用户名: 密码: 验证码:
便携式多源光谱融合水质分析仪设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水质有机指标分析是检测水质污染程度、控制水污染的重要环节之一,现有的水质有机指标分析方法主要有化学法和光学方法。化学分析方法历史悠久,精度高,但同时也有检测周期长,容易造成二次污染等缺点。光学的方法是利用水样的各种光谱数据来间接的计算水样的各种参数。相对于化学方法,光学方法具有检测速度快、无二次污染、可在线检测等显著优点。但受限于现有的光源、光谱仪等技术,基于光谱分析方法便携式水质分析仪的分析精度还比较低。
     本文以水质的光学分析方法为理论基础,将透射光谱,以及荧光、拉曼等发射光谱结合在一起,研制一台高精度的便携式水质分析仪。其内容包括以下几个方面:
     1、通过大量的中外文献阅读,对基于光谱的水质分析技术和现有的分析仪器做了一个较为完整的阐述。介绍了透射光谱分析技术、荧光光谱分析技术、拉曼光谱分析技术,同时还介绍了从各种光谱向水质分析指标建模的智能算法,这些构成了便携式多源光谱融合水质分析仪的理论基础。
     2、根据各项分析要求和预期的仪器指标,提出了各种可能的仪器实现方案,通过大量实验和理论分析,对比每种方案的优缺点,选择最优化的方案,作为仪器的总体架构。各种方案都是在满足小型、低功耗、便携的基本要求下,实现对透射光,变化激发光波长情况下的三维荧光、拉曼光测量,并统一进行数据建模处理和分析预测。
     3、针对现有分析仪器光源的不足,研制了一台小型集成激光器。此激光器集成了多个半导体激光器和多个小型固体激光器,统一供电和控制,具有波长和功率的数控切换功能,作为便携式多源光谱融合水质分析仪的光源,可完全符合其各方面要求。另外,此集成激光器也可以单独的用在有多波长切换、功率切换、小体积、低功耗等要求的其他任何场合。
     4、根据仪器的总体架构,对仪器的光路和电路做了优化设计,实现各项预期功能。并对仪器的构造用AutoCAD建模仿真。
The Analysis over the water organic level is fundamentally crucial both to the detection and control of the pollution level inside a specific water domain. The existing approaches consist of chemical analysis and optical analysis. The former is relatively mature considering the thorough study and high precision level, whilst notorious in the lengthiness of the processing time and the proneness to the secondary pollution. The latter however, is fast in response and secondary-pollution-free as the interested parameters of one water sample are non-intrusively estimated by examining the according spectrum characteristics. Nevertheless, the achievable precision level is comparatively low as the portable water-pollution-level detection apparatus (PWDA) is widely bottlenecked by relevant technologies with respect to the light sources and spectrometers.
     We, guided by the optical analysis theory, devise a PWDA via the combination of transmission spectrum and emission spectrum which mostly encompasses fluorescence and Raman spectrum. Our work is organized as follows:
     1. A complete survey on the existing water-pollution-level detection apparatuses together with the underlying state-of-the-art spectrometer technologies is presented. An extensive theoretical research is completed, which is comprised of different spectrometer technologies and related intelligent algorithms adopted in the modeling process.
     2. An optimal PWDA design scheme is devised through theoretical development and extensive experimental demonstration. Several feasible schemes are put forward and their intrinsic advantages and disadvantages are weighed against each other. Three-dimensional fluorescence and Raman spectrum data, excitated by transmission light and varying emission light wavelengths are obtained, modeled and further analyzed to make high-precision predictions.
     3. A portable integrated laser source instrument is developed due to the fact that existing ones fail to meet our requirements. It incorporates multiple semiconductor lasers and one solid laser, which are uniquely power supplied and controlled. Its priority lies in the fact that as the light source of the PWDA it is specially designed to realize the digit switching function over different wavelengths and powers. Also, it can be applied and supplementary to other similar scenarios and apparatuses.
     4. The optimal design of light and circuit, as well as the AutoCAD modeling and simulation of the construction of the apparatus are realized under different requirements.
引文
[1]刘世昕.环境执法面临“三高两多”.中国青年报,2006年10月27日
    [2]武晓莉.信息融合及集成学习在水质光谱分析中的应用研究
    [3]黄渭,李长灿.明年浙江省将率先建成地表水自动监控网络.今日早报,2005年4月10日.
    [4]Ogura N.Ultraviolet absorbing materials in natural water.Nippon Kagaku Zasshi,1965,86(12):1286-1288.
    [5]Dobbs R.,Wise R.H.,Dean R.B..The use of ultraviolet absorbance for monitoring the total organic carbon content of water and wastewater.Water research.1972,6:1173-1180.
    [6]MacCraith B.,Grattan K.T.V.,Connolly D.,et al.Results of a cross-comparison study:optical monitoring of total organic carbon(TOC)of a limited range of samples.Sensors and Actuators B,1994,22:149-153.
    [7]Deflandre B.,Gagne J.-P..Estimation of dissolved organic carbon(DOC)concentrations in nanoliter samples using UV spectroscopy.Water Research.2001,35(13):3057-3062.
    [8]Mrkva M.,Automatic UV-control system for relative evaluation of organic water pollution.Water Research,1975,9:587-589.
    [9]Matsche N.,Stumwohrer K..UV absorption as control parameter for biological treatment plans.Water Science Technology,1996,33(12):211-218.
    [10]方骏,戴连奎.基于混合神经网络模型的污水COD值预估法.中国给水排水,2003,19:6-10.
    [11]王晓萍,林桢,金鑫.紫外扫描式水质COD测量技术与仪器研制.浙江大学学报(工学版),2006,40(1 1):1951-1954,1959.
    [12]Charef A.,Ghauch A.,Baussand R,et al.Water quality monitoring using a smart sensing system.Measurement,2000,28:219-224.
    [13]Langergraber G.,Fleischmann N.,Hofstadter F.A mutivariate calibration procedure for UV/Vis spectrometric quantification of organic matter and nitrate in wastewater.Water Research,2003,47(2):63-71.
    [14]Reynolds.D.M.,Ahmad S.R..Rapid and direct determinnation of wastewater bod values using a fluorescence technique,Water Research,1997,31(8):2012-2018.
    [15]Ahmad S.R.,Reynolds.D.M..Monitoring of water qualilty using fluorescence tenchnique:prospect of on-line process control,Water Research,1999,33(9):2069-2074.
    [16]Vasel J.L.,Praet E.,On the use of fluorescence measurements to characterize wastewater,Water Science and Technology,2002,45(4-5):109-116.
    [17]Marhaba T.F.,P.E.,Member,et al.Fluorescence Technique for Rapid Identification of DOM Fractions,Journal of environmental engneering,2000,145-152
    [18]Marhaba T.F.,P.E.,Member,et al.Appllication of fluorescence technique for rapid,Journal of environmental engineering,2000,1039-1044.
    [19]Marhaba T.F.,Bengraine K.,Pu Y.,et al.Spectral fluorescence signatures and partial least squares regression- model to predict dissolved organic carbon in water,Journal of Hazardous Materials,2003,B97:83-97.
    [20]Bengraine K.,Marhaba T.F..Comparison of spectral fluorescent signatures-based models to characterize DOM in treated water samples,Journal of Hazardous Materials,2003,B100:117-130.
    [21]Bakera A.,Curry M..Fluorescence of leachates from three contrasting landfills,Water Research,2004,38:2605-2613.
    [22]Bakera A.,Spencer R.G.M..Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy,Science of the Total Environment,2004,333:217-232.
    [23]Bengraine K.,Marhaba T.F..Predicting organnic loading in natural water using spectral fluorescent signatures,Journal of Hazardous,2004,B108:207-211.
    [24]吕洪刚,欧阳二明,郑振华,张锡辉.三维荧光技术用于给谁的水质测定.中国给水排水.2005,21(3):91-93.
    [25]傅平青,刘丛强,吴丰昌,溶解有机质的三维荧光光谱特征研究,光谱学与光谱分析,2005,25(12):2024-2028.
    [26]赵南京,刘文清,刘建国 等.不同水体中溶解有机物的荧光光谱特性研究.光谱学与光谱分析.2005,25(7):1077-1079.
    [27]李宏斌,刘文清,张玉钧,丁志群,赵南京,陈文,刘建国,三维荧光光谱技术在水检测中的应用,光学技术,2006,32(1):27-30.
    [28]刘志宏,蔡汝秀,三维荧光光谱技术分析应用进展,分析科学学报,2000,16(6):516-523。
    [29]刘阳春,郑泽根,荧光分析法存水体污染监测中的应用,重庆建筑大学学报,2003,25(5):57-60。
    [30]程光煦.拉曼布里渊散射原理及其应用.北京:科学出版社.2001
    [31]覃旭松.基于拉曼光谱的汽油辛烷值测定方法.浙江大学颂士学位论文.2004a
    [32]Wold S.,Antti H.,Lindgren F.,et al..Orthogonal signal correction of near-infrared spectra,Chemometrics and Intelligent Laboratory Systems,1998,44:175-185.
    [33]Svensson O.,Kourti T.,McGreger J.F..An investigation of orthogonal signal correction lagorithms and their characteristics,Journal of Chemometrics,2002,16:176-188.
    [34]Kim K.,Lee J.M.,Lee I.B..A novel multivariate regression approch based on kernel partial least squares with orthogonal signal correction,Chemometrics and Intelligent Laboratory Systems,2005,79:22-30.
    [35]Lorber A..Error propagation and figures of merit for quantification by solving matrix equations.Anal.Chem.1986,58,1167-1172.
    [36]Goicoechea H.C.,Olivieri A.C..A comparison of orthogonal signal correction and net analyte preprocessing methods.Theoretical and experimental study,Chemometrics and Intelligent Laboratory Systems,2001,56:73-81.
    [37]Hansen P.W..Pre-processing method minimizing the need for reference analyses.J.Chemometrics.2001,15:123-131.
    [38]张杰,阳宪惠编著.多变量统计过程控制.北京:化学工业出版社,2000.
    [39]杨福生,洪波.独立分量分析的原理与应用.北京:清华大学出版社,2006.
    [40]Xu Q.S.,Liang Y.Z..Monte Carlo cross validation.Chemometrics and Intelligent Laboratory Systems.2001,56:1-11.
    [41]Duffy N.,Helmnold D..Boosting Methods for Regression,Machine Learning,2002,47:153-200.
    [42]Zhang M.H.,Xu Q.S.,Massart D.L..Boosting Partial Least Sqares,Anal.Chem.,2005,77:1423-1431.
    [43]http://www.psci.cn/Plan_Detail.asp?ID=43.2008 年 4 月[44]彭哲.基于ARM-Linux的嵌入式工业控制系统平台研究与实现报告

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700