用户名: 密码: 验证码:
基于空间谱估计的无源测向技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,大规模集成电路和移动通信技术的进步,促进了无线局域网和移动通信网络的发展,空间中各种无线电信号的模式、频率以及功能复杂化,且形式多样化,客观上要求无线电终端能够适应多模式、多频段、多功能环境。因此,无线电用户渴望能够在使用、规划和创建无线电过程中,事先认知并描述复杂空间的无线电状态(RKRL:Radio Knowledge Representation Language)(包括波达方向(DOA:Direction Of Arrival)、频率、功率、调制模式、信道编码、传输帧结构等),进而对这个复杂的状态空间进行合理的解析,从而作出理性选择。其中方向认知(DOA估计)是最基本的认知目标。如何在复杂环境下高效、精确和实时地实现无线电信号的方向认知引起了人们越来越多的关注。在实际应用中,分辨能力、精确度、可扩展性和实时性日益成为评价无线电测向方法的主要指标。空间谱估计方法作为阵列信号处理技术的一个新的发展方向,能够较好地满足无线电测向实用化的性能需求。本文围绕“软件体系结构无线电认知研究”课题,对空间谱估计的基础理论、实现方案和应用空间谱估计进行无源测向的分辨能力、精确度、空间扩展性以及实时性能进行了广泛深入的研究。
     本文通过对基于空间谱估计的无源测向技术的产生背景和主要特点的分析,给出了无源测向的基本模型,在全面深入地总结空间谱估计的研究现状和已有成果的基础上,确定将MUSIC算法和循环MUSIC算法作为深入研究的基本算法,并根据本课题的应用背景给出了无源测向的技术路线和基本方案。
     空间谱估计本身是一种超分辨方法。本文分析了空间谱估计测向的超分辨机理,在MUSIC算法和阵列孔径扩展的基础上提出了一种提高DOA分辨率的方法,在原始阵列的基础上虚拟地扩展阵列孔径(阵元间距),提高了DOA估计的分辨能力,通过对多个具有不同阵列孔径的虚拟阵列的空间谱取平均得到方向估计,成功抑制了虚拟扩展产生的虚假谱峰。仿真实验证明该方法相对于标准的MUSIC算法,具有更高的近目标分辨性能。
     在复杂环境下,循环MUSIC算法是一种比较先进的DOA估计算法,具有较好的抗干扰/噪声的性能。本文在分析循环MUSIC算法估计DOA的误差的基础上,注意到导向矢量是频率f和波达方向θ的联合估计,而循环MUSIC在选择估计导向矢量的频率时有偏差,本文选择更合适的频率,提出了一种改进循环MUSIC算法以减少偏差,提高了DOA估计的精确度。
     二维DOA估计是无源测向应用中的重要问题。本文介绍了二维DOA估计的基本概念,随后将标准MUSIC和循环MUSIC算法推广应用于立体直角坐标形式的二维DOA估计中,给出了基本的信号模型;在该模型的基础上应用扩展循环MUSIC算法,以提高DOA估计的近目标分辨能力;并针对直角坐标二维DOA估计计算量偏大和需要较多天线阵元的缺陷,提出改进方案,引入类似于多项式求根的运算方法代替谱峰搜索过程,可以在每个坐标轴方向上用少于信源数的天线阵元有效的估计DOA,也解决了谱峰搜索计算量偏大的问题,还进一步提高了近目标分辨能力。
     在理论研究的基础上,本文设计和实现了一个基于高速并行优化算法的DOA估计数据处理系统。描述了高速并行优化算法的设计思想,进行了可行性分析和计算机仿真,建立了系统模型和基本框架,给出了相关模块的定义和功能及实验系统的总体仿真和性能对比测试,证明该系统具有高效、简单和实用的特点。该系统基本实现了无源测向系统的核心功能,为无源测向的实用化开发奠定了基础。
     本文最后对无源测向技术未来的研究方向进行了展望。
In recent years, the progresses of large scale integrated circuit and mobile communications have promoted the development of wireless local area network and mobile communication network, the various signal pattern , frequency and function of radio are made complicated in space, and the form diversifies, objectively, require that the radio terminal is able to adapt to many patterns, multifrequency, multifunctional environment. Therefore, in the process of using, planning and creating, the radio consumer longs to be able to predict and describ the states of complicated space radio signals using RKRL(Radio Knowledge Representation Language), include DOA(Direction Of Arrival), frequency, power, modulation modes, signal channel encode, frame structure, etc.. Then analyse on this complicated state space rationally, thereby make reasonal choices. Among them, direction cognition is the most fundamental target. How to realize the direction cognition of radio signals effectively, exactly and quickly, has attracted more and more attention. Researches on space array signal processing based radio direction finding methods have come to be hot spots all over the world. In the actual application, resolution response, precision, expansibility and real-time response have become the most important indexes to appraise the radio direction finding methods. Spatial spectral estimation method is a new development direction of array signal process technology which satisfies perfectly the applicative requirements of radio direction finding. Supported by the projects of“Software System Structure based Radio Cognition Studies”and“Location Technology Studies in Wireless Local Area Network and Mobile Communication”, this thesis has engaged in extensive research on some relevant basic theories, implementation methods of spatial spectral estimation and the resolution response, precision, expansibility and real-time response of radio direction finding method based on spatial spectral estimation.
     In this thesis, we analyze the background and features and give the models of radio direction finding technology based on spatial spectral estimation. Then select MUSIC and Cyclic-MUSIC algorithm as basic algorithm to study roundly based on the analysis and remark of status and problems remaining unsolved. In the meantime, give the technology and implementation method for radio direction finding based on the application background of the research.
     Spatial spectral estimation is a super-resolution technique. We analyze the super-resolution principle of spatial spectral estimation, present an improved super resolution method based on MUSIC algorithm for estimating the DOA of signals. The proposed method expands a real sensor array into several virtual arrays to enhance the resolution, each virtual array has a different aperture size which is bigger than the original array’s, and aperture expanding results in spurious peaks of spatial spectrum, then the proposed method averages the spatial spectrum of the virtual arrays to restrain the spurious peaks. Simulation results show the effectiveness of the method, and prove the method has a higher close-target resolution than standard MUSIC algorithm for incoherent signals.
     Cyclic-MUSIC algorithm as an advanced method for DOA estimation under complicated radio environment, it has much better anti-jamming and anti-noise performance than MUSIC algorithm. We analyze the bias of Cyclic MUSIC algorithm, explore the effects of carrier frequency, signal bandwidth, cyclic frequency, sensors distance, and DOA angle on the performance of DOA estimation. Then propose an improved cyclic MUSIC algorithm based on the result of the analysis, and reduces the bias substantially by properly choosing the frequency for evaluating the steering vector. Simulation results show the exactitude of the error analysis and the effectiveness of the improved algorithms.
     2D-DOA estimation is an important problem of radio direction finding application. We introduce the concept of 2D-DOA estimation, and then standard MUSIC and Cyclic-MUSIC algorithm are applied to 3D rectangular formed 2D-DOA estimation. Then we give the basic signal models; and apply Eextended-Cyclic-MUSIC algorithm for enhancing close-target resolution; to avoid spectral peak searching in angle domain, the approach is finding roots of complex function in z-domain, which is similar to root-MUSIC algorithm. As a result, the new algorithm improves the performance of estimating DOA greatly with less sensor requirement and less calculation. In the meantime, the method has a higher close-target resolution than Eextended-Cyclic- MUSIC algorithm.
     Based on the basic theory of direction finding techniques, a data process system based on high-speed parallel optimization algorithm is designed and developed. The thesis describes the design idea of high-speed parallel optimization algorithm, gives the feasibility analysis, and proves the feasibility by computer simulation. We establishe the system model and overall framework, gives the definition and functions of related modules, and give the integrated simulation and contrast performance test of the system, the system is proved to be efficient through the performance test. This prototype system realizes the core functions of direction finding system and establishes a solid foundation for putting direction finding products into practice.
     In conclusion, we propose the further development directions of direction finding system.
引文
[1]张贤达,保铮.通信信号处理[M].北京:国防工业出版社, 2000.
    [2] Schwarz G. Estimating the Dimension of a Model[J]. The Annals of Statistics 1978; 6(3): 461-464.
    [3] Bartlett M. S. Smoothing Periodograms from Time Series with Continuous Spectra[J]. Nature 1948; 161(686-687).
    [4] Burg J. P. Maximum Entropy Spectral Analysis. 37th Ann. Int. SEG Meeting. Oklahoma, OK., 1967.
    [5] Capon J. High-Resolution Frequency-Wavenumber Spectrum Analysis[J]. Proc. IEEE 1969; 57(10): 1408-1418.
    [6] Pisarenko V. F. The Retrieval of Harmonics from a Covariance Function[A]. Astron. Soc.[C], 1973: 347-366.
    [7] Schmidt R. O. Multiple Emitter Location and Signal Parameter Estimation [A]. Proc of RADC Spectrum Estimation[C], New York, 1979: 243-258.
    [8] Ziskind l., Wax M. Maximum Likelihood Localization of Multiple Sources by Alternattin Projection[J]. IEEE Trans.ASSP 1988.
    [9] M.Viberg, B.Ottersten. Sensor Array Processing Based on Subspace Fitting [J]. IEEE Transactions on Signal Processing 1991; 39(5): 1110-1121.
    [10] Viberg M., Ottersten B., Kailath T. Detection and Estimation in Sensor Arrays Using Weighted Subspace Fitting[J]. IEEE Transactions on Signal Processing 1991; 39(11): 2436-2449.
    [11] Nikias C. L., Pan R. ARMA Modeling of Fourth-Order Cumulants and Phase Estimation[J]. Circuits Systems Signal Process 1988; 7(3): 291-325.
    [12] Chiang H. H., Nikias C. L. The ESPRIT Algorithm with Higher Order Statistics[A]. Proceedings of Workshop on Higher-order Spectral Analysis[C], Vail, CO. , 1989.: 163-168.
    [13] Porat B., Friedlander B. Direction Finding Algorithms Based on High-Order Statistics [J]. IEEE Transactions on Signal Processing 1991; 39(9): 2016-2024.
    [14] Dogan M. C., Mendel J. M. Applications of Cumulants to Array Processing—Part I : Aperture Extension and Array Calibration[J]. IEEE Transactions on Signal Processing 1995; 43(5): 1200-1216.
    [15] Gonen E., Mendel J. M. Applications of Cumulants to Array Processing-Part III: Blind Beamforming for Coherent Signals[J]. IEEE Transactions on Signal Processing 1997; 45(9): 2252--2264.
    [16] Yuen N., Friedlander B. DOA Estimation in Multipath: An Approach Using Fourth-Order Cumulants [J]. IEEE Transactions on Signal Processing 1997; 45(5): 1253-1263.
    [17] Dogan M. C., Mendel J. M. Applications of Cumulants to Array Processing-Part II: Non-Gaussian Noise Suppression[J]. IEEE Transactions on Signal Processing 1995; 43(7): 1663-1676.
    [18] Gonen E., Mendel J. M. Applications of Cumulants to Array Processing-Part IV: Direction Finding in Coherent Signals Case[J]. IEEE Transactions on Signal Processing 1997; 45(9): 2265-2276.
    [19] Schell S. V., Calabreta R. A., Gardner W. A., et al. Cyclic MUSIC Algorithms for Signal-Selective DOA Estimation[A]. Proc. IEEE ICASSP[C], Glasgow, U. K., 1989: 2278-2281.
    [20] Xu G., Kailath T. Direction-of-Arrival Estimation via Exploitation Cyclostationarity----a Combination of Temporal and Spatial Processing[J]. IEEE Transactions on Signal Processing 1992; 40(7): 1775-1786.
    [21] Zhou G. T., Giannakis G. B. Harmonics in Multiplicative and Additive Noise: Performance Analysis of Cyclic Estimators[A]. Proc. 28th Conference on Information Sciences and Systems[C], Princeton, NJ. , 1994. : 915-919.
    [22] Charge P., Wang Y., Saillard J. An Extended Cyclic MUSIC Algorithm[J]. IEEE Transactions on Signal Processing 2003; 51(7): 1695-1701.
    [23] Tsuji H., Xin J., Yoshimoto S. New Approach for Finding DOA in Array Antennas Using Cyclostationarity[A]. Second Annual Wireless Communications Conference[C], Boulder, CO. USA, 1997: 73-78.
    [24] Agrawal M., Prasad S. DOA Estimation of Wideband Sources Using a Harmonic Source Model and Uniform Linear Array[J]. IEEE Transactions on Signal Processing 1999; 47(3): 619-629.
    [25] Agrawal M., Prasad S. Broadband DOA Estimation Using Spatial-Only Modeling of Array Data[J]. IEEE Transactions on Signal Processing 2000; 48(3): 663-670.
    [26] Akaike H. A New Look at the Statistical Model Identication[J]. IEEE Trans. on Automatic Control 1974; 19(12): 716-723.
    [27] Alam M., McClellan J., Norville P., et al. Time-Reverse Imaging for the Detection of Landmines[A]. Proc. of SPIE Defense and Security Symposium[C], Orlando, FL, 2004.
    [28] Barabell A. Improving the Resolution Performance of Eigenstructure-Based Direction-Finding Algorithms[A]. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processsing(ICASSP'83)[C], Boston, MA., 1983: 336-339.
    [29] Bienvenu G. Eigensystem Properties of the Sampled Space Correlation Matrix[A]. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processsing(ICASSP'83)[C], Boston, MA., 1983: 332-335.
    [30] Bleistein N., Cohen J., Stockwell J. Mathematics of Multidimensional Seismic Imaging, Migration and Inversion[M]. New York: Springer, 2001.
    [31] Buckley K., Griffiths L. Broad-Band Signal-Subspace Spatial-Spectrum (BASS-ALE) Estimation[J]. IEEE Trans. Acoust., Speech, Signal Processing 1988; 36(7): 953-964.
    [32] Buckley K., Griffiths L. Eigenstructure Based Broadband Source Location Estimation[A]. IEEE Int. Conf. Acoustics, Speech, and Signal Processsing(ICASSP'86)[C], Tokyo, Japan, 1986: 1869-1872.
    [33] Chen C. T. Linear System Theory and Design[M]. USA: Saunder College Publishing, 1984.
    [34] Claudio E. D., Parisi R. WAVES: Weighted average of signal sub-spaces for robust wideband direction-finding[J]. IEEE Transactions on Signal Processing 2001; 49(10): 2179-2190.
    [35] Doron M., Weiss A. On Focusing Matrices for Wide-Band Array Processing[J]. IEEE Transactions on Signal Processing 1992; 40(6): 1295-1302.
    [36] Doron M., Weiss A., Messer H. Maximum-Likelihood Direction-Finding of Wide-Band Sources[J]. IEEE Transactions on Signal Processing 1993; 41(1): 411-414.
    [37] Friedlander B., Weiss A. Direction-Finding for Wide-Band Signals Using an Interpolated Array[J]. IEEE Transactions on Signal Processing 1993; 41(4): 1618-1635.
    [38] Gelli G., Lzzo L. Cyclostationarity-Based Coherent Methods for Wideband-Signal Source Location[J]. IEEE Transactions on Signal Processing 2003; 51(10): 2471-2482.
    [39]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社, 1998.
    [40] Pillai S. U., Kwon B. H. Forward/Backward Spatial Smoothing Techniques for Coherent Identification[J]. IEEE Trans. ASSP 1989; 37(1 ): 8-15.
    [41] Haykin S., Reilly J. P., Kezys V., et al. Some Aspects of Array Signal Processing[J]. IEEE Trans. Acoust., Speech, Signal Processing 1992; 139(1): 1-26.
    [42] Applebaum S. P. Adaptive Arrays[J]. Ieee Transacations Antenna and Propagation 1976; 24: 585-598.
    [43] Widrow B., Mantey P. E., Griffiths L.J., et al. Adaptive Antenna Systems[A]. Proc. IEEE[C], 1967: 2143-2159.
    [44] Roy R., Kailath T. ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques[J]. 1989; 37(7): 984-995.
    [45] Gabriel W. F. Adaptive Arrays ----An Introduction[A]. Proc. IEEE[C], 1976: 239-272.
    [46] Comon P. Independent Component Analysis, a New Concept?[J]. Signal Processing 1994; 36: 287-314.
    [47] Swales S. C., Beach M., Edwards D., et al. The Performance Enhancement of Multibeam Adaptive Base-Station Antennas for Cellular Land Mobile Radio Systems[J]. IEEE Transactions on Vehicular Technology 1990; 39: 56-67.
    [48] Haykin S., Reilly J. P., Vertatschitsch E. Some Aspecs of Array Signal Processing[A]. Proc. IEEE[C], 1992.
    [49] Krim H., Viberg M. Two Decades of Arrays Signal Processing[J]. IEEE Signal Processing Magazine 1996; 13(4): 67-94.
    [50] Verdu S. Multiuser detection[M]. UK: Cambridge University Press, 1998.
    [51] Schmidt R. O. Multiple Emitter Location and Signal Parameter Estimation [J]. Ieee Transacations Antenna and Propagation 1986; 34(3): 276-280.
    [52]肖先赐.现代谱估计--原理与应用[M].哈尔滨:哈尔滨工业大学出版社, 1991.
    [53] Stoica P., Nehorai A. MUSIC, Maximum Likelihood, and Cramer-Rao Bound[J]. IEEE Transactions Acoust., Speech, Signal Processing 1989; 37(5): 720-741.
    [54]王宏禹.现代谱估计[M].南京:东南大学出版社, 1990.
    [55] Friedlander B. Sensitivity Analysis of the Maximum Likelihood Direction-Fingding Algorithm[J]. IEEE Trans. AE 1990; 26(6): 953-968.
    [56] Friedlander B. A Sensitivity Analysis of MUSIC Algorithm[J]. IEEE Trans. Acoust., Speech, Signal Processing 1990; 38(10): 1740-1751.
    [57]郭永康,鲍培谛.光学教程[M].成都:四川大学出版社, 1996.
    [58]罗利春.空间谱测向超性能机理与系统评介[J].中国空间科学技术1995; 15(1): 1-8.
    [59] Shan T. J., Wax M., T.Kailath. Spatial Smoothing Approach for Location Estimation of Coherent Signals[J]. IEEE Trans. ASSP 1985; 33(8): 806-881
    [60]张翼,柯亨玉,程丰, et al.基于MUSIC算法高频地波雷达的角分辨率[J].电波科学学报2003; 18(6): 86-90.
    [61] Frost O. L. Power Spectrum Estimation , Aspects of Signal Processing: Part I [A]. Proceeding of the NATO Advanced Study Insitute on Signal Processing[C], Co., 1976.
    [62] Kaveh M., Barabell A. Statistical Performance of the MUSIC and Minimum-Norm Algorithms in Resolving Plane Waves in Noise[J]. IEEE Trans. Acoust., Speech, Signal Processing 1986; 34(4): 331-340.
    [63] Kim Y.S. Improved Resolution Capability via Virtual Expansion of Array[J]. Electron. Lett. 1999; 35(9): 1596-1597.
    [64]司伟建. MUSIC算法多值模糊问题研究[J].系统工程与电子技术2004; 26(7): 960-962.
    [65] Gardner W. A. Simplification of MUSIC and ESPRIT by Exploitation of Cyclostationaity[J]. Proceeding of IEEE 1988; 76(7): 845-847.
    [66]杨莘元,谷学涛.影响DOA精度因素的研究[J].应用科技2003; 30(9): 11-13.
    [67] Gardner W. A. Cyclostationarity in Communications and Signal Processing[M]. USA.: IEEE press, 1993.
    [68] Charge P., Wang Y. D., Saillard J. An extended cyclic MUSIC algorithm. IEEE Int. Conf. Acoust., Speech, Signal Process. Orlando, FL., 2002.
    [69] Xin J., Sano A. Linear Prediction Approach to Direction Estimation of Cyclostationa Signals in Multipath Environment[J]. IEEE Transactions on Signal Processing 2001; 49(4): 710-720.
    [70] Lee J. H., Lee Y. T. A Novel Direction-Finding Method for Cyclostationary Signals[J]. Signal Processing 2001; 81: 1317-1323.
    [71] Wong K. T., Zoltowski M. D. Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones[J]. IEEE Transactions on Signal Processing 1999; 47(3250): 3260.
    [72]刘浩,魏平,肖先赐.特定并行处理机上MUSIC算法的并行实现[J].系统工程与电子技术2001; 23(1): 86-89.
    [73]吴仁彪.一种通用的高分辨率波达方向估计预处理新方法[J].电子科学学刊1993; (5): 305-309.
    [74]李民,赵益民.基于TMS320C6711的MUSIC算法实现[J].电子对抗技术2005; 20(3): 36-38.
    [75]余继周,陈定昌.一种DOA估计的快速子空间算法[J].现代电子技术2005; (12): 90-92.
    [76] Wax M., Kailath T. Determining the Number of Signals by Information Theoretical Criteria[A]. Proc. ASSP Spectrum Estimation Workshop II[C], Tampa, FL., 1983: 192-196.
    [77]王艺,粟欣,张忠培.多用户检测中信号子空间维数的估计[J].无线通信技术2001; (3): 25-26.
    [78] Praulraj A., Roy R., Kailath T. Estimation of Signal Parameters by Rotational Invariance Techniques[A]. Proc. 19th Asilomar Conf. on Signal,Systems and Computers[C], 1985.
    [79] Starer D., Nehorai A. Passive Localization of Near-Field Sources by Path Following[J]. IEEE Trans. Signal Processing 1994; 42(3): 677-680.
    [80] Lee J. H., Lee C. M., Lee K. K. A Modified Path-Following Algorithm Using a Known Algebraic Path[J]. IEEE Trans. Signal Processing 1999; 47(5).
    [81] Jeng SS, Lin HP, Okamoto G, et al. Multipath Direction Finding with Subspace Smoothing[A]. IEEE INT Conf. Acoust Speech Signal Process Proc.(ICASSP)[C], 1997: 485-3488.
    [82] Feng M., Kammeryer K. D. Blind Direction of Arrival Estimation Using Antenna Array in Multipath Communication Environment[A]. IEEE GLOBE COM[C], USA, 1998: 165-170.
    [83] Du W., Kirlin R. L. Improved Spatial Smoothing Techniques for Coherent Signals[J]. IEEE Trans. ASSP 1991; 39(9): 1208-1210.
    [84] Cedervall M., Moses R. L. Efficent Maximum likelihood DOA Estimation for Signals with Known Wavefronts in the Presence of Multipath[J]. IEEE Trans. Signal Processing 1997; 45: 808-810
    [85] Yip L., Chen J., Hudson R., et al. Cramer-Rao Bound Analysis of Wideband Source Localization and DOA Estimation[A]. Advanced Signal Processing Algorithms, Architectures, and Implementations XII[C], 2002: 304-316.
    [86] Segovia V. D., Martin C. R., Sierra P. M. Mutual Coupling Effects Correction in Microstrip Arrays for Direction-of-Arrival(DOA) Estimation[A]. IEEE Microwaves, Antennas and Propagation[C], 2002: 113-118.
    [87] Kim Minseok, Ichige Koichi, Himyuki H. J. Design of Jacobi EVD Processor Based on CORDIC for DOA Estimation with MUSIC Algorithm Proceedings of PIMRC 2002. Lisbon, 2002.
    [88] Hirata A., Yamada H., Ohira T. Reactance-Domain MUSIC Estimation Using Calibrated Equivalent Weight Matrix of ESPAR Antenna[A]. IEEE Antennas Propagation Society Int. Symp.[C], Columbus, OH., 2003: 252-255.
    [89] Chung P.J., B?hme J. F. DOA Estimation Using Fast EM Algorithm[A]. Proc. ISSPA 2001[C], Kuala Lumpur, Malaysia, 2001: 128-131.
    [90] Athley F. Threshold Region Performance of Maximum Likelihood DOA Estimation for a Single Source[A]. Proc. 10th ASAP Workshop[C], MIT Lincoln Lab., Lexington, MA. USA, 2002.
    [91] Alardi E. M., Shubair R. M., Al-Mualla M. E. Computationally Efficient High-Resolution DOA Estimation in Multipath Environment[J]. IEEE Electronics Letters 2004; 40(14): 908-910.
    [92]岳晋,冯文江,侯剑辉. CDMA通信信号的波达方向估计[J].重庆大学学报(自然科学版) 2004; 12(27): 86-90.
    [93]翟明岳,唐良瑞,梁明. CDMA系统中多径信号的时延和到达角的联合估计[J].华北电力大学学报2004; 31(4): 98-101.
    [94]张忠,袁业术,孟宪德. Constrained - MUSIC算法在高频地波舰载超视距雷达中的应用[J].系统工程与电子技术2002; 24(5): 20-22.
    [95]李科祥,白荣光,吴瑛, et al. DOA估计中的高阶累积量应用方法[J].信息工程大学学报2003; 6(4): 61-64.
    [96]徐巧勇,陈浩珉,王宗欣. DS-UWB定位系统传输时延估计[J].复旦学报(自然科学版) 2004; 43(1): 92-96.
    [97]朱凯,王可人,薛磊. MUSIC法与最小模法的性能比较[J].航天电子对抗2003; (2): 36-39.
    [98]周焱,姜兴,李思敏. OFDM信号的DOA估计[J].桂林电子工业学院学报2003; 2003(23): 2.
    [99]黄颖,何山红. SWEDE算法提高模式空间内DOA估计抗噪声能力[J].现代雷达2004; 26(5): 45-47.
    [100]徐朴,黄建国.波达方向估计的贝叶斯高分辨方法[J].电波科学学报2001; 16(2): 149-152.
    [101]刘云,李志舜.波束域Root-MUSIC算法的进一步降阶处理[J].系统仿真学报2003; 15(11): 1567-1569.
    [102] Michael L. M., Louis L. S. A New Subspace Identification Algorithm for High-Resolution DOA Estimation[J]. IEEE Trans. on Antennas and Propagation 2002; 50(10): 1382-1390.
    [103] Gershman A., Amin M. Wideband Direction-of-Arrival Estimation of Multiple Chirp Signals Using Spatial Time-Frequency Distributions[J]. IEEE Signal Processing Lett. 2000; 7(6): 152-155.
    [104] Gershman A., Pesavento M., Amin M. Estimating Parameters of Multiple Wideband Polynomial-Phase Sources in Sensor Arrays[J]. IEEE Transactions on Signal Processing 2001; 49(12): 2924-2934.
    [105] Golub G., Loan C. V. Matrix Computations[M]. USA: Johns Hopkins Univ. Press, 1996.
    [106] Ho M. T. A Comparison of Wideband Subspace Methods for Direction-of-Arrival Estimation[D]. Ohio State University, 2002.
    [107] Hung H., Kaveh M. Focusing Matrices for Coherent Signal-Subspace Processing[J]. IEEE Trans. Acoust., Speech, Signal Processing 1988; 36(8): 1272-1282.
    [108] Hussain M. Ultra-Wideband Impulse Radar: An Overview of the Principles[J]. IEEE AES Systems Magazine 1998; (9): 9-14.
    [109] Kaplan L., McClellan J., Oh S. H. Prescreening During Image Formation for Ultra-Wideband Radar[J]. IEEE Trans. on Aerospace and Electronic Systems 2002; 38(1): 74-88.
    [110]林敏,刘云飞,龚铮权.存在阵元位置误差时的信号DOA估计[J].南京理工大学学报2003; 27(8): 381-384.
    [111]徐明远,林华芳.等距离圆线阵波达方向的估计[J].昆明理工大学学报(理工版) 2003; 28(12): 54-57.
    [112]徐友根,刘志文.电磁矢量传感器阵列相干信号源波达方向和极化参数的同时估计:空间平滑方法[J].通信学报2004; 25(5): 28-38.
    [113]周志敏,漆兰芬.多用户多径环境下DOA估计算法研究[J].华中科技大学学报(自然科学版) 2002; 30(4): 58-60.
    [114]高星辉,张承云,常鸿森.改进MUSIC算法对信号DOA的估计[J].系统仿真学报2005; 17(1): 223-224.
    [115]刘源,邓维波,许荣庆.高频段超方向性天线阵列设计[J].微波学报2004; 20(12): 72-75.
    [116]李国通,陈文正,徐绿洲, et al.基于DOA估计的CDMA智能天线系统[J].浙江大学学报(工学版) 2001; 35(7): 380-383.
    [117]翟明岳,刘元安,于平.基于FFT的快速DOA估计及其在DS-CDMA接收机中的应用[J].北京邮电大学学报2002; 25(12): 79-83.
    [118]姚敏立,金梁,殷勤业.基于空间特征的多用户循环累量域波达方向估计算法[J].通信学报2000; 21: 36-40.
    [119] Lehman S., Devaney A. Transmission Mode Time-Reversal Super-Resolution Imaging[J]. Journal of the Acoustical Society of America 2003; 113(5): 2742-2753.
    [120] Oh S. M., McClellan J. Multiresolution Quadtree Beamformer. IEEE Int. Conf. Acoustics, Speech, and Signal Processsing. Orlando, FL., 2002.
    [121] Oppenheim A., Schafer R. Discrete-Time Signal Processing[M]. Englewood Cliffs, NJ.: Prentice Hall, 1999.
    [122] Peebles P. Radar Principles[M]. New York: John Wiley and Sons, 1998.
    [123] Rau R., McClellan J. Analytic models and postprocessing techniques for UWB SAR[J]. IEEE Trans. Aerosp. Electron. Syst. 2000; 36(10): 1058-1074.
    [124] Schr?oder C. On the Interaction of Elastic Waves with Buried Land Mines: An Investigation Using the Finite-Deference Time-Domain Method[D]. Georgia Institute of Technology, 2001.
    [125] Sidiropoulos N., Bro R., Giannakis G. Parallel Factor Analysis in Sensor Array Processing[J]. IEEE Transactions Signal Processing 2000; 48(8): 2377-2388.
    [126] Strobach P. Bi-iteration Multiple Invariance Subspace Tracking and Adaptive ESPRIT[J]. IEEE Transactions Signal Processing, vol. 48, pp. 442-456, Feb. 2000. 2000; 48(2): 442-456.
    [127] Trees H. V. Optimum Array Processing[M]. New York: John Wiley, 2002.
    [128] Valaee S., Champagne B., Kabal P. Localization of Wideband Signals Using Least-Squares and Total Least-Squares Approaches[J]. IEEE Transactions Signal Processing 1999; 47(5): 1213-1222.
    [129] Valaee S., Kabal P. The Optimal Focusing Subspace for Coherent Signal Subspace Proceesing[J]. IEEE Transactions Signal Processing 1996; 44(3): 752-756.
    [130] Viberg M., Ottersten B. Sensor Array Processing Based on Subspace Fitting[J]. IEEE Transactions Signal Processing 1991; 39(5): 1110-1121.
    [131]张揽月,杨德森.基于MUSIC算法的矢量水听器阵源方位估计[J].哈尔滨工程大学学报2004; 25(2): 30-33.
    [132]张毅,黄帮明,程时昕.基于TD-SCDMA无线定位MUSIC算法及其性能的研究[J].信号处理2003; 19(8): 291-294.
    [133]李海鸿,李膺东.基于UCA的二维干扰抑制MUSIC算法[J].航天电子对抗2003; (2): 33-35.
    [134]李福昌,赵春晖.基于方向矩阵极分解的宽带信号测向算法[J].弹箭与制导学报2003; 23(3): 78-80.
    [135]万群,袁静,刘申建, et al.基于角信号子空间的波达方向估计方法[J].清华大学学报(自然科学版) 2003; 43(7): 950-952.
    [136]何明浩,李膺东,张贤达.基于均匀圆阵的宽频段二维零点预处理MUSIC算法[J].电子与信息学报2002; 24(11): 1470-1474.
    [137]汤建龙,杨绍全.基于空间时频分布矩阵的到达角估计[J].航天电子对抗2004; (2): 20-35.
    [138]李滔,杨绍全,汤建龙.基于时频分布的宽带信号到达角估计方法[J].航天电子对抗2004; (2): 24-28.
    [139]汤建龙,李滔,杨绍全.基于时频分析的雷达信号到达角估计[J].电路与系统学报2004; 12(9): 49-52.
    [140]吕泽均,肖先赐.基于时延分数阶相关函数时空处理子空间测向算法[J].信号处理2003; 19(2): 51-54.
    [141]黄克骥,田达,陈天麒.基于时域聚汇和补偿估计WLFM信号DOA的FRFT-MUSIC算法[J].信号处理2003; 19(2): 44-47.
    [142] Win M., Scholtz R. Ultra-Wide Bandwidth Time-Hopping Spread Spectrum Impulse Radio for Wireless Multiple-Access Communications[J]. IEEE Transactions on Communications 2000; 48(4): 679-691.
    [143] Yoon Y. S., Kaplan L., McClellan J. Pruned Multi-Angle Resolution Fast Beamforming[A]. Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM'02)[C], Rosslyn, VA., 2002: 490-494.
    [144] Yoon Y. S., Kaplan L., McClellan J. Direction-of-Arrival Estimation of Wideband Signal Sources Using Multiple Sub-Arrays. ARL CTA Symposium. College Park, MD., 2003.
    [145] Yoon Y. S., Kaplan L., McClellan J. New signal subspace direction-of-arrival estimator for wideband sources. IEEE Int. Conf. Acoustics, Speech, and Signal Processsing. Hong Kong, 2003.
    [146] Yoon Y. S., Kaplan L., McClellan J. Direction-of-Arrival Estimation of Wideband Signal Sources Using Arbitrary Shaped Multidimensional Arrays. IEEE Int. Conf. Acoustics, Speech, and Signal Processsing. Montreal, Canada, 2004.
    [147] Zatman M. How Narrow is Narrowband?[J]. IEE Proc.-Radar, Sonar Navig. 1998; 145(4): 85-91.
    [148] Zhang Q. Probability of Resolution of the MUSIC Algorithm[J]. IEEE Transactions Signal Processing 1995; 43(4): 978-987.
    [149] Gardner W. A., Spooner C. M. The Cumulant Theory of Cyclostationary Time Series, Part I: Foundation[J]. IEEE Trans on Signal Processing 1994; 42(12): 3387-3421.
    [150] Gardner W. A., Spooner C. M. The Cumulant Theory of Cyclostationary Time Series, Part II: Development and Application[J]. IEEE Trans on Signal Processing 1994; 42(12): 3421-3429.
    [151]张光斌,廖桂生,吴云韬, et al.基于数据共轭重排修正的传播算子DOA估计算法[J].系统仿真学报2004; 16(8): 1662-1664.
    [152]葛凤翔,万群,刘申建, et al.基于特征分析和二次规划的窄带信号超分辨率频率估计[J].电子学报2002; 30(9): 1266-1269.
    [153]万群,杨万麟.基于协方差、正性和l1范数约束的迭代波达方向估计方法[J].信号处理2001; 17(2): 13-16.
    [154]黄知涛,周一宇,姜文利.基于信号一阶循环平稳特性的源信号方向估计方法[J].信号处理2001; 17(10): 412-417.
    [155]黄可生,黄知涛,周一宇.基于信号子空间抽取的DOA估计[J].信号处理2003; 19(12): 576-579.
    [156]黄登山,王顶.基于信号子空间的正交矢量谱估计新方法-OVSS法[J].西北工业大学学报2002; 20(2): 62.
    [157]汤建龙,李滔,杨绍全.基于修正空时频分布矩阵的到达角估计[J].系统工程与电子技术2004; 26(6): 714-716.
    [158]孙晓昶,张忠华,龚享铱, et al.基于虚拟时间延迟线阵列的联合频率—到达角二维谱估计[J].国防科技大学学报2003; 25(5): 40-43.
    [159]黄知涛,周一宇,姜文利.基于循环平稳特性的源信号到达角估计方法[J].电子学报2002; 30(3): 372-375.
    [160]黎海涛,张靖.基于约束MUSIC的二维DOA估计[J].无线通信技术2002; (3): 36-38.
    [161]李阳,戴博伟,肖艳霞, et al.基于正交冗余采样的超分辨信号谱估计[J].电子与信息学报2002; 24(7): 865-871.
    [162]张毅,汪纪锋,罗元.基于智能天线DOA估计方法[J].重庆大学学报2003; 26(2): 36-38.
    [163]刘刚,林志远,张永顺.基于子空间的Root-MUSIC方位超分辨估计[J].现代雷达2003; (6): 32-34.
    [164]贾维敏,姚敏立,徐锦拓, et al.基于最小冗余线阵的谱相关波达方向估计算法[J].数据采集与处理2004; 19(9): 307-311.
    [165]司锡才,郭连骐.舰载通信空间谱估计超分辨测向技术研究[J].哈尔滨工程大学学报2002; 23(10): 102-106.
    [166]刁鸣,熊良芳,司锡才.舰载圆形超分辨测向天线阵性能的研究[J].哈尔滨工程大学学报2001; 22(4): 33-36.
    [167]李绍滨,赵宜楠,胡航.均匀圆阵波束空间二维DOA估计算法[J].哈尔滨工业大学学报2004; 36(6): 796-798.
    [168]孙宝法,石昭祥.空间谱估计的仿真研究[J].雷达与对抗2004; (3): 9-13.
    [169]王华力,甘仲民.空间谱估计方法在卫星干扰源定位中的应用[J].宇航学报2001; 22(1): 53-58.
    [170]马彦,石要武,陈虹.色噪声下的信号频率估计:基于互高阶累积量的MUSIC方法[J].仪器仪表学报2001; (6): 88-89.
    [171] Tsuji H., Xin J., Hase Y., et al. New Approach for Finding DOA in Array Antenas Using Cyclostationarity[A]. Wireless Communications Conference[C], Boulder, CO., 1997: 73-78.
    [172] Xin J., Tsuji H., Hase Y., et al. Minimum Mse-Based Detection of Cyclostationary Signals in Array Processing[A]. First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications [C], Paris, France, 1997: 169-172.
    [173] Xin J., Tsuji H., Hase Y., et al. Directions-of-Arrival Estimation of Cyclostationary Coherent Signals in Array Processing[J]. IEICE Trans Fundamentals 1998; 81(8): 1560-1569.
    [174] Gelli G., Lzzo L. Minimun-Redundancy Linear Array for Cyclostationarity-based Source Location[J]. IEEE Transactions on Signal Processing 1997; 45(10): 2605-2609.
    [175] Xin J., Tsuji H., Hase Y., et al. Higher-Order Cyclostationary Based Direction Estimation of Coherent Narrow-Band Signals[J]. IEICE Transactions 2000; 83(8): 1624-1633.
    [176] Stephan V., William S., Gardner A. Progress on Signal-Selective Direction Finding[A]. Proceedings of the 5th ASSP Workshop on Spectrum Estimation and Modeling[C], Rochester, NY, 1990: 144-148.
    [177] Charge Pascal, Wang Yide. A Non-Circular Sources Direction Finding Using Polynomial Rooting[J]. Signal Processing 2001; 81(8): 1765-1770.
    [178] Lau B. K., Cook G. J., Leung Y. H. An Improved Array Interpolation Approach to DOA Estimation in Correlated Signal Environments[A]. Proc. IEEE ICASSP'04[C], Montreal, Canada, 2004: 237-240
    [179] Inoue Y., Mori K., Arai H. DOA Estimation in Consideration of the Array Element Pattern[A]. IEEE Proc. of Vehicular Technology Conference Spring 2002[C], Birmingham, AL., 2002: 745-748.
    [180] Lee Y. T., Lee J. H. Direction-Finding Methods for Cyclostationary Signals in the Presence of Coherent Sources[J]. IEEE Transactions on Antennas and Propagation 2001; 49(12): 1821-1826.
    [181] Kikuma N. Iterative DOA Estimation Using Subspace Tracking Methods and Adaptive Beamforming[J]. IEICE TRANS. COMMUN. 2005; 88(5): 1818-1828.
    [182] Rodriguez J., Jeans T., Tafazolli R. AN ADAPTIVE DELAY ESTIMATOR FOR DS-CDMA[A]. 3G Mobile Communication Technologies[C], 2001: 87-91.
    [183] Sanchez-Araujo J., Marcos S. An Efficient PASTd-Algorithm Implementation for Multiple Direction of Arrival Tracking[J]. IEEE Transactions on Signal Processing 1999; 47(8): 2321-2324.
    [184] Delmas J. P., Meurisse Y. Asymptotic Performance Analysis of DOA Finding Algorithms with Temporally Correlated Narrowband[J]. IEEE Transactions on Signal Processing 2000; 48(9): 2669-2674.
    [185] Wan Q., Liu S. J., Yuan J., et al. Augmented MUSIC Method and Performance Analysis[A]. 2003 IEEE Radar Conference[C], 2003: 413-416.
    [186] Fu Z., Dowling E. M. Conjugate Gradient Projection Subspace Tracking[J]. IEEE Transactions on Signal Processing 1997; 45(6): 1664-1668.
    [187] Ward K.D. DOA Estimation Method for Unknown Noise Fields[J]. IEE Proc. Radar, Sonar Navig. 1994; 141(3): 149-150.
    [188] Ferréol A., Larzabal P., Viberg M. On the Asymptotic Performance Analysis of Subspace DOA Estimation in the Presence of Modeling Errors: Case of MUSIC[J]. IEEE Transactions on Signal Processing 2006; 54(3): 907-920.
    [189] Jaafar I., Boujemh H., Siala M. Performance Analysis of MUSIC Algorithm in the Presence of Local Scattering[A]. 2004 IEEE International Conference on Industrial Technology (ICIT)[C], 2004: 1412-1416.
    [190] Rao B. D., Hari K. V. S. Performance Analysis of Root-Music[J]. IEEE Trans.Acoustics Speech, Signal Processing 1989; 37(12): 1789-1794.
    [191] Schell S. V. Performance Analysis of the Cyclic MUSIC Method of Direction Estimation for Cyclostationary Signals[J]. IEEE Transactions on Signal Processing 1994; 42(11): 3043-3050.
    [192] Zhou Y. F., Yip P. C. Performance Analysis of the Subspace-Based DOA Estimator in the Presence of Unknown Noise[J]. Proc. SPIE 1993; 2027(11): 60-71.
    [193] Inoue Y., Shimizu K., Arai H., et al. Signal Discrimination Method Based on the Estimation of Signal Correlation Using an Array Antenna [A]. Vehicular Technology Conference, 2004 [C], 2004: 34-38.
    [194] Du K. L., Swamy M. N. S. Simple and Practical Cyclostationary Beamforming Algorithms[J]. IEE Proc. Vis. Image Signal Process. 2004; 151(3): 175-179.
    [195] Richard T. O'Brien Jr., Kiriakidis Kiriakos. Single-Snapshot Robust Direction Finding[J]. IEEE Transactions on Signal Processing 2005; 53(6): 1964-1978.
    [196] Astely D., Ottersten B. The Effects of Local Scattering on Direction of Arrival Estimation with MUSIC[J]. IEEE Transactions on Signal Processing 1999; 47(12): 3220-3234.
    [197] Horiki Y., Newman E. H. A Self-Calibration Technique for a DOA Array With Near-Zone Scatterers[J]. IEEE Transactions on Antennas and Propagation 2006; 54(4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700