用户名: 密码: 验证码:
浮箱—水平板式浮防波堤水动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
港口建设已逐步进入到深水浪大、环境条件恶劣的海域。传统的坐底式防波堤结构已不能满足深水港口建设的要求。为此,研究消波效果好、造价低廉、适应软土地基,满足港内水质环境要求的防波堤结构型式,具有重要的意义。
     基于此,本文提出了垂直导桩锚泊浮箱-水平板式浮防波堤和锚链锚泊浮箱-水平板式浮防波堤两种结构型式,并对这两种新型浮式防波堤的水动力特性进行了物理模型试验和数值模型计算研究。另外对浮箱式浮防波堤的水动力特性也开展了物理模型试验和数值模型计算研究工作。
     首先,对浮箱式浮防波堤开展了物理模型试验,研究了规则波作用下浮箱式浮防波堤的透射系数、运动响应和锚链受力特性。探讨了相对宽度、波高、锚链相对拖地系数、锚链刚度、导链孔处倾角以及浮箱相对吃水对浮箱式浮防波堤水动力特性的影响。另外对浮箱式浮防波堤的透射系数与锚链受力的相关性进行了研究。试验结果表明,改变相对宽度、锚链刚度和导链孔处倾角对透射系数、运动响应和锚链受力影响均较大。
     其次,对垂直导桩锚泊浮箱-水平板式浮防波堤开展了物理模型试验和数值模型计算研究。通过物理模型试验研究了规则波作用下垂直导桩锚泊浮箱-水平板式浮防波堤的透射系数和垂荡运动响应。探讨了相对宽度、波高、水平板宽、水平板层数,水平板与浮箱间距以及浮箱相对吃水对消波系数(包括透射系数、反射系数、波能衰减系数)和垂荡运动响应的影响。并对消波系数与垂荡运动的相关性进行了分析。试验结果表明,垂直导桩锚泊浮箱-水平板式浮防波堤在相对宽度为0.2时,可使透射系数低于0.5;即使在长周期波浪(在试验范围内,周期为1.28s~1.55s的波浪)作用时,透射系数也可降至0.8左右。根据本文的试验成果,浮箱下部设置一层板型式的垂直导桩锚泊浮箱-水平板式浮防波堤的消波效果较为理想。基于线性时域理论,建立波浪对浮箱-水平板式浮防波堤作用的时域内的积分方程,应用边界元方法求解,再应用牛顿第二定律建立浮箱-水平板式浮防波堤的时域运动方程,采用四阶Runge-Kutta方法求解,由此建立起浮箱-水平板式浮防波堤的数值模型。根据该数值模型对垂直导桩锚泊浮箱-水平板式浮防波堤的消波系数和垂荡运动响应进行了计算并与试验结果进行对比。另外应用数值模型计算了垂直导桩锚泊浮箱-水平板式浮防波堤的导桩所受水平力。
     最后,对锚链锚泊浮箱-水平板式浮防波堤开展了物理模型试验研究和数值模型计算研究。通过物理模型试验探讨了规则波作用下,水平板层数不同、浮箱吃水不同对透射系数的影响。锚链锚泊浮箱-水平板式浮防波堤的浮体部分的数值模型的建立方法与垂直导桩锚泊浮箱-水平板式浮防波堤相同,锚链采用静态悬链线方法模拟。应用数值模型计算了水平板不同的锚链锚泊浮箱-水平板式浮防波堤的透射系数、运动响应和迎浪面、背浪面锚链受力特性。试验结果和计算结果均表明:锚链锚泊浮箱-水平板式浮防波堤的运动响应和锚链受力均小于锚链锚泊浮箱式浮防波堤。锚链锚泊浮箱-水平板式浮防波堤较锚链锚泊浮箱式浮防波堤具有更好的消波效果。
The construction of harbors steps into deep sea water area with execrable circumstances. The conventional breakwaters can not be fit for the construction in deep water. Therefore, it is very significant to explore the breakwaters with good performance of dissipating waves, which can be fit for poor foundation, high demanding of water circulation and cheap cost.
     For these reasons, the two new types of floating breakwater, the pile-restrained pontoon-plates floating breakwater and mooring chain restrained pontoon-plates floating breakwater, are proposed in this dissertation. Based on the model test, and by numerical investigation, the hydrodynamic prosperities of the two new types of floating breakwater are investigated. Additionally, the hydrodynamic prosperities of mooring chain restrained floating breakwater is studied by the physical model test and numerical investigation.
     Firstly, the transmission coefficients, motion responses and mooring chain forces of the floating breakwater under regular wave action are researched by experiments. The influences of relative pontoon width, wave height, relative drag coefficient of mooring chain, mooring chain stiffness, angle at anchor point and relative pontoon draught on the hydrodynamics characteristics are investigated. The correlativity between transmission coefficients and mooring chain forces are studied. The experimental results demonstrate that relative width, mooring chain stiffness and angle at anchor point have large effect on transmission coefficients, motion responses and mooring chain forces.
     Secondly, the experimental study and numerical model investigation are conducted on the pile-restrained pontoon-plates floating breakwater under regular wave actions in the finite water depth. The emphasis of the experimental investigation is on the characteristics of disspating coefficients and motion responses of the pile-restrained pontoon-plates floating breakwater. The influences of relative width, wave height, width of plates, distance between pontoon and plate, relative draught of pontoon on the dissipating coefficients and heave motions are discussed. The correlation between dissipating wave coefficients and heave motions are analyzed. The experimental results indicate that the transmission coefficient is less than 0.5 when the relative width is 0.2. Even under the long period wave (the wave period is from 1.28s to 1.55s) action, the transmission coefficient of the pile-restrained pontoon-plates floating breakwater decrease to 0.8. According to the experimental results, it is proposed that the pile-restrained pontoon and one plate floating breakwater has good ability of dissipating wave. Based on linear time-domain theory, the integral function is established, and solved by the boundary element method. By Newton second's law, the time-domain motion equations of the mooring chain restrained pontoon-plates floating breakwater are built and solved by the fourth order Runger-Kutta method. On the basis of the theories above, the time-domain numerical model is developed. Using this numerical model, the dissipating coefficients and heave motion responses are calculated. And the numerical results of dissipating coefficients and heave motion are compared with experimental results. Additionally, the horizontal forces on pile of the pile-restrained pontoon-plates floating breakwater are calculated at the same time.
     Thirdly, the experimental investigation and numerical model study are developed on mooring chain restrained pontoon-plates floating breakwater. The influences of the number of plate and pontoon draught on the transmission coefficients are discussed. The method of building numerical models of the floating of mooring chain restrained pontoon-plates floating breakwater is the same with that of the pile-restrained pontoon-plates floating breakwater. The The catenary theory is utilized to calculate the mooring chain forces. The model can reflect the characteristics of transmission coefficients, motion responses and mooring chain forces. Both the experimental results and numerical results show that By using the numerical model, the motion responses and mooring chain forces of mooring chain restrained pontoon-plates floating breakwater and pontoon floating breakwater are all calculated under different wave action. The results indicate that the motion responses and mooring chain forces of mooring chain restrained pontoon-plates floating breakwater are less than that of the pontoon floating breakwater, and the mooring chain restrained pontoon-plates floating breakwater has better dissipating wave ability than mooring chain restrained pontoon floating breakwater.
引文
[1]邱大洪,王永学.21世纪海岸和近海工程的发展趋势[J].自然科学进展,2000,10(11):982-986.
    [2]邱大洪.海岸和近海工程学科中的科学技术问题[J].大连理工大学学报,2000,40(6):631-637.
    [3]李玉成.海洋工程技术进展与对发展我国海洋经济的思考[J].大连理工大学学报,2002,42(1):1-5.
    [4]王永学.海洋资源可持续发展与环境[J].国际学术动态.1998(1):77-78.
    [5]韩理安.港口水工建筑物[M].北京:人民交通出版社,2008.
    [6]徐光,谢善文,李元音.防波堤的新结构形式[J].水运工程,2001(11):20-25.
    [7]俞聿修.斜坡式防波堤技术的新进展[J].港工技术,1995(3):13-18.
    [8]俞聿修,直墙式防波堤技术的新进展[J].港工技术,1996(3):1-7.
    [9]俞聿修.斜坡式和直墙式防波堤技术的新进展[J].港工技术,2000(4):1-4.
    [10]王丽勤.二维与三维随机波浪对半圆型防波堤作用的研究[D]:(博士学位论文).大连:大连理工大学,2006.
    [11]高学平,赵耀南.大圆筒防波堤抗波能力及波浪力特性[J].港口工程,1995(3):6-9.
    [12]牛恩宗,王玥葳,马德堂.防波堤结构的创新[J].水运工程,2009(1):16-22.
    [13]牛恩宗,马德堂,孙绍晨.新型梳式防波堤[J].土木工程学报,2003(10):51-55.
    [14]McCartney B.Floating breakwater design[J].Journal of Waterway port,Coastal and Ocean Engineering,1985,111(2),304-318.
    [15]王永学,王国玉.近岸浮式防波堤结构的研究进展与工程应用[C].2002年度海洋工程学术会议论文集,江西南昌,2002:314-321.
    [16]刘文通.浮箱式与倾斜式浮防波堤[J].海岸工程,1988,7(2):65-68.
    [17]胡嵋,李大鸣,秦崇仁.底浮箱式防波堤消浪性能、锚链张力及运动轨迹的试验研究[J].港工技术,2008(184):10-13.
    [18]张秀茶.国外保护海岸带的几种方法[J].海岸工程,1989,8(2):66-69.
    [19]毛伟清.浮式防波堤的研究[J].中国造船,1994(127):49-56.
    [20]J.S.Readshaw.The design of floating breakwater[C].Proceeding of second Conference on Floating Breakwaters,Seattle,1981.
    [21]交通部第一航务工程勘察设计院.海港工程设计手册(中册)[M].北京:人民交通出版社,1997.
    [22]严恺,海港工程[M].北京:海洋出版社,1996.
    [23]连云港建成我国首条浮式防波堤 海面可变“良田”.[EB/OL]:[2002,09,13]http://news.sina.com.cn/c/2002-09-03/1315704178.html
    [24]王振宇,张彪,刘国华.浮式海洋结构的应用和前景[J].中国海洋平台,2009,24(1):10-14.
    [25]李芬,邹早建.浮式海洋结构物研究现状及发展趋势[J].武汉理工大学学报(交通科学与工程版),2003,27(5):682-686.
    [26]陈伯真,汪广海.中国海洋工程的发展与展望[J].钢结构,2002,15(1):54-57.
    [27]加藤重一,石朝晖.“浮式防波堤”的发展与研究的现况[J].水利水运科技情报,1975(6):72-85.
    [28]蒋宗燕,朴俊植.浮式防波堤的发展和研究-发展现况和将来[J].水运工程,1980(4):22-26.
    [29]Bayram A.Experimental study of a sloping float breakwater[J].Ocean Engineering,2000(27):453-455.
    [30]Rapaka V E,Natarajan E,Neelamani S.Experimental investigation on the dynamic response of a moored wave energy device under regular sea waves[J].Ocean Engineering,2004(31):725-743.
    [31]Ikesue Shunichi,Tamura Kazumi,Sugi Yasuhiro,et al.Study on the performance of a floating breakwater with two boxes[C].Proceeding of the Twelfth International Offshore and Polar Engineering Conference,Kitakyushu,Japan,2002:773-778.
    [32]刘文通.浮式防波堤[J].水运工程,1989(2):6-11.
    [33]Mani J S.Design of Y-Frame floating breakwater[J].Journal of Waterway,Port,Coastal and Ocean Engineering,1991,117(2):105-118.
    [34]Murali K,Mani J S.Performance of Cage Floating Breakwater[J].Journal of Waterway,Port,Coastal and Ocean Engineering,1997,123(4):172-179.
    [35]Matsunaga Nobuhiro,Hashida Misao,Uzaki K.I.,et al.Performance of wave absorption by a steel floating breakwater with truss structure[C].Proceedings of the twelfth international offshore and polar engineering conference,Kitakyushu,Japan,2002:768-772.
    [36]Hegde A V,Kamath K,Deepak J C.Mooring forces in horizontal interlaced moored floating pipe breakwater with three layers[J].Ocean Engineering,2008,35:165-173.
    [37]Nelson E,Christensen D,Schuldt A D.Floating breakwater prototype test program[C].Proceeding if Coastal structures' 83,ASCE,New York,1983:433-445.
    [38]Harms V W Design criteria for floating tyre breakwaters[J].Journal of the Waterway,Port,Coastal and Ocean Division,1979(2):149-170.
    [39]Prototype Scale Mooring Load and Transmission Tests for a Floating Tire Breakwater[R].U.S.Army Corps of Engineers,Coastal Engineering Research Center,1978.
    [40]Wave transmission and mooring force characteristics of pipe-tire floating breakwaters[R].U.S.Army Corps of Engineers,Coastal Engineering Research Center,1982.
    [41]Mcgregor R C,Miller N S,曹祥明.海岸工程中的废轮胎防波堤[J].水道港口,1984(4):56-63.
    [42]吴静萍,王仁康,郑晓伟等.浮漂式防波堤的试验研究[J].武汉理工大学学报(交通科学与工程版),2001,25(1):91-93.
    [43]李陆平,蒲书箴.漂浮式防波堤消波在水库防汛中应用的探讨[J].海岸工程,1995,14(2):9-13.
    [44]宋伟华,黄六一,吕永林.柔性浮式防波堤抗风浪性能和在养殖中的应用[J].渔业现代化,2006(3):29-33.
    [45]宋伟华,马家志,吕永林等.方形网箱减流效果的试验与应用[J].浙江海洋学院学报(自然科学版),2007,26(4):378-383.
    [46]宋伟华,梁振林,黄六一等。波浪经过网衣的特性研究[J].海洋与湖沼,2007,38(1):15-20.
    [47]Dong G H,Zheng Y N,Li Y C,et al.Experiments on wave transmission coefficients of floating breakwaters[J].Ocean Engineering,2008(35):931-938.
    [48]董国海,郑艳娜,李玉成等.板-网结构浮式防波堤消浪性能的试验研究[J].工程力学,2006(7):142-146.
    [49]吴维登,钟瑚穗,黄俊.钢管-轮胎浮式防波堤消波的几个影响因子[J].河海大学学报(自然科学版),2002,30(5):79-82.
    [50]陈徐均,汤雪峰,沈庆,孙芦忠.系泊浮体布链方式优劣的理论分析[J].河海大学学报,2001,29(5):84-87.
    [51]Balah M I,Tolba E R.Behavior of pile system breakwater[J].Innovation in Concrete Structures:Design and Construction,1999:115-121.
    [52]Koutandos E V,Prinos P,Gironella X.Floating breakwaters under regular and irregular wave forcing:reflection and transmission characteristics[J].Journal of Hydraulic Research,2005,43(2):174-188.
    [53]Isaacson M,Baldwin J.Wave propagation past a pile-restrained floating breakwater[J].International Journal of Offshore and Polar Engineering,1998,8(4):265-269.
    [54]姚国权,麻志雄,丁炳灿.矩形浮式防波堤的改进试验研究[J].海洋工程,1992,10(3):33-42.
    [55]Koutandos E V,Karambas T V.Floating breakwater response to waves action using a Boussinesq model coupled with a 2DV elliptic solver[J].Journal of Waterway,Port,Coastal,and Ocean Engineering,2004,130(5):243-255.
    [56]Tolba E R.Behavior of floating breakwaters under wave actions[D]:(博士学位论文).Panama:Suez Canal University,1998.
    [57]Martinelli L,Ruol P.2D Model of floating breakwater dynamics under linear and nonlinear waves[C].2nd Comsol User Conference,Milano,2006.
    [58]盛祖荫,孙龙.掩护海水养殖网箱的浮式防波堤的消浪特性[J].中国水产科学,2001,8(4):70-72.
    [59]邹志利,王大国,李广伟,李松.浮式防波堤非线性波浪力实验研究[J].海洋工程,2003,21(4):61-69.
    [60]郑艳娜.波浪与浮式结构物相互作用的研究[D]:(博士学位论文).大连:大连理工大学,2006.
    [61]郑艳娜,董国海,李玉成,关长涛,林德芳.深水浮式防波堤结构形式的试验研究[J].中国海洋平台,2005,20(6):1-5.
    [62]胡嵋,李大鸣,秦崇仁.浅水区域浮箱式防波堤结构形式的试验研究[J].中国港湾建设. 2007(151):38-41.
    [63]陈力.浮式防波堤的实验研究[D].(硕士学位论文).上海:上海交通大学,2008.
    [64]Zheng Y H,You Y G,Shen Y M.On the radiationg and diffraction of water waves by a rectangular buoy[J].Ocean Engineering,2004,31:1063-1082.
    [65]Zheng Y H,Shen Y M,You Y G,Wu B J,Jie D S.Wave radiation by a floating rectangular structure in oblique seas[J].Ocean Engineering,2006(33):59-81.
    [66]刘鹏飞,郑永红,王利生.淹没矩形防波堤透反射系数特性研究[J].海洋学报,2006,28(5):138-144.
    [67]严建国,戴小平,孙芦忠.矩形浮箱式防波堤消浪特性分析[J].解放军理工大学学报(自然科学版),2005,6(1):67-70.
    [68]程建生,缪国平,王景全,尤云祥.圆弧形浮式防波堤防浪效果的解析研究[J].上海交通大学学报.2006,40(10):1772-1777.
    [69]劳国昇,冯宏.浮式防波堤性能理论计算[J].海洋工程,1993,11(2):89-97
    [70]黄衍顺,林莉,胡云昌.基于遗传算法的浮式防波结构物形状最优化设计[J].海洋工程,1999,17(4):102-106.
    [71]童朝峰,严以新.浮式防波堤消浪特征研究[J].水运工程,2002(343):32-35
    [72]俞聿修等.浮筒多锚链系统的静力特性[J].大连理工大学学报,1981,20(1):151-160.
    [73]陈徐均,崔维成,沈庆.对称式布置锚链系统的线性化处理[J].海洋工程,2002,20(1):75-79.
    [74]陈徐均.浮体二阶非线性水弹性力学分析方法[D]:(博士学位论文).无锡:中国船舶科学研究中心,2001.
    [75]侯建军,东防,石爱国,尹建川.锚泊状态下锚链作用力的计算方法[J].大连海事大学学报,2005,31(4):10-14.
    [76]Shunichi Ikesue,Yasuhiro Sugi.Study on the performance of a floating breakwater with two boxes[C].Proceedings of the twelfth International Offshore and Polar Engineering Conference,Kitakyushu,Japan,2002:773-778.
    [77]Mizutani N,Rahman A.Performance of submerged floating breakwater supported by perforated plates under wave action and its dynamics[C].Proceedings of Civil Engineering in the Ocean(CE06),ASCE,Baltimore,2006:329-341.
    [78]Fernandes A C,Rossi R R.On the model scaling of polyester mooring lines for offshore applications[C].Proceedings of the 21st International Conference on offshore Mechanics and Arctic Engineering,Oslo,Norway,2002:1-4.
    [79]Gesraha M R.Analysis of П shaped floating breakwater in oblique waves:Ⅰ.Impervious rigid wave board[J].Applied Ocean Research,2006(28):327-338.
    [80]Mullarkey T P,Mcnamara J E,Farrell K J.Semi-analytical solutions for the hydrodynamics of submerged pontoons of finite length[C].Proceedings 11th International OMAE Conference,ASME,New York,1992:135-142.
    [81]Williams A N,Abul-Azm A G.Dual pontoon floating breakwater[J].Ocean Engineering,1997,24:465-478.
    [82]Williams A N,Lee H S,Huang Z.Floating pontoon breakwaters[J].Ocean Engineering,2000,27:221-240.
    [83]Sannasiraj S A,Sunder V,Sundaravadivelu R.Mooring forces and motion responses of pontoon-type floating breakwaters[J].Ocean Engineering,1998,25(1):27-48.
    [84]Valioulis I A.Motiong response and wave attenuation of linked floating breakwater[J].Jounal of Waterway,Port,Coastal and Ocean Engineering,1990,116(5):558-574.
    [85]Pangalila F V,Martin J P.A method of estimating line tension and motions of a semi-submersible based on empirical data and model basis results[C].OTC,1969,2:90-96.
    [86]Gault A J,Cox W R.Method for predicting geometry and loading distribution in an anchor chain from a single point mooring buoy to a buried anchorage[C].OTC,1973,1:309-318.
    [87]Angarwal A K,Jain A K.Dynamic behavior of offshore spar platforms under regular sea waves[J].Ocean Engineering,2003(30):487-516.
    [88]Angarwal A K,Jain A K.Nonlinear coupled dynamic response of offshore spar platforms under regular sea waves[J].Ocean Engineering,2003(30):517-551.
    [89]韩丽华、姜萌、马震岳.港口、海岸工程水力模型实验教程.大连:大连理工大学出版社,2007
    [90]Goda Y,Suzuki Y.Estimation of incident and reflected waves in random wave experiments.Proceeding of ICCE,1976:828-845
    [91]桂福坤.深水重力式网箱水动力学特征研究[D]:(博士学位论文).大连:大连理工大学,2006.
    [92]李玉成,滕斌.波浪对海上建筑物的作用[M].北京:海洋出版社,2002.
    [93]戴遗山.舰船在波浪中运动的频域与时域势流理论[M].北京:国防工业出版社,1998.
    [94]刘应中,缪国平.船舶在波浪上的运动理论[M].上海:上海交通大学出版社,1987.
    [95]刘应中,缪国平.海洋工程水动力学基础[M].北京:海洋出版社,1991.
    [96]邹志利.水波理论及其应用[M].北京:科学出版社:2005.
    [97]韩凌.应用时域格林函数方法模拟有限水深中波浪对结构物的作用[D]:(博士学位论文).大连:大连理工大学,2005.
    [98]Bai W,Teng B.Second-order wave diffraction around 3-D bodies by a time-domain method[J].China Ocean Engineering,2001,15(1):73-85.
    [99]王元淳.边界元法基础[M].上海:上海交通大学出版社,1988.
    [100]田中正隆,田中喜久昭,郎德宏(译).边界元法的基础和应用[M].北京:煤炭工业出版社,1987.
    [101]Yang C,Ertekin R.C.Numerical simulation of nonlinear wave diffraction by a vertical cylinder[J].Journal of Offshore Mechanics Arctic Engineering,1992,114:36-44.
    [102]Kincaid D,Cheney W.Mathematics of scientific computing[M].北京:机械工业出版社,2005.
    [103]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2008.
    [104]徐士良.FORTRAN常用算法程序集[M].北京:清华大学出版社,1992.
    [105]何光渝,高永利.Visual Fortran常用数值算法集[M].北京:科学出版社,2002.
    [106]Miao Q M,Du S X,Dong S Y,Wu Y S.Hydrodynamic analysis of a moored very large floating structure[C].Proceeding of theInternational Workshop on Very Large Floating Structures,Japan,1996:201-208.
    [107]Mario A J,Reinel B A.Nonlinear identification of mooring lines in dynamic operation offloating structures[J].Ocean Eningeering,2004,31:455-482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700