同占空比的方形栅格包层全固光子带隙光纤模场面积是普通三角形栅格包层全固光子带隙光纤的1.25倍。
     研究了包层为矩形柱结构的高双折射光子晶体光纤。计算结果表明,该类光纤相双折射可以达到1×10-3,群双折射可以达到4×10-2。
Photonic crystal fibers (PCFs, also known as microstructured fibers) have attracted great interest in the scientific and industrial community because of their unique characteristics and advantages over conventional optical fibers. The past decade has witnessed a remarkable progress in the fabrication and commercialization of PCF, and in particular, functional optical devices have become global research focus, especially in the field of PCF sensing.
     The research work in this thesis is supported by the National Key Basic Research and Development Program of China (Nos.2003CB314906 and 2010CB327605), the National Natural Science Foundation of China (Nos.10774077, 50802044 and 60677013) and Australian Research Council's (ARC) Discovery Project scheme. Based on the insight study on the theoretical analysis approach, different unique properties, selective filling techniques of photonic crystal fiber, and acoustic-induced photonic crystal fiber grating, PCF-based novel sensing technology has been theoretically and experimentally studied. Main content of the research work in this thesis includes:
     1. Investigation of the F-P interferometric sensing technology based on hollow-core photonic bandgap PCF
     The environmentally stable in-line F-P interferometric strain sensor is developed. The proposed sensor has several advantages such as short length of just 0.2 mm, diameter equivalent to conventional single-mode fiber, bend and temperature insensitive and strain sensitivity of 1.55 pm/με.
     Moreover, the multiplexing and demodulation schemes of hollow core PCF F-P interferometric strain sensor has been studied from the theoretical and experimental aspects as well. And finally, a strain sensing system based on the hollow core photonic bandgap fiber has been set up.
     2. Investigation of the tuning peroperties of photonic bandgap fiber acoustic grating in terms of electric, temperature and refractive index.
     Based on the detailed numerical simulation and analysis of the guided modes in the solid-core photonic bandgap fiber filled with liquid, long-period grating was inscribed in the low-index contrast photonic bandgap fiber through electric-induced acoustic wave, furthermore, its electrical tenability of wavelength and intensity has been investigated.
     By synthesizing the speedy tenability of the acoustic grating, the bandgap tenability of photonic bandgap fiber, and the dispersion properties of the PCF, a highly sensitive refractive index sensor was proposed. Relevant experimental results are in good agreement with the theoretical analysis. The parameters of the sensor are as follows:temperature sensitivity of 6.94 nm/℃, refractive index sensitivity of 1.79×104 nm/RIU, detection limit of 8.4×10-6 RIU. To the best of our knowledge, above parameters are the best ones for the same type sensors ever reported by far.
     3. Investigation of the hybrid guided birefringence photonic crystal fiber and its applications
     By selective filling liquid into the air hole of PCF, novel hybrid guided birefringent PCF is proposed. The properties of the hybrid guidance mechanism are studied and a new type of fiber Sagnac interferometric filter is presented. Its fringe spacing changes with wavelength, and the notch could be tuned by temperature, refractive index, etc., which could be applied for multi-parameter sensing measurements.
     4. Investigation of tunable narrowband filter and sensor based on double materials polymer PCF.
     The fabrication technique and properties of double-material polymer PCF have been investigated, and the above mentioned fiber has been drawn out. Based on modes coupling theory and selective filling technology, we have developed a narrowband filter and refractive index senor for the fluid with the slight refractive index difference from background material. The temperature sensitivity reaches 2 nm/℃, and refractive index sensitivity achieves 2.81×103 nm/RIU for the optimized operation wavelength for the polymer fiber at 800 nm.
     5. Design of new types all-solid photonic crystal fiber with the unique characteristics.
     All-solid square-lattice photonic bandgap fiber with larger effective mode area has been designed. Simulation results demonstrate that the proposed effective mode area of all-solid square-lattice photonic bandgap fibers is 1.25 times larger than triangular lattice ones.
     The birefringence property of the photonic bandgap fiber with rectangular high index rods cladding has been studied. The simulation results demonstrated that the phase birefringence and the group birefringence reach 1×10-3 and 4×10-2, respectively.
引文
[1]Knight J.C., Birks T.A., Russell P.S.J., et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett.,1996:21.1547-1549.
    [2]Knight J.C., Broeng J., Birks T.A., et al. Photonic band cap guidance in optical fibers. Science,1998:282.1476-1478.
    [3]Ortigosa-Blanch A., Knight J.C., Wadsworth W.J., et al. Highly birefringent photonic crystal fibers. Optics Letters,2000:25.1325-1327.
    [4]Steel M.J., Osgood R.M. Elliptical-hole photonic crystal fibers. Optics Letters,2001: 26.229-231.
    [5]Mortensen N.A., Nielsen M.D., Folkenberg J.R., et al. Improved large-mode-area endlessly single-mode photonic crystal fibers. Optics Letters,2003:28.393-395.
    [6]Knight J.C. Photonic crystal fibres. Nature,2003:424.847-851.
    [7]Russell P. Photonic crystal fibers. Science,2003:299.358-362.
    [8]Roy S., Mondal K., Chaudhuri P.R. Modeling the tapering effects of fabricated photonic crystal fibers and tailoring birefringence, dispersion, and supercontinuum generation properties. Applied Optics,2009:48.G106-G113.
    [9]Litchinitser N.M., Dunn S.C., Steinvurzel P.E., et al. Application of an ARROW model for designing tunable photonic devices. Optics Express,2004:12.1540-1550.
    [10]Kuhlmey B.T., Pathmanandavel K., McPhedran R.C. Multipole analysis of photonic crystal fibers with coated inclusions. Optics Express,2006:14.10851-10864.
    [11]Wei L., Eskildsen L., Weirich J., et al. Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers. Applied Optics,2009:48.497-503.
    [12]Wang Z., Liu Y.G., Kai G.Y., et al. Directional couplers operated by resonant coupling in all-solid photonic bandgap fibers. Optics Express,2007:15.8925-8930.
    [13]Yue Y., Kai G.Y., Wang Z., et al. Broadband single-polarization single-mode photonic crystal fiber coupler. Ieee Photonics Technology Letters,2006:18.2032-2034.
    [14]Saitoh K., Florous N.J., Koshiba M., et al. Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multicore photonic crystal fibers. Optics Express, 2005:13.10327-10335.
    [15]Smolka S., Barth M., Benson O. Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Optics Express,2007:15.12783-12791.
    [16]Witkowska A., Leon-Saval S.G., Pham A., et al. All-fiber LP11 mode convertors. Optics Letters,2008:33.306-308.
    [17]Chen M.Y., Yu R.J., Zhao A.P. Polarization properties of rectangular lattice photonic crystal fibers. Optics Communications,2004:241.365-370.
    [18]Fu L., Gan X.S., Gu M. Nonlinear optical microscopy based on double-clad photonic crystal fibers. Optics Express,2005:13.5528-5534.
    [19]Zhou Q.L., Lu X.Q., Chen D.P., et al. Band structure of photonic crystal fibers with silica rings in triangular lattice. Optics Communications,2006:267.98-101.
    [20]van Eijkelenborg M.A., Argyros A., Barton G., et al. Recent progress in microstructured polymer optical fibre fabrication and characterisation. Optical Fiber Technology,2003: 9.199-209.
    [21]Choi J., Cha H., Lee J. Single-mode propagation in polymer photonic-crystal fibers. Polymer-Korea,2004:28.206-209.
    [22]Warren-Smith S.C., Ebendorff-Heidepriem H., Foo T.C., et al. Exposed-core microstructured optical fibers for real-time fluorescence sensing. Optics Express,2009: 17.18533-18542.
    [23]Fedotov A.B., Sidorov-Biryukov D.A., Ivanov A.A., et al. Soft-glass photonic-crystal fibers for frequency shifting and white-light spectral superbroadening of femtosecond Cr forsterite laser pulses. Journal of the Optical Society of America B-Optical Physics,2006: 23.1471-1477.
    [24]Wang Y.P., Bartelt H., Becker M., et al. Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers. Applied Optics,2009:48.1963-1968.
    [25]Jin L., Wang Z., Fang Q., et al. Bragg grating resonances in all-solid bandgap fibers. Optics Letters,2007:32.2717-2719.
    [26]Jin L., Wang Z., Liu Y.G., et al. Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers. Optics Express,2008:16.21119-21131.
    [27]Magi E.C., Steinvurzel P., Eggleton B.J. Tapered photonic crystal fibers. Optics Express, 2004:12.776-784.
    [28]Noordegraaf D., Scolari L., Laegsgaard J., et al. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Optics Express,2007: 15.7901-7912.
    [29]Zhang X., Wang R., Cox F.M., et al. Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Optics Express,2007: 15.16270-16278.
    [30]金龙,微结构光纤光栅的理论、实验与应用研究in光学.2008,南开大学:天津.
    [31]Ejchenholz J. Photonic-crystal fibers have many uses. Laser Focus World,2004:
    [32]Birks T.A., Luan F., Pearce G.J., et al. Bend loss in all-solid bandgap fibres. Optics Express,2006:14.5688-5698.
    [33]Russel P.S.J., Photonic crystal fibers:Basics and applications, in Optical Fiber Telecommunications V A:Components and Subsystems.2008:Erlangen,Germany. p. 485-520.
    [34]Ademgil H., Haxha S. Ultrahigh-Birefringent Bending-Insensitive Nonlinear Photonic Crystal Fiber With Low Losses.Ieee Journal of Quantum Electronics,2009:45.351-358.
    [35]An L., Zheng Z., Li Z., et al. Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss Using Four Airholes in the Core. Journal of Lightwave Technology, 2009:27.3175-3180.
    [36]Roberts P.J., Williams D.P., Sabert H., et al. Design of low-loss and highly birefringent hollow-core photonic crystal fiber. Optics Express,2006:14.7329-7341.
    [37]Kubota H., Kawanishi S., Koyanagi S., et al. Absolutely single polarization photonic crystal fiber. Ieee Photonics Technology Letters,2004:16.182-184.
    [38]Kim D.H., Kang J.U. Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Optics Express,2004: 12.4490-4495.
    [39]Moon D.S., Kim B.H., Lin A.X., et al. The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber. Optics Express,2007: 15.7962-7967.
    [40]Knight J.C., Arriaga J., Birks T.A., et al. Anomalous dispersion in photonic crystal fiber. Ieee Photonics Technology Letters,2000:12.807-809.
    [41]Saitoh K., Florous N., Koshiba M. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Optics Express, 2005:13.8365-8371.
    [42]Reeves W.H., Skryabin D.V., Biancalana F., et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature,2003: 424.511-515.
    [43]Bouwmans G., Luan F., Knight J.C., et al. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength. Optics Express,2003:11.1613-1620.
    [44]Kurokawa K., Tajima K., Nakajima K.10-GHz 0.5-ps pulse generation in 1000-nm band in PCF for high-speed optical communication. Journal of Lightwave Technology,2007: 25.75-78.
    [45]王志,光子晶体光纤及其功能型器件的研究,in光学.2005,南开大学:天津,中国.
    [46]Roberts P.J., Couny F., Sabert H., et al. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express,2005:13.236-244.
    [47]Laegsgaard J., Mortensen N.A., Riishede J., et al. Material effects in air-guiding photonic bandgap fibers. Journal of the Optical Society of America B-Optical Physics,2003: 20.2046-2051.
    [48]Petropoulos P., Ebendorff-Heidepriem H., Finazzi V., et al. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Optics Express,2003: 11.3568-3573.
    [49]Hensley C.J., Ouzounov D.G., Gaeta A.L., et al. Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers. Optics Express,2007: 15.3507-3512.
    [50]Kumar V.V.R.K., George A.K., Knight J.C., et al. Tellurite photonic crystal fiber. Optics Express,2003:11.2641-2645.
    [51]Kumar V.V.R.K., George A.K., Reeves W.H., et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express,2002:10.1520-1525.
    [52]Bise R.T., Trevor D.J., Sol-gel Derived Microstructured Fiber:Fabrication and Characterization, in OFC.2005:Anaheim.
    [53]Ouzounov D.G., Ahmad F.R., Muller D., et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science,2003:301.1702-1704.
    [54]Shephard J.D., Jones J.D.C., Hand D.P., et al. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers. Optics Express,2004: 12.717-723.
    [55]Kim D., Choi H., Yazdanfar S., et al. Ultrafast Optical Pulse Delivery With Fibers for Nonlinear Microscopy. Microscopy Research and Technique,2008:71.887-896.
    [56]de Matos C.J.S., Popov S.V., Rulkov A.B., et al. All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers. Physical Review Letters, 2004:93.
    [57]Limpert J., Schreiber T., Nolte S., et al. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber. Optics Express,2003: 11.3332-3337.
    [58]Cheo P.L., Liu A., King G.G. A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array. leee Photonics Technology Letters,2001:13.439-441.
    [59]Cooper L.J., Wang P., Williams R.B., et al. High-power Yb-doped multicore ribbon fiber laser. Optics Letters,2005:30.2906-2908.
    [60]Michaille L., Taylor D.M., Bennett C.R., et al. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area. Optics Letters,2008: 33.71-73.
    [61]Brooks C.D., Di Teodoro F. Multimegawatt peak-power, single-transverse-mode operation of a 100 mu m core diameter, Yb-doped rodlike photonic crystal fiber amplifier. Applied Physics Letters,2006:89.-
    [62]Brooks C.D., Di Teodoro F.1-mJ energy,1-MW peak-power,10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier. Optics Express,2005:13.8999-9002.
    [63]Di Teodoro F., Brooks C.D. Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses. Optics Letters,2005:30.3299-3301.
    [64]Di Teodoro F., Brooks C.D.1.1 MW peak-power,7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier. Optics Letters,2005:30.2694-2696.
    [65]Dudley J.M., Kibler B., Genty G., et al. From Supercontinuum Generation to Carrier Shocks:Extreme Nonlinear Propagation in Photonic Crystal Fiber.2007 Conference on Lasers & Electro-Optics/Quantum Electronics and Laser Science Conference (Cleo/Qels 2007), Vols 1-5,2007:2070-2071.2796.
    [66]Mitrofanov A.V., Ivanov A.A., Podshivalov A.A., et al. Microjoule supercontinuum generation by prechirped laser pulses in a large-mode-area photonic-crystal fiber.2007 Conference on Lasers & Electro-Optics/Quantum Electronics and Laser Science Conference (Cleo/Qels 2007), Vols 1-5,2007:1936-1937.2796.
    [67]Roy S., Chaudhuri P.R. Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses. Optics Communications,2009:282.3448-3455.
    [68]Agrawal A., Kejalakshmy N., Rahman B.M.A., et al. Soft Glass Equiangular Spiral Photonic Crystal Fiber for Supercontinuum Generation. Ieee Photonics Technology Letters,2009:21.1722-1724.
    [69]Chen A.Y.H., Wong G.K.L., Murdoch S.G., et al. Widely tunable optical parametric generation in a photonic crystal fiber. Optics Letters,2005:30.762-764.
    [70]Deng Y.J., Lin Q., Lu F., et al. Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber. Optics Letters,2005:30.1234-1236.
    [71]Lasri J., Devgan P., Tang R.Y., et al. A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime. Ieee Photonics Technology Letters,2003:15.1058-1060.
    [72]Sharping J.E., Fiorentino M., Kumar P., et al. Optical parametric oscillator based on four-wave mixing in microstructure fiber. Optics Letters,2002:27.1675-1677.
    [73]Harvey J.D., Leonhardt R., Coen S., et al. Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber. Optics Letters,2003:28.2225-2227.
    [74]Fulconis J., Alibart O., Wadsworth W.J., et al. High brightness single mode source of correlated photon pairs using a photonic crystal fiber. Optics Express,2005: 13.7572-7582.
    [75]Cui L., Li X.Y., Fan H.Y., et al. Photonic Crystal Fiber Source of Quantum Correlated Photon Pairs in the 1550 nm Telecom Band. Chinese Physics Letters,2009:26.-
    [76]Rarity J.G., Fulconis J., Duligall J., et al. Photonic crystal fiber source of correlated photon pairs. Optics Express,2005:13.534-544.
    [77]Skryabin D.V., Luan F., Knight J.C., et al. Soliton self-frequency shift cancellation in photonic crystal fibers. Science,2003:301.1705-1708.
    [78]Joly N.Y., Omenetto F.G., Efimov A., et al. Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber. Optics Communications,2005:248.281-285.
    [79]Luan F., Skryabin D.V., Yulin A.V., et al. Energy exchange between colliding solitons in photonic crystal fibers. Optics Express,2006:14.9844-9853.
    [80]Russell P.S.J. Photonic-Crystal Fibers. J. Lightwave Technol.,2006:24.4729-4749.
    [81]Dainese P., Russell P.S.J., Joly N., et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Physics,2006:2.388-392.
    [82]Elser D., Andersen U.L., Korn A., et al. Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers. Physical Review Letters,2006:97.-
    [83]Beugnot J.C., Sylvestre T., Maillotte H., et al. Guided acoustic wave Brillouin scattering in photonic crystal fibers. Optics Letters,2007:32.17-19.
    [84]Dainese P., Russell P.S.J., Wiederhecker GS., et al. Raman-like light scattering from acoustic phonons in photonic crystal fiber. Optics Express,2006:14.4141-4150.
    [85]Benabid F., Knight J.C., Antonopoulos G., et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science,2002:298.399-402.
    [86]Benabid F., Couny F., Knight J.C., et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature,2005:434.488-491.
    [87]Nakajima K., Hogari K., Zhou T., et al. Hole-assisted fiber design for small bending and splice losses. Ieee Photonics Technology Letters,2003:15.1737-1739.
    [88]Eggleton B.J., Westbrook P.S., Windeler R.S., et al. Grating resonances in air-silica microstructured optical fibers. Optics Letters,1999:24.1460-1462.
    [89]Mihailov S.J., Grobnic D., Ding H.M., et al. Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers. Ieee Photonics Technology Letters,2006: 18.1837-1839.
    [90]Steinvurzel P., Moore E.D., Magi E.C., et al. Tuning properties of long period gratings in photonic bandgap fibers. Optics Letters,2006:31.2103-2105.
    [91]Yeom D.I., Steinvurzel P., Eggleton B.J., et al. Tunable acoustic gratings in solid-core photonic bandgap fiber. Optics Express,2007:15.3513-3518.
    [92]Shi Q., Kuhlmey B.T. Optimization of photonic bandgap fiber long period grating refractive-index sensors. Optics Communications,2009:282.4723-4728.
    [93]Afshar S., Warren-Smith S.C., Monro T.M. Enhancement of fluorescence-based sensing using microstructured optical fibres. Optics Express,2007:15.17891-17901.
    [94]Monro T.M., Belardi W., Furusawa K., et al. Sensing with microstructured optical fibres. Measurement Science & Technology,2001:12.854-858.
    [95]Wu D.K.C., Kuhlmey B.T., Eggleton B.J. Ultrasensitive photonic crystal fiber refractive index sensor. Optics Letters,2009:34.322-324.
    [96]MacPherson W.N., Rigg E.J., Jones J.D.C., et al. Finite-element analysis and experimental results for a microstructured fiber with enhanced hydrostatic pressure sensitivity. Journal of Lightwave Technology,2005:23.1227-1231.
    [97]Blanchard P.M., Burnett J.G., Erry G.R.G., et al. Two-dimensional bend sensing with a single, multi-core optical fibre. Smart Materials & Structures,2000:9.132-140.
    [98]廖延彪.,黎敏.,张敏.,et al光纤传感技术与应用.1st ed. ed.:清华大学出版社.2009.
    [99]廖延彪.光纤光学lsted. ed北京,中国:清华大学出版社.2000.
    [100]Erdogan T. Fiber grating spectra. Journal of Lightwave Technology,1997:15.1277-1294.
    [101]余有龙.光纤光栅传感器网络化技术.ed.哈尔滨,中国:黑龙江科学技术出版社.2003.
    [102]董波,基于啁啾化光纤光栅与高双折射光纤环镜传感技术的研究in光学.2008,南开大学:天津,中国.
    [103]Choi H.Y., Kim M.J., Lee B.H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Optics Express,2007:15.5711-5720.
    [104]Villatoro J., Finazzi V., Minkovich V.P., et al. Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing. Applied Physics Letters,2007:91.
    [105]MacPherson W.N., Gander M.J., McBride R., et al. Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre. Optics Communications,2001: 193.97-104.
    [106]Zhao C.L., Yang X.F., Lu C., et al. Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. Ieee Photonics Technology Letters,2004: 16.2535-2537.
    [107]Dong X.Y., Tam H.Y., Shum P. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters,2007:90.-,
    [108]Fu H.Y., Tam H.Y., Shao L.Y., et al. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Applied Optics,2008:47.2835-2839.
    [109]Frazao O., Baptista J.M., Santos J.L., et al. Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer. Applied Optics,2008:47.2520-2523.
    [110]Yang X.F., Zhao C.L., Peng Q.Z., et al. FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter. Optics Communications,2005: 250.63-68.
    [111]Du J.B., Liu Y.G., Wang Z., et al. Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused. Optics Letters,2008:33.2215-2217.
    [112]Choi H.Y., Park K.S., Park S.J., et al. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Optics Letters,2008:33.2455-2457.
    [113]Shi Q., Lv F.Y., Wang Z., et al. Environmentally stable Fabry-Perot-type strain sensor based on hollow-core photonic bandgap fiber. Ieee Photonics Technology Letters,2008: 20.237-239.
    [114]Shi Q., Wang Z., Jin L., et al. A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system, leee Photonics Technology Letters,2008:20.1329-1331.
    [115]Frazao O., Santos J.L., Araujo F.M., et al. Optical sensing with photonic crystal fibers. Laser & Photonics Reviews,2008:2.449-459.
    [116]Kersey A.D., Davis M.A., Patrick H.J.,et al. Fiber grating sensors. Lightwave Technology, Journal of,1997:15.1442-1463.
    [117]Groothoff N., Canning J., Buckley E., et al. Bragg gratings in air-silica structured fibers. Optics Letters,2003:28.233-235.
    [118]Martelli C., Canning J., Groothoff N., et al. Strain and temperature characterization of photonic crystal fiber Bragg gratings. Optics Letters,2005:30.1785-1787.
    [119]Frazao O., Carvalho J.P., Ferreira L.A., et al. Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibres. Measurement Science & Technology,2005:16.2109-2113.
    [120]Han Y.G., Lee Y.J., Kim G.H., et al. Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air-hole size and their application. Ieee Photonics Technology Letters,2006:18.1783-1785.
    [121]Huy M.C.P., Laffont G., Frignac Y., et al. Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement. Measurement Science & Technology,2006:17.992-997.
    [122]Huy M.C.P., Laffont G., Dewynter V., et al. Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer. Optics Letters,2007:32.2390-2392.
    [123]Huy M.C.P., Laffont G., Dewynter V., et al. Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement. Optics Express, 2006:14.10359-10370.
    [124]Geernaert T., Nasilowski T., Chah K., et al. Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers. Ieee Photonics Technology Letters, 2008:20.554-556.
    [125]Long J., Kai G.Y., Li J.Y., et al. Fibre Bragg gratings inscribed in homemade microstructured fibres. Chinese Physics Letters,2007:24.1603-1606.
    [126]Jin L., Wang Z., Fang Q., et al. Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers. Optics Express,2007:15.15555-15565.
    [127]Dobb H., Kalli K., Webb D.J. Temperature-insensitive long period grating sensors in photonic crystal fibre. Electronics Letters,2004:40.657-658.
    [128]Zhu Y.N., Shum P., Chong H.J., et al. Strong resonance and a highly compact long-period grating in a large-mode-area photonic crystal fiber. Optics Express,2003:11.1900-1905.
    [129]Rindorf L., Bang O. Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Optics Letters,2008:33.563-565.
    [130]Zhu Y.N., Shum P., Bay H.W., et al. Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber. Optics Letters,2005:30.367-369.
    [131]Jin L., Jin W., Ju J. Directional Bend Sensing With a CO2-Laser-Inscribed Long Period Grating in a Photonic Crystal Fiber. Journal of Lightwave Technology,2009: 27.4884-4891.
    [132]Lim J.H., Lee K.S., Kim J.C., et al. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. Optics Letters,2004:29.331-333.
    [133]Bock W.J., Chen J., Mikulic P., et al. Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres. Measurement Science & Technology,2007:18.3098-3102.
    [134]Rindorf L., Bang O. Sensitivity of photonic crystal fiber grating sensors:biosensing, refractive index, strain, and temperature sensing. Journal of the Optical Society of America B-Optical Physics,2008:25.310-324.
    [135]Zhao C.L., Demokan M.S., Jin W., et al. A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber. Optics Communications,2007: 276.242-245.
    [136]Xu J., Liu Y.-g., Wang Z., et al. Simultaneous force and temperature measurement using long-period grating written on the joint of a microstructured optical fiber and a single mode fiber. Appl. Opt.:49.492-496.
    [137]Pickrell G., Peng W., Wang A. Random-hole optical fiber evanescent-wave gas sensing. Optics Letters,2004:29.1476-1478.
    [138]Monro T.M., Richardson D.J., Bennett P.J. Developing holey fibres for evanescent field devices. Electronics Letters,1999:35.1188-1189.
    [139]Hoo Y.L., Jin W., Ho H.L., et al. Evanescent-wave gas sensing using microstructure fiber. Optical Engineering,2002:41.8-9.
    [140]Cubillas A.M., Silva-Lopez M., Lazaro J.M., et al. Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Optics Express, 2007:15.17570-17576.
    [141]Magalhaes F., Carvalho J.P., Ferreira L.A., et al. Methane detection system based on Wavelength Modulation Spectroscopy and hollow-core fibres.in.Sensors,2008 IEEE: 2008.1277-1280.
    [142]Bise R.T., Windeler R.S., Kranz K.S., et al. Tunable photonic band gap fiber. in.Optical Fiber Communication Conference and Exhibit,2002. OFC 2002:2002.466-468.
    [143]Kerbage C., Steinvurzel P., Reyes P., et al. Highly tunable birefringent microstructured optical fiber. Optics Letters,2002:27.842-844.
    [144]Larsen T.T., Broeng J., Hermann D.S., et al. Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres. Electronics Letters,2003:39.1719-1720.
    [145]Scolari L., Alkeskjold T.T., Riishede J., et al. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Optics Express,2005:13.7483-7496.
    [146]Zhang C.S., Kai G.Y., Wang Z., et al. Transformation of a transmission mechanism by filling the holes of normal silica-guiding microstructure fibers with nematic liquid crystal. Optics Letters,2005:30.2372-2374.
    [147]Du J.B., Liu Y.G., Wang Z., et al. Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid. Optics Express,2008: 16.4263-4269.
    [148]Du J.B., Liu Y.G., Wang Z., et al. Liquid crystal photonic bandgap fiber:different bandgap transmissions at different temperature ranges. Applied Optics,2008: 47.5321-5324.
    [149]Johnson S.G., Joannopoulos J.D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Optics Express,2001:8.173-190.
    [150]Pearce G.J., Hedley T.D., Bird D.M. Adaptive curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystals. Physical Review B,2005:71.-
    [151]Kotynski R., Dems M., Panajotov K. Waveguiding losses of micro-structured fibres- plane wave method revisited. Optical and Quantum Electronics,2007:39.469-479.
    [152]Cucinotta A., Selleri S., Vincetti L., et al. Holey fiber analysis through the finite-element method. Photonics Technology Letters, IEEE,2002:14.1530-1532.
    [153]Kuhlmey B.T., White T.P., Renversez G., et al. Multipole method for microstructured optical fibers. Ⅱ. Implementation and results. Journal of the Optical Society of America B-Optical Physics,2002:19.2331-2340.
    [154]White T.P., Kuhlmey B.T., McPhedran R.C., et al. Multipole method for microstructured optical fibers. Ⅰ. Formulation. Journal of the Optical Society of America B-Optical Physics,2002:19.2322-2330.
    [155]White T.P., Kuhlmey B.T., McPhedran R.C., et al. Multipole method for microstructured optical fibers. Iota. Formulation (vol 19, pg 2322,2002). Journal of the Optical Society of America B-Optical Physics,2003:20.1581-1581.
    [156]Yu C.P., Chang H.C. Applications of the finite difference mode solution method to photonic crystal structures. Optical and Quantum Electronics,2004:36.145-163.
    [157]Saitoh K., Koshiba M. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:Application to photonic crystal fibers, leee Journal of Quantum Electronics,2002:38.927-933.
    [158]Wijngaard W. Guided normal modes of two parallel circular dielectric rods. Journal of Optical Society America,1973:63.944-950
    [159]Litchinitser N.M., Dunn S.C., Usner B., et al. Resonances in microstructured optical waveguides. Optics Express,2003:11.1243-1251.
    [160]White T.P., McPhedran R.C., de Sterke C.M., et al. Resonance and scattering in microstructured optical fibers. Optics Letters,2002:27.1977-1979.
    [161]Renversez G., Boyer P., Sagrini A. Antiresonant reflecting optical waveguide microstructured fibers revisited:a new analysis based on leaky mode coupling. Optics Express,2006:14.5682-5687.
    [162]Fang Q., Wang Z., Kai G.Y., et al. Proposal for all-solid photonic bandgap fiber with improved dispersion characteristics. leee Photonics Technology Letters,2007: 19.1239-1241.
    [163]Fang Q., Wang Z., Jin L., et al. Dispersion design of all-solid photonic bandgap fiber. Journal of the Optical Society of America B-Optical Physics,2007:24.2899-2905.
    [164]Kaminow I.P., Ramaswamy V. Single-polarization optical fibers:slab model. Applied Physics Letters,1979:34.268-270.
    [165]Simpson J.R., Stolen R.H., Sears F.M., et al. A single-polarization fiber. Journal of Lightwave Technology,1983:LT-1.370-374.
    [166]Nolan D.A., Berkey G.E., Li M.J., et al. Single-polarization fiber with a high extinction ratio. Optics Letters,2004:29.1855-1857.
    [167]Ritari T., Ludvigsen H., Wegmuller M., et al. Experimental study of polarization properties of highly birefringent photonic crystal fibers. Optics Express,2004: 12.5931-5939.
    [168]Steel M.J., Osgood R.M. Polarization and dispersive properties of elliptical-hole photonic crystal fibers. Journal of Lightwave Technology,2001:19.495-503.
    [169]Wegmuller M., Legre M., Gisin N., et al. Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm. Optics Express,2005: 13.1457-1467.
    [170]Statkiewicz G., Martynkien T., Urbanczyk W. Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain. Optics Communications,2004:241.339-348.
    [171]Martynkien T., Szpulak M., Urbanczyk W. Modeling and measurement of temperature sensitivity in birefringent photonic crystal holey fibers. Applied Optics,2005: 44.7780-7788.
    [172]Michie A., Canning J., Bassett I., et al. Spun elliptically birefringent photonic crystal fibre. Optics Express,2007:15.1811-1816.
    [173]Wang A., Pearce G.J., Luan F., et al. All solid photonic bandgap fiber based on an array of oriented rectangular high index rods. Optics Express,2006:14.10844-10850.
    [174]Wang A., George A.K., Liu J.F., et al. Highly birefringent lamellar core fiber. Optics Express,2005:13.5988-5993.
    [175]Yu X., Yan A., Luo L.W., et al. Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods. Ieee Photonics Technology Letters, 2006:18.1243-1245.
    [176]Koshiba M., Saitoh K. Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures. Applied Optics,2003:42.6267-6275.
    [177]Qing S., Yiming Z., Zhi W., et al., Highly birefringent all-solid photonic bandgap fiber with an array of oriented rectangular high index rods, in Proceedings of the 2008 International Conference on Advanced Infocomm Technology.2008, ACM:Shenzhen, China.
    [178]Shi Q., Kai G, Wang Z., et al. Properties of All-Solid Square-Lattice Photonic Bandgap Fibres. Chinese Physics Letters,2007:24.2259-2262.
    [179]Yu B., Wang A.B., Pickrell G.R. Analysis of fiber Fabry-Perot interferometric sensors using low-coherence light sources. Journal of Lightwave Technology,2006: 24.1758-1767.
    [180]Ran Z.L., Rao Y.J., Liu W.J., et al. Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express,2008:16.2252-2263.
    [181]Born M., Wolf E. Principles of Optics.7th ed. ed. Beijing:Publishing House of Electronics Industry.2005.
    [182]宋彦军.,王金娥.光纤法布里-珀罗传感器.激光与光电子进展,1998:394.1-6.
    [183]Xu Z.N., Duan K.L., Liu Z.J., et al. Numerical analyses of splice losses of photonic crystal fibers. Optics Communications,2009:282.4527-4531.
    [184]Cibula E., Donlagic D. In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR. Optics Express,2007:15.8719-8730.
    [185]Bourliaguet B., Pare C., Emond F., et al. Microstructured fiber splicing. Optics Express, 2003:11.3412-3417.
    [186]Zhong Y., Shi Q., Zhang T., et al., Real-time Distributed All-fiber Strain-sensing System, in International Conference on Advanced Infocomm Technology.2008:Shenzhen.
    [187]Huang Y.Y., Xu Y., Yariv A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Applied Physics Letters,2004:85.5182-5184.
    [188]Lazaro J.M., Kuhlmey B.T., Knight J.C., et al. Ultrasensitive UV-tunable grating in all-solid photonic bandgap fibers. Optics Communications 2009:282.2358-2361.
    [189]Rindorf L., Jensen J.B., Dufva M., et al. Photonic crystal fiber long-period gratings for biochemical sensing. Optics Express,2006:14.8224-8231.
    [190]Dobb H., Kalli K., Webb D.J. Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre. Optics Communications,2006:260.184-191.
    [191]Thurston R.N. Elastic-Waves in Rods and Clad Rods. Journal of the Acoustical Society of America,1978:64.1-37.
    [192]Kerbage C., Eggleton B.J. Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber. Optics Express,2002:10.246-255.
    [193]Mach P., Dolinski M., Baldwin K.W., et al. Tunable microfluidic optical fiber. Applied Physics Letters,2002:80.4294-4296.
    [194]Fini J.M. Microstructure fibres for optical sensing in gases and liquids. Measurement Science & Technology,2004:15.1120-1128.
    [195]Nielsen K., Noordegraaf D., Sorensen T., et al. Selective filling of photonic crystal fibres. Journal of Optics a-Pure and Applied Optics,2005:7.L13-L20.
    [196]Kuhlmey B.T., Eggleton B.J., Wu D.K.C. Fluid-Filled Solid-Core Photonic Bandgap Fibers. Journal of Lightwave Technology,2009:27.1617-1630.
    [197]lredale T.B., Steinvurzel P., Eggleton B.J. Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre. Electronics Letters,2006:42.739-740.
    [198]Haakestad M.W., Alkeskjold T.T., Nielsen M.D., et al. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. Ieee Photonics Technology Letters,2005:17.819-821.
    [199]Larsen T.T., Bjarklev A., Hermann D.S., et al. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express,2003:11.2589-2596.
    [200]Engan H.E., Kim B.Y., Blake J.N., et al. Propagation and Optical Interaction of Guided Acoustic-Waves in 2-Mode Optical Fibers. Journal of Lightwave Technology,1988: 6.428-436.
    [201]Kim B.Y., Blake J.N., Engan H.E., et al. All-fiber acousto-optic frequency shifter. Opt. Lett.,1986:11.389-391.
    [202]Haakestad M.W., Engan H.E. Acoustooptic properties of a weakly multimode solid core photonic crystal fiber. Journal of Lightwave Technology,2006:24.838-845.
    [203]Diez A., Birks T.A., Reeves W.H., et al. Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves. Optics Letters,2000:25.1499-1501.
    [204]White I.M., Fan X.D. On the performance quantification of resonant refractive index sensors. Optics Express,2008:16.1020-1028.
    [205]Shi Q., Kuhlmey B., Wu D. Refractive Index Sensor with Acoustic Grating in a Low Index Contrast Photonic Bandgap Fiber. SPIE,2009:
    [206]Gundu K.M., Kolesik M., Moloney J.V., et al. Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers. Optics Express,2006:14.6870-6878.
    [207]Canning J., Stevenson M., Yip T.K., et al. White light sources based on multiple precision selective micro-filling of structured optical waveguides. Optics Express,2008: 16.15700-15708.
    [208]Yu C.P., Liou J.H., Huang S.S., et al. Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation. Optics Express,2008:16.4443-4451.
    [209]Zhang R., Teipel J., Giessen H. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Optics Express,2006:14.6800-6812.
    [210]Villatoro J., Kreuzer M.P., Jha R., et al. Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Optics Express,2009:17.1447-1453.
    [211]Yiou S., Delaye P., Rouvie A., et al. Stimulated Raman scattering in an ethanol core microstructured optical fiber. Optics Express,2005:13.4786-4791.
    [212]Cordeiro C.M.B., Franco M.A.R., Chesini G., et al. Microstructured-core optical fibre for evanescent sensing applications. Optics Express,2006:14.13056-13066.
    [213]Jensen J.B., Pedersen L.H., Hoiby P.E., et al. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Optics Letters,2004:29.1974-1976.
    [214]van Eijkelenborg M.A., Large M.C.J., Argyros A., et al. Microstructured polymer optical fibre. Optics Express,2001:9.319-327.
    [215]Zagari J., Argyros A., Issa N.A., et al. Small-core single-mode microstructured polymer optical fiber with large external diameter (vol 29, pg 818,2004). Optics Letters,2004: 29.1560-1560.
    [216]Ebendorff-Heidepriem H., Monro T., van Eijkelenborg M.A., et al. Extruded polymer preforms for high-NA polymer microstructured fiber.2006 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Vols 1-6,2006:1489-1491.2809.
    [217]Gauvreau B., Desevedavy F., Guo N., et al. High numerical aperture polymer microstructured fiber with three super-wavelength bridges. Journal of Optics a-Pure and Applied Optics,2009:11.-
    [218]Dobb H., Webb D.J., Kalli K., et al. Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers. Optics Letters,2005:30.3296-3298.
    [219]Hiscocks M.P., van Eijkelenborg M.A., Argyros A., et al. Stable imprinting of long-period gratings in microstructured polymer optical fibre. Optics Express,2006:14.4644-4649.
    [220]Vanda J., Skapa J., Vasinek V., et al. Fluorescent response of dye-filled suspended-core microstructured polymer optical fiber. Applied Optics,2009:48.G64-G67.
    [221]Cox F.M., Argyros A., Large M.C.J. Liquid-filled hollow core microstructured polymer optical fiber. Optics Express,2006:14.4135-4140.
    [222]Zhang Y.N. High birefringence tunable effect of microstructured polymer optical fiber. Acta Physica Sinica,2008:57.5729-5734.
    [223]Ponseca C.S., Pobre R., Estacio E., et al. Transmission of terahertz radiation using a microstructured polymer optical fiber. Optics Letters,2008:33.902-904.
    [224]Xiao L., Jin W., Demokan M.S., et al. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Optics Express,2005:13.9014-9022.
    [225]Cordeiro C.M.B., dos Santos E.M., Cruz C.H.B., et al. Lateral access to the holes of photonic crystal fibers-selective filling and sensing applications. Optics Express,2006: 14.8403-8412.
    [226]de Matos C.J.S., Cordeiro C.M.B., dos Santos E.M., et al. Liquid-core, liquid-cladding photonic crystal fibers. Optics Express,2007:15.11207-11212.
    [227]Moon D.S., Kim B.H., Lin A.X., et al. Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber. Optics Express,2007: 15.8371-8376.
    [228]Fu H.Y., Wong A.C.L., Childs P.A., et al. Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors. Optics Express,2009: 17.18501-18512.
    [229]李喜红,段高燕,张晓光,et al.基于Sagnac干涉法和固定分析法测量三种PMD模拟器的结果比较.光子技术,2005:8.46-48,55.
    [230]Wang Z., Kai G.Y., Liu Y.G., et al. Coupling and decoupling of dual-core photonic bandgap fibers. Optics Letters,2005:30.2542-2544.
    [231]中国聚酯网http://www.juzhi. com.cn.
    [232]Zhang Z.Y., Zhao P., Lin P., et al. Thermo-optic coefficients of polymers for optical waveguide applications. Polymer,2006:47.4893-4896.
    [233]Kasarova S.N., Sultanova N.G., Ivanov C.D., et al. Analysis of the dispersion of optical plastic materials. Optical Materials,2007:29.1481-1490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700