用户名: 密码: 验证码:
波浪与浮式结构物相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决社会对水产品需求增长和浅水养殖业所存在问题间日趋突出的矛盾,“深水养殖网箱的研究”被列入中国第十个五年计划中的一个重点项目。本文对此研究项目中的两种浮式结构物在波浪作用下的水动力特性进行了物理模型试验和数值计算研究。一种结构是深水重力式网箱的圆形浮架结构,另一种是浮式防波堤结构。
     对浮架结构的研究方面,首先针对重力式网箱浮架的运动进行了实验室物理模型试验,先后设计了两种锚碇结构形式—折线形和直线形,对每种锚碇—浮架系统分别量测了浮架上特定点的运动轨迹以及海底锚碇点的受力历时曲线。其次在时域内对浮架结构的运动和锚碇点受力进行了数值模拟。考虑到浮架结构的尺寸特点,采用改进的Morison公式计算波浪对浮架的作用力,简化计算的同时也面临着公式中水动力系数选取的难题,本文对流阻力系数等对浮架运动的影响进行了比较分析。锚碇系统的作用力计算需要考虑锚碇系统的动态响应,根据各段锚绳张力连续的条件求解各个时刻锚绳的运动及其产生的张力。在计算出浮架受力之后通过求解刚体运动方程得到浮架结构的刚体加速度、速度和位移,进而计算下一时刻的受力,使得计算得以连续进行下去,运动方程采用四阶Runge—Kutta方法求解。通过数值结果与试验结果的比较,验证本文数值模型的正确性,为浮架结构的深入研究和整体网箱的设计提供了技术支持。
     浮式防波堤的结构形式很多,本文首先选取单箱、双箱和板式浮堤进行消浪性能试验,锚链在平衡状态有一定的拖地长度,对两种拖地长度进行了比较,分析了链长对浮堤消浪性能的影响。为了能有效的削弱长波,本文进而提出了一种板—网式浮式防波堤,并对浮堤的堤宽、网数和刚度以及波浪和水流的方向等因素对浮堤消浪性能的影响进行了物理模型试验。试验结果表明结构简单的板—网式浮防波堤能够起到一定的为深水网箱消浪的作用,是一种较为经济实用的浮式防波堤,具有一定的工程应用前景。
     对浮式防波堤的数值模拟采用时域边界元方法,建立了时域边界积分方程。物体在波浪中运动的时候,物体的运动决定了所受流体作用力的大小,反过来,受力又影响了物体的运动,因此,边界积分方程和物体运动方程是相互耦合的,需要同时进行求解。运动方程同样采用四阶Runge—Kutta方法求解。浮堤的锚泊系统采用静态悬链线法模拟。本文对单箱、双箱和板式的浮式结构物进行了数值计算,结果表明对固定物体的模拟结果与解析解或频域解的吻合程度较好,计算得到的系泊浮堤透射系数随波浪周期的变化趋势与试验结果相一致。
The development of the fish cage has become more and more important for human beings, and a lot of achievements have been obtained in the field of aquacultural engineering. However, moving marine aquaculture from near-shore region into deep-sea has become imperative mainly due to the environmental protection and the coastal utilization problems. Generally speaking, the advantages of developing the deep-sea aquaculture outweigh the disadvantages. However, some troubles have become more serious, such as the heavier waves and/or current forces on the whole system of the fish cage, and the systematic and thorough research into the fish cage system in deep water is a task of top priority. As a result, a national 863 high technology project has been initiated to develop basic research on the hydrodynamics of deep-sea cages. Two kinds of floating structures involved in the project are studied experimentally and numerically. One is the circle float collar of the gravity fish cage, and the other one is the floating breakwater.
    Having chosen a typical gravity fish cage with the fold-line or the straight-line mooring system, the experiment focuses on the research into movement of the generalized float collar and the tension of the mooring ropes. The numerical simulation is conducted in the time domain. Considering the size of the collar, the wave forces are calculated by the Morison equation, but in the equation the drag coefficient which is affected by many factors is difficult to determine, so in this dissertation the effect of the drag coefficient on the collar displacement is studied. The dynamic response of the mooring rope is considered in the mooring force calculation at every moment. The movement equation of the rigid body is solved to obtain the acceleration, the velocity and the displacement by the fourth order Runge-Kutta method. The comparison of the experimental data and the computational results has testified that the computational method can correctly predict the movement of the float collar and the tension of the mooring ropes.
    In order to find simple, cheap and effective type of floating breakwaters for open ocean aquaculture engineering, this dissertation introduces three types of structures: the Single-box, the Double-box , the Board and the Board-net. Two-dimensional physical model tests were conducted in a wave-current flume in laboratory to measure the transmission coefficient of these floating breakwaters under regular waves with or without currents. Based on an initial comparison of the wave transmission coefficients, the Board-net floating breakwater was proposed for the project, and detailed experiments were then conducted to examine the effects of several factors on wave transmission coefficient of this type of breakwater including the width of the board, the rows of net, the rigidity of the board, the current velocity, etc. The experimental results show that the Board-net floating breakwater, which is a simple and cheap
引文
[1] 李玉成.海洋工程技术进展与对发展我国海洋经济的思考.大连理工大学学报,2002,42(1):1-5.
    [2] 邱大洪.海岸和近海工程学科中的科学技术问题.大连理工大学学报,2000,40(6):631-637.
    [3] 俞聿修.斜坡式防波堤技术的新进展.港工技术,1995,3:13-18.
    [4] 俞聿修.直墙式防波堤技术的新进展.港工技术,1996,1:1-7.
    [5] 王永学,王国玉.近岸浮式防波堤结构的研究进展与工程应用.2002年度海洋工程学术会议论文集,南昌,2002,43增刊:314-321.
    [6] 苏锦祥.鱼类学与海水鱼类养殖.中国农业出版社,1995:352-361.
    [7] 李珠江.深水网箱与海水养殖产业化的革命.见:贾晓平.深水抗风浪网箱技术研究.北京:海洋出版社,2005:3-7.
    [8] Tsukroy I, Eroshkin O, Fredriksson D, Robinson S M, Celikkol B. Finite element modeling of net panels using a consistent net element. Ocean Engineering, 2003,30(2):251-270.
    [9] Fullerton B, Swift MR, Boduch S, Eroshkin O, Rice G. Design and analysis of an automated feed-buoy for submerged cages. Aquacultutal Engineering, 2004,32:95-111.
    [10] Suhey J D, Kim N H, Niezrecki C. Numerical modeling and design of inflatable structures--application to open-ocean-aquaculture cages. Aquacultutal Engineering, 2005,33:285-303.
    [11] Lee H H, Wang P W. Dynamic behavior of tension-leg platform with net-cage system subjected to wave forces. Ocean Engineering,2000,28(2): 179-200.
    [12] Lee Hsien Hua, Wang Wen-Sheng. The dragged surge motion of tension-leg type fish cage system subjected to multi-interactions among wave and structures. IEEE Journal of Ocean Engineering, 2005, 30(1):59-78.
    [13] Fredriksson D W. Open ocean fish cage and mooring system dynamics:[Doctoral Disertation].USA: University of New Hampshire,2001.
    [14] 宋伟华,梁振林,赵芬芳,黄六一,朱立新.方形网箱波浪水动力学的近似计算.浙江海洋学院学报,22(2):95-103.
    [15] 李玉成,宋芳,董国海,张怀慧.碟形网箱水动力特性的研究.海洋工程,2004,22(4):20-25.
    [16] 陈昌平.重力式深水潜网受力特性研究:[硕士学位论文].大连:大连理工大学,2002.
    [17] 杨新华,高晓芳,陈雷.圆柱形沉浮式深海养殖网箱的受力分析.中国海洋大学学报(自然科学版),2004,6:1081-1084.
    [18] Aarnses J, Rudi H, Loland G. Current Forces on cage, net deflection. In: Osborn H D, Eadie H S, Funnell C, Kuo C, Linfoot B T (Eds.), Engineering for Offshore Fish Farming. London, Thomas Telford, 1990:137-152.
    [19] Bessonneau J S, Marichal D. Study of the dynamics of submerged supple nets (applications to trawls). Ocean Engineering, 1998,25 (7):563-583.
    [20] Wan R, Hu F X, Tokai T A. Static analysis of the tension and configuration of submerged plane nets. Fisheries Science,2002,68 (4):815-823.
    [21] Takagi,T., K. Suzuki and T. Hiraishi, 2002. Development of the numerical simulation method of dynaamic fishing net shape. Nippon Suisan Gakkaishi 68 (3), 320-326.
    [22] Lader P F,Enerhaug B. Experimental investigation of forces and geometry of a net cage in uniform flow. IEEE Journal of Ocean Engineering, 2005,30,(1):79-84.[23] 李玉成,桂福坤,张怀慧,关长涛.深水养殖网箱试验中网衣相似准则的应用.中国水产科学,2005,2:179-187.
    [24] Colboume, DR, Allen J H. Observations on motions and loads in aquaculture cages from full scale and model scale measurements. Aquacultutal Engineering, 2001,24:129-148.
    [25] 唐宏结.网箱容积变形改善:(硕士学位论文).中国台湾:国立中山大学,2002.
    [26] 张耀民.可沉式网箱养殖工程之研究:(硕士学位论文).中国台湾:国立中山大学,2001.
    [27] Fredriksson, D W, DeCew J, Swift M R, Tsukrov I, Chambers M D, Celikkol B. The design and analysis of a four-cage grid mooring for open ocean aquaculture. Aquacultutal Engineering,2004,32:77-94.
    [28] Fredriksson DW, Swift M R, Irish J D, Tsukrov I, Celikkol B. Fish cage and mooring system dynamics using physical and numerical models with field measurements. Aquacultutal Engineering,2003,27:117-146.
    [29] 李玉成,毛雨婵,桂福坤.不同配重方式和配重大小对重力式网箱受力的影响.中国海洋平台,2006,21(1):6-15.
    [30] 李玉成,桂福坤,宋芳,董国海.重力式与碟形网箱的锚绳受力特性比较.海洋工程,2005,4:15-20.
    [31] Shunichi Ikesue, Kazumi Tamura, Yasuhiro Sugi. Study on the performance of a floating breakwater with two boxes. Proceedings of The Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan,2002:773-778.
    [32] Nobuhiro Matsunaga, Misao Hashida, Ken-ichi Uzaki, Takayuki Kanzaki, Yukiko Uragami. Performance of wave absorption by a steel floating breakwater with truss structure. Proceedings of The Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan,2002:768-772.
    [33] Kanzaki T, Matsunaga N, Hashida M, Tsumori H, Uzaki K. Wave absorption efficiency of a steel breakwater with truss structure to promote wave breaking, Proc. of TECHNO-OCEAN 2000 International Symposium,Kobe,2000:739-742.
    [34] Mani J S. Design of Y-Frame floating breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering, 1991,117(2): 105-118.
    [35] Murali K, Mani. J S. Performance of cage floating breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering, 1997,123 (4): 172-179.
    [36] Murali K, Amer S S, Mani J S. Dynamics of cage floating breakwater. Journal of Offshore Mechanics and Arctic Engineering-Transaction of the ASME,2005,127(4):331-339.
    [37] 刑至庄,张日向.一种应用在深水中能降低长波透过率的浮式防波堤.大连理工大学学报,1996,36(2):246—247.
    [38] 吴静萍,王仁康,郑晓伟,姜曼松,石记柱.漂浮式防波堤的试验研究.武汉理工大学学报(交通科学与工程版),2001,25(1):91-93.
    [39] Atilla Bayram. Experimental study of a sloping float breakwater. Ocean Engineering, 2000,27:453-455.
    [40] 盛荫祖,孙龙.掩护海水养殖网箱的浮式防波堤的消浪特性.中国水产科学,2001,8(4):70-72.
    [41] Vijayakrishna Rapaka E, Natarajan R, Neelamani S. Experimental investigation on the dynamic response of a moored wave energy device under regular sea waves.Ocean Engineering, 2004,31:725-743.
    [42] 吴珷,吴宋仁.浮式防波屏整体模型试验研究.重庆交通学院学报,2004,23增刊:93-95.
    [43] 吴维登,钟瑚穗,黄俊.钢管-轮胎浮式防波堤消波的几个影响因子.河海大学学报(自然科学版),2002,5:79-82.
    [44] 姚国权,麻志雄,丁炳灿.矩形浮式防波堤的改进试验研究.海洋工程,1992,10(3):33-41.[45] Sannasiraj S A, Sundar V, Sundaravadivelu R. Mooting forces and motion responses of pontoon-type floating breakwaters. Ocean Engineeirng, 1997,25:27-48.
    [46] Williams A N, Abul-Azm A G. Dual pontoon floating breakwater. Ocean Engineering, 1997,24:465-478.
    [47] Williams A N, Lee H S, Huang Z. Floating pontoon breakwaters. Ocean engineering, 2000,27:221-240.
    [48] Abul-Azma A G, Gesrahab M R. Approximation to the hydrodynamics of floating pontoons under oblique waves. Ocean Engineering, 2000, 27:365-384.
    [49] 劳国昇,冯宏.浮式防波堤性能理论计算.海洋工程,1992,11(2):89-96.
    [50] Liang N K, Huang J S, Li C F. A study of buoy floating breakwater. Ocean Engineering,2004,31:43-60.
    [51] Williams A N,Geiger P T,McDougal W G. Flexible floating breakwater. Journal of waterway, port, coastal and ocean engineering, 1991,117(5):429-450.
    [52] Ren X,Wang K H. Mooring lines connected to floating porous breakwaters. International Journal of Engineering Science, 1994,32(10): 1511-1530.
    [53] 毛伟清.浮式防波堤的研究.中国造船.1994,4:49-56.
    [54] Drimer N, Agnon Y, Stiassnie M. A simplified analytical model for a floating breakwater in water of finite depth. Applied Ocean Research, 1992,14:33-41.
    [55] 童朝峰,严以新.浮式防波堤消浪特征研究,2002,343:32-35.
    [56] 黄衍顺,林莉,胡云昌.基于遗传算法的浮式防波结构物形状最优化设计.海洋工程,1999,17(4):102-106.
    [57] Drobyshevski Y. Hydrodynamic coefficients of a two-dimensional truncated rectangular floating structure in shallow water. Ocean Engineering, 2004,31:305-341.
    [58] Koutandos E V, Karambas Th V, Koutitas C G. Floating breakwater response to waves action rsing a Boussinesq model coupled with a 2DV elliptic solver. Journal of waterway, port, coastal and ocean engineering-ASCE, 2004,130 (5):243-255.
    [59] 滕斌.波浪对三维浮体的二阶作用.水动力学研究与进展,1995,10(3):316-326.
    [60] Choi Y R,Hong S Y, Choi H S. An analysis of second-order wave forces on floating bodies by using a higher-order boundary element method. Ocean Engineering,2000,28:117-138.
    [61] Teng B, Li Y C, Dong G H. A method for third order force on axisymmetric bodies. Journal of Hysrodynamics, 1999,Series B, 11 (4): 109-117.
    [62] Malenica S, Molin B. Third-harmonic wave diffraction by a vertical cylinder. Journal of Fluid Mechenics, 1995,302:203-229.
    [63] Giorgio Contento. Numerrical wave tank computations of nonlinear motions of two-dimensional arbitrarily shaped free floating bodies. Ocean Engineering, 2000,27:531-556.
    [64] Weoncheol Koo, Moo-Hyun Kim. Freely floating-body simulation by a 2D fully nonlinear numerical wave tank. Ocean Engineering, 2004,31:2011-2046.
    [65] Issacson M, Cheung K F. Time domain second-order wave diffraction in three dimensions. Journal of waterway, port, coastal and ocean engineering, 1992, 118(5):496-516.
    [66] Issacson M, Ng J Y T. Second-order wave radiation of three-dimensional bodies by time-domain method. International Journal of Offshore and Polar Engineering., 1993,3(4):264-272.
    [67] Issacson M., Ng J Y T. Time-domain second-order wave radiation in two dimensions. Journal of ship research, 1993,37(1):25-33.[68] 王赤中,叶恒奎,石仲堃.三维二阶水波绕射问题的有限元时域计算.海洋工程,2002,18(1):13-19.
    [69] 王赤中,叶恒奎,石仲堃.用时域法求解二维二阶非线性水波.海洋工程,1999,17(1):8-16.
    [70] Hess J L, Smith A M O. Calculation of non-lifting potential flow about arbitrary theft-dimensional bodies. Journal of Ship Research, 1964,8:22-44.
    [71] Teng B, Kato S, Hoshino K. Prediction of wave drift damping by a higher order BEM. Journal of Society of Naval Architects.Japan, 1996,179:183-191.
    [72] 陶尧森.船舶耐波性.上海:上海交通大学出版社,1996.
    [73] 缪泉明,顾民,杨占明,刘楚学.极限海况下浮标运动及锚链受力估计.船舶力学,2003,7(5):21-27.
    [74] 马鉴恩,李凤来.锚泊列阵的设计研究.海洋工程,1996,14(2):52-62.
    [75] 杨玉祥,赵智帮.介绍悬链计算新方法及港口单锚泊稳定分析.水运工程,2005,372:33-37.
    [76] 余龙,谭家华.深水多成分悬链线锚泊系统优化设计及应用研究.华东船舶工业学院学报(自然科学版),2004,18(5):8-13.
    [77] 余龙,谭家华.基于准静定方法的多成分锚泊线优化.海洋工程,2005,23(1):69-73.
    [78] 侯建军,东日方,石爱国,尹建川.锚泊状态下锚链作用力的计算方法.大连海事大学学报,2005,31(4):10-14.
    [79] 陈徐均,崔维成,沈庆.对称式布置锚链系统的线性化处理.海洋工程,2002,20(1):75-79.
    [80] 陈徐均,汤雪峰,沈庆,孙芦忠.系泊浮体布链方式优劣的理论分析.河海大学学报,2001,29(5):1-9.
    [81] Russell J S, Colin J M. Statics of a three component mooring line. Ocean Engineering,2001,28:899-914.
    [82] 滕斌,郝春玲,韩凌.Chebyshev多项式在锚链分析中的应用.中国工程科学,2005,7(1):21-26.
    [83] Chai Y T, Varyani K S, Barltrop N D P. Semi-analytical quasi-static formulation for three-dimensional partially grounded mooring system problems. Ocean Engineering,2002,29:627-649.
    [84] Berteaux H O. Buoy Engineering. NewYork:Wiley Interscience Publication, 1976.
    [85] Walton T S, Polachech H. Calculation of transient motion of submerged cables. Mathematics of Computation, 1960, 14:27-46.
    [86] Huang S. Dynamics analysis of three dimensional marine cables. Ocean Engineering, 1994, 21(6):587-605.
    [87] Liu Y Z, Miao G P, Li Y L, Liu Z Y, Liu H D, Huang Q Y, Ma Q J. A time domain computation method for dynamic behavior of mooring system. China Ocean Engineering,1998,12 (1): 1-10.
    [88] 刘应中,缪国平,李谊乐,刘滋源,刘和东,黄庆玉,马庆久.系泊系统动力分析的时域方法.上海交通大学学报,1997,31(11):7-12.
    [89] 聂孟喜,王旭升,王晓明,张琳.风、浪、流联合作用下系统系泊力的时域计算方法.清华大学学报(自然科学版),2004,44(9):1214-1216.
    [90] 王飞,黄国,刘天威.规则波作用下水下拖缆数值分析研究.海洋工程,2006,24(1):92-97.
    [91] 于定勇.水下锚泊系统计算—一种单链分析的数值方法.青岛海洋大学学报,1995,12:100-106.
    [92] 李天匀,周崇庆,刘土光,刘理.风浪冲击下锚泊渔船的锚链动力负荷.华中理工大学学报,1998,26(9):97-99.
    [93] Triantafyllou M S, Bliek A, Shin S. Dynamic analysis as a tool for open-sea mooring system design. Transactions SNAME, 1985,93:303-324.
    [94] 余龙,谭家华.锚泊线与海底接触的有限元建模及其非线性分析.中国海洋平台,2005,20(2):25-29.[95] S.Aliabadi; J. Abedi, B. Zellars. Parallel finite element simulation of mooring forces on floating objects. International Journal for Numerical Methods in Fluids,2003,41:809-822.
    [96] Kwan C T, Mavrakos S A. Comparative evaluation of numerical schemes for 2D mooring dynamics. International journal of offshore and polar engineering, 2000,10(4):301-309.
    [97] 缪泉明,顾民,杨占明,刘楚学.极限海况下浮标运动及锚链受力估计.船舶力学,2003,7(5):21-27.
    [98] Miao Q M, Du S X, Dong S Y, Wu Y S. Hydrodynamic analysis of a moored very large floating structure. Proceedings of International workshop on verylarge floating structures, 1996,Hayama, Japan:201-208.
    [99] 肖越,王言英.浮体锚泊系统计算分析.大连理工大学学报,2005,45(5):682-686.
    [100] 肖越,王言英.三维锚泊系统时域计算分析.船舶力学,2005,9(5):8-16.
    [101] 付世晓,范菊,陈徐均,崔维成.考虑浮体弹性变形的锚泊系统分析方法.船舶力学,2004,8(2):47-54.
    [102] 范菊,纪亨腾,黄详鹿.浮式塔的动力计算.海洋学报,2001,23:117-123.
    [103] 陈小红,马巍,黄详鹿.双频锚泊线动力分析.上海交通大学学报,1993,27(5):1-8.
    [104] 严恺.海港工程.北京:海洋出版社,1996.
    [105] Robert M. Sorensen. Basic Coastal Engineering, New York:Wiley-inerscience publication, 1978:153-157.
    [106] 单圣涤.悬索曲线理论及其应用.长沙:湖南科学技术出版社,1983.
    [107] 李玉成,何明.作用于小尺度方柱上的正向波流力.中国海洋平台,1994,9(Z1):293-298.
    [108] Li Y C. Normalization of Hydrodynamic Coefficients in Morison Equation. China Ocean Engineering, 1999,13(2): 125-132.
    [109] Teng B, Li Y C. Wave-current force coefficients on inclined cylinder and a new estimation method. China Ocean Engineering, 1990,4(3):283-296.
    [110] Sabuncu T.,Calisal S.. Hydrodynamic coefficients for vertical circular cylinders at finite depth. Ocean Engineering,1981,3:119-133.
    [111] 邱大洪.波浪理论及其在工程上的应用.大连:大连理工大学出版社,1984.
    [112] 邹志利.水波理论及其应用.北京:科学出版社,2005.
    [113] Yin Z G, Du S Y, Hu J Y, Ding J P. Analysis of dynamical buckling and post buckling for beams by finite segment method. Applied Mathematics and Mechanics.2005 26 (9): 1181-1187.
    [114] Raman-Nair W, Baddour R E. Three-Dimensional Dynamics of a Flexible Marine Riser.Undergoing Large Elastic Deformations. Multibody System Dynamics, 2003(10): 393-423.
    [115] Robert D.Blevins. Applied fluid dynamics handbook. New York: Van Nostrand Reinhold Company, 1984.
    [116] Morison J R, O'Brien M P, Johnson J W, Schaaf S A. The Forces exerted by surface waves on piles. Petroleum Transactions AIME, 1950, 189: 149-157.
    [117] 李玉成.波浪对海上建筑物的作用.北京:海洋出版社,1990.
    [118] Brebbia C A, Walker S. Dynamic analysis of offshore structures. London: Newnes-Butterworths, 1979.
    [119] Krinke D C. An analysis of algorithms for solving differential equations. Computers & Structures, 1980, 11:69-74.
    [120] Papazoglou V J,Mavrakos S A,Triantafyllou M S.Non-linear cable response and model testing in water. Journal of Sound and Vibration, 1990,140(1): 103-115.[121] Ferrant P. Three-dimensional unsteady wave-body interactions by a Rankine boundary element method. Ship Technology Research, 1993,40:165-175.
    [122] 李玉成,滕斌.波浪对海上建筑物的作用.北京:海洋出版社,2002.
    [123] Miao Quanming, Du Shuangxing, Dong Shenyan, Wu Yousheng. Hydrodynamic analysis of a moored very large floating structure. International workshop on very large floating structures, Japan, 1996:201-208.
    [124] Mario A J, Reinel B A. Nonlinear identification ofmooring lines in dynamic operation offloating structures. Ocean Engineering, 2004,31:455-482.
    [125] Miao Guoping, Ishida H, Saitoh T. Influence of gaps between multiple floating bodies on wave forces. China Ocean Engineering, 2000,14(4):407-422.
    [126] McIVER M.Diffraction of water waves by a moored, horizontal, flat plate. Journal of Engineering Mathematics,1985,19:297-319.
    [127] Patarapanich Mana. Forces and moment on a horizontal plate due to wave scattering. Coastal Engineering, 1984 (8):279-301.
    [128] 康海贵,王科.潜型水平板水动力特性的数值研究.海洋通报,2002,21(1):1-8.
    [129] Nallayarasu S, Fatt C H, Shankar N J.Estimation of incident and reflected waves in regular wave experiments.Ocean Engineering, 1995,22( 1 ):77-86.
    [130] Brossard J, Chagdali M. Experimental investigation of the harmonic generation by waves over a submerged plate. Coastal Engineering,2001,42:277-290.
    [131] Usha R, Gayathri T. Wave motion over a twin-plate breakwater. Ocean Engineering, 2005,32:1054-1072.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700