用户名: 密码: 验证码:
基于突变理论的乌东德水电站近坝区泥石流风险评价与防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥石流是发生于山区的极普遍的地质灾害。泥石流灾害分布范围广、数量多,为世界性的地质灾害,受到全世界范围的广泛关注和重视。我国是一个多山的国家,也是泥石流活动频繁、受灾严重的国家之一,我国西南山区尤为严重,5.12汶川大地震之后我国西南地区泥石流发生频率更高。大型水电站库区内暴发泥石流会对坝址的安全及人民的生命财产安全造成损害。论文基于突变理论对乌东德近坝区内泥石流进行了风险评价和防治研究。
     论文以SPOT5遥感图像为数据源进行了乌东德水电站近坝区泥石流的解译,并结合野外现场调查,对水电站近坝区内泥石流发育的地质背景、泥石流发育现状进行了分析。选取了10个泥石流危险度评价指标和3个泥石流危害度评价指标,采用突变级数综合评价法对乌东德水电站近坝区的5条泥石流沟进行了危险度评价和泥石流危害度评价,在此基础上进而对近坝区内5条泥石流沟进行了风险评价。以突变理论为基础,建立了泥石流突变起动模型,分析了泥石流突变起动机制。在泥石流突变起动分析的基础上,针对不同的影响因素对近坝区内泥石流提出来相应的治理措施。论文提出了一种资料较少地区泥石流临界降雨量的计算方法。通过对沟床内松散堆积体进行受力分析,采用摩尔库伦强度准则计算松散堆积体破坏起动时的临界水深,并通过泥石流沟流域内的产汇流分析计算得到泥石流发生的临界降雨量,采用此方法对乌东德水电站近坝区内5条泥石流沟进行了临界降雨量预测。
     论文共分八章,第1章为绪论,介绍了选题依据和研究意义,总结了泥石流研究的国内外现状,并介绍了论文的主要内容和技术路线以及论文的创新点。第2章从气象水文、地形地貌、地层岩性、地质构造、物理地质现象、植被条件六个方面介绍了乌东德水电站库区内泥石流发育的地质背景。第3章介绍了乌东德水电站近坝区内5条泥石流沟的发育现状。第4章介绍了泥石流遥感解译的方法步骤以及解译内容。第5章介绍了突变理论的基本原理。第6章选取了泥石流危险度评价指标和危害度评价指标,采用突变级数综合评价法计算了乌东德近坝区泥石流危险度和危害度,进而进行了近坝区泥石流的风险评价。第7章建立了泥石流突变起动模型,通过模型分析,得到启示,对乌东德近坝区泥石流提出了相应的治理措施,并预测了各泥石流沟的临界降雨量。第8章为结论,总结了论文的所有结论。
Debris flow is a kind of common geological disaster occurred in the mountains.Widely distributing and offen occurring, debris flow is the worldwide geologicaldisaster and attracts widespread concern and attention. China is a country with a lot ofmountains and about two-thirds of the total land area is mountain. Therefore, ourcountry is one of countries suffering from severe and frequently debris flows,especially the Southwest of our country. The Southwest locates a transition zonebetween the first step and the second step, where elevation suddenly changes, tectonicfaults developments, the geomorphological type is the combination of high mountainsand deep valleys, and the climate is the monsoon climate with distinct wet and dryseasons. These are all favourable circumstances for the formation and development ofdebris flows in the Southwest. After5.12Wenchuan Earthquake, debris flowsoccurred more and more frequently in the areas affected by the earthquake. Therefore,risk assessment and the prevention research have great academic significance andpractical value.
     Debirs flows near the dam of Wudongde hydropower station were interpretedform SPOT5remote sensing images in this paper. Combining interpretation and fieldinvestigation, the geological setting and present status of the debris flows near thedam of Wudongde hydropower station were studied. Ten impact factors wereselected to evaluate the hazard degree of these debris flows, and three indices were slected to evaluate the vulnerability of these debris flows. Moreover, risk degree ofthese debris flows were assessment based on the hazard and vulnerability assessments.Based on catastrophe theory, initiation mechanism were analysed by establishing thecatastrophe model of debris flow. For different factors which influencs the iniation ofthe debris flows, different control measures were proposed. A method is proposed toforecast the rainfall threshold for debris flows in the areas where there are lessstatistical data. Through force analysis of the loose deposits on the gully bed, thecritical water depth for the initiation of debris flows is calculated according toMohr-Coulomb failure criterion. Then, the rainfall threshold is calculated throughanalysis the mechanism of runoff yield and confluence. By the method proposed inthis paper, the rainfall thresholds for the five debris flows near the dam of Wudongdehydropower station were forecasted. The conclutions obtained in this paper are asfollowing:
     1. There are five debris flows near the dam of Wudongde hydropower station,Xiabaitan, Shangbaitan, Zhugongdi, Yindigou and Canyuhe. The hazard degree ofXiabaitan, Shangbaitan, Zhugongdi and Yindigou are all moderate, and the hazarddegree of Canyuhe is slight. The vulnerability of these debris flows are all moderate,and the risk degree of these debris flows are also moderate.
     2. The catastrophe model of debris flow is agreed with the cusp model. Debrisflow can be expressed by the potential function of the cusp model in which saturationis state variable and gully slope and resistance are control variables. The loosendeposits can suddenly become debris flow when the control variables are in the cusparea.
     3. Through analysis the catastrophe model of debris flow we draw a conclusionthat debris flows can be prevented by controlling the saturation of loosen deposits,change the gully slope and resistance. The drainage areas of Xiabaitan, Shangbaitanand Zhugongdi are small and the gully beds are straight, therefore, these three debrisflow can be prevented by reducing the resistance of the gully beds. The drainage areasof Yindigou and Canyuhe are large, therefore, these two debris flow can be preventedby increasing the resistance of the gully beds, such as building check dam, grille dam, retaining dam and building belt dike, fish mouth and sheepfold type dividing dike inthe accumulation zone.
     4. The critical rainfall for debris flows near the dam of Wudongde hydropowerstation is between134.08mm and151.34mm.1h rainfall intensity which maybeinduce debris flows is between54.08mm and71.34mm.
引文
[1]焦金鱼,甘肃岷县泥石流危险性评价研究[D].西安:西北师范大学硕士学位论文,2009.
    [2]唐邦兴,中国泥石流[M].北京:商务印书馆,2000.
    [3]刘希林,莫多闻.泥石流风险评价[M].成都:四川科学技术出版社,2003.
    [4] Laigle D, Cossot P. Numerical modeling of mudflow [J]. Journal of Hydraulic Engineering,1997,123(7):617-623.
    [5] Ping-Sien Lin, Ji-Yuan Lin, Jui-Chi Hung, et al. Assessing debris-flow hazard in a watershedin Taiwan[J]. Engineering Geology,2002,66:295-313.
    [6] Xilin Liu, Junzhong Lei. A method for assessing regional debris flow risk: an application inZhaotong of Yunnan province (SW China)[J]. Geomorphology,2003,52:181-191.
    [7] Adam B. P., Paul M. S., Jerry D. H., et al. Debris-flow runout predictions based on theaverage channel slope (ACS)[J]. Engineering Geology,2008,98:29-40.
    [8] S. J. Conway, A. Decaulne, M. R. Balme, et al. A new approach to estimating hazard posedby debris flows in the Westfjords of Iceland[J]. Geomorphology,2010,114:556-572.
    [9]刘希林,唐川,陈明,等.泥石流危险范围的模型预测法[J].自然灾害学报,1993,2(3):67-73.
    [10]张杰坤.泥石流研究综述[J].中国地质灾害与防治学报,1994,5(4):1-8.
    [11]杜榕桓,康志成,陈循谦,等.云南小江泥石流综合考察与防治规划研究[M].重庆:科学技术出版社重庆分社,1987.
    [12]易顺民.泥石流堆积物的分形结构特征[J].自然灾害学报,1994,3(2):91-96.
    [13] Tamotsu, Takahashi. Debris Flow. Published for International Association for HydraulicResearch by A. A. Balkma[M]. Rotterdam Brookfield.1991.
    [14] C. M.弗莱施曼著,姚德基译.泥石流[M].北京:科学出版社,1986.
    [15]陈龙,乌东德水电站库坝区驾车河泥石流发育特征及危险性评价[D].长春:吉林大学硕士学位论文,2010.
    [16] Iverson R M, Reid M E, Lahusen R G. Debris flow mobilization from landslides[J]. AnnualReview of Earth Planetary Sciences,1997,25:85-138.
    [17]钱宁,王兆印.泥石流运动机理的初步探讨[J].地理学报,1984,39(1):1-43.
    [18]吴积善,田连权,康志成,等.刘江泥石流及其综合治理[M].北京:科学出版社,1993,l-332.
    [19] Blackwelder E.Mudflow as a geologic agent in semi-arid mountains[J]. Geological Societyof America Bulletin,1928,39:465-487.
    [20] Fryxell F. M. and Horberg L. Alpine mudflows in grandTeton national Park,Wyoming[J].Geological Society of America Bulletin,1943,54:457-472.
    [21] Sharp R. P. and Nobles L. H. Mudflow of1941at Wrightwood, southern California[J].Geological Society of America Bulletin,1953,64:547-560.
    [22] Curry R. R. Observations of alpine mudflows in the Ten mile range, central Colorado[J].Geological Society of America Bulletin,1966,77:771-776.
    [23]刘希林.国外泥石流机理模型综述[J].灾害学,2002,17(4):2-5.
    [24] Hunt B. Newtonian fluid mechanics treatment of debris flows and avalanche[J]. Journal ofHydraulic Engineering,1994,120(12):125-129.
    [25] Innes J L. Debris flows[J]. Progress in Physical Geography,1983,7(1):469-501.
    [26] Costa J E. Physical geomorphology of debris flows[A]. In: J. E. Costa and P. J. Fleisher et al.Developments and Applications of Geomorphology[C]. Berlin: Springer-Verlag,1984,268-317.
    [27] Iverson R M. The physics of debris flows[J].Reviews of Geophysics,1997,35(3):245-296.
    [28]施雅风,杨宗辉,谢自楚,杜榕植.西藏古乡地区的冰川泥石流[J].科学通报,1964,15(6):542-544.
    [29]唐邦兴,杜榕桓,康志成,章书成.我国泥石流研究[J].地理学报,1980,35(3):259-264.
    [30]中科院山地所.云南小江泥石流综考与防治规划研究[M].重庆:科技文献出版社重庆分社,1987.
    [31]王劲光.大渡河黄金坪水电站近坝库区叫吉沟泥石流发育特征及危险性评价[D].西安:西安交通大学硕士学位论文,2003
    [32]陈宁生等.泥石流勘察技术[M].北京:科学出版社,2011.
    [33]候凯.陕西省宝鸡市贾村镇泥石流风险评价[D].北京:中国地质大学(北京)硕士学位论文,2010.
    [34]刘希林.区域泥石流风险评价研究[J].自然灾害学报,2000,9(1):54-61.
    [35] Blijenberg H. M., De Graaf P J. Hendriks M R, et al. Investigation of infiltrationcharacteristics and debris flow initiation conditions in debris flow source areas using arainfall simulator[J]. Hydrological Processes,1996,10:1527-1543.
    [36] Benda L. The influence of debris flows on channel sand valley floor in the Oregon CoastRange[J]. Earth Surf Proc Land,1998,15:457-466.
    [37] Mark R., Ellen S. D. Statistical and simulation models for mapping debris flow hazard[A]. In:A. Carrara and F. Guzzetti et al. Geographical Information Systems in Assessing NaturalHazards[C]. Dordrecht: Kluwer Academic Publishers,1995:93-106.
    [38] Kelim X, Whipple. Predicting debris-flow runout and deposition on fans, the importance ofthe flac hydrograph. Erosion, Debris Flows and Environment in Mountain Regions.Proceedings of the Chengdu Symposium, July1992, IAHS Publ, No.209,1992:337-345.
    [39]立胜治,德山九仁夫,中筋章人,二宫寿男,大八木俊治.土石流发生危险度の判定にフやて[J].新砂防,1977,30(3):7-16.
    [40] Eldeen M T. Predisaster Physical Planning: Inteqration of Disaster Risk Analysis intoPhysical Planning: A Case Study in Tunisia[J].Disasters,1980,4(2):211-222.
    [41] Hollingsworth R. and G. S. Kovacs. Soil slumps and debris flows: Prediction andprotection[J]. Bulletin of the Association of Engineering Geologists,1981,18(1):17-28.
    [42]王国峰.基于遗传神经网络的矿山泥石流危险性评价[D].西安:西安科技大学硕士学位论文,2008.
    [43]高桥保,佐藤宏章等.扇状地にぉける土砂泛滥灾害危险度の评价[J].京都大学防灾研究所年报,1988,31(B-2):655-676.
    [44]久保田哲也,正务章,板垣昭彦.流域の任意地点における短时间降雨预测手法と土石流发生危险度判定图の开发[J].新砂防,1990,42(6):11-17.
    [45] HanGQ, Wang DG. Numerical modeling of Anhui debris flow[J]. J Hydr Engr, ASCE,1996,122(5):262~265
    [46] Borter P. Risikoanalyse bei gravitativen Naturgefahren, Bundesamt für Umwelt, Wald undLands-chaft[M]. Bern,1999
    [47]胡浩鹏.北京市泥石流灾害风险评估指标体系及方法研究[D].北京:中国地质大学(北京)硕士学位论文,2007.
    [48] Michael-Leiba, M., Baynes, F., Scott, G., and Granger, K. Regional landslide risk to theCairns community[J].Nat.Hazards,2003,30:233–249,
    [49] H. Go’mez, T. Kavzoglu. Assessment of shallow landslide susceptibility using artificialneural networks in Jabonosa River Basin[J]. Venezuela. Engineering Geology,2005,78:11~27.
    [50] Gwo-fong Lin, Lu-hsien Chen, Jun-nan Lai. Assessment of Risk due to Debris Flow Events:A Case Study in Central Taiwan[J]. Natural Hazards.2006,39:1–14.
    [51] Tung-Chiung Chang. Risk degree of debris flow applying neural networks[J]. NaturalHazards,2007,42:209~224.
    [52] Adnan O zdemir Mehmet Delikanli. A geotechnical investigation of the retrogressive YakaLandslide and the debris flow threatening the town of Yaka (Isparta, SW Turkey)[J]. NaturalHazards,2008,(7):69-82.
    [53] Liang WJ, Zhuang DF, Jiang D, et al. Assessment of debris flow hazards using a BayesianNetwork[J].Geomorphology,2012,171:94~100.
    [54]王礼先.关于荒溪分类[J].北京林学院学报,1992.
    [55]谭炳炎.泥石流沟严重程度的数量化综合评判[J].水土保持通报,6(1),1986:51-57.
    [56]刘希林.泥石流危险度判定的研究[J].灾害学,1988,(03):10-15.
    [57]徐黎明,王清,陈剑平等.三维节理岩体分形维数与RQD相关性研究[J].岩石力学与工程学报,2011,30:2667-2674.
    [58]徐黎明,王清,陈剑平.基于BP神经网络的泥石流平均流速预测[J].吉林大学学报(地球科学版),2013,43(1):167-172.
    [59] L.M. Xu, J.P. Chen, Q. Wang, et al. Fuzzy C-Means Cluster Analysis Based on MutativeScale Chaos Optimization Alagorithm for the Grouping of Discontinuity Sets[J]. RockMechanics and Rock Engineering,2013,46:189-198.
    [60]肖云华,王清,陈剑平,等.基于粗糙集和支持向量机的融合算法在岩体质量评价中的应用[J].煤炭地质与勘探,2008,36(6):49-53.
    [61]阙金声.三峡工程涪陵区水库塌岸非线性预测研究[D].长春:吉林大学博士学位论文,2007.
    [62]刘希林,唐川,张松林.中国山区沟谷泥石流危险度的定量判定法[J].灾害学,1993,8(2): l-7.
    [63]孙广仁,毕海良.模糊数学综合评判法在泥石流沟判别与危险度评价中的应用[J].青海环境,1997,7(2):72-77.
    [64]易顺民.泥石流堆积物的分形结构特征[J].自然灾害学报,1994,3(2):91-96.
    [65]刘勇健,刘义峰.基于粗糙集的范例推理在泥石流危险性评价中的应用[J].山地学报,2008,26(2):223-229.
    [66]谷复光,王清,张晨.基于投影寻踪与可拓学方法的泥石流危险度评价[J].吉林大学学报(地球科学版),2010,40(2):373-377.
    [67]铁永波,唐川.层次分析法在单沟泥石流危险度评价中的应用[J].中国地质灾害与防治学报,2006,17(4):79-84.
    [68]刘涌江,胡厚田,白志勇.泥石流危险度评价[J].水土保持学报,2000,8(1):84-87.
    [69]原立峰,周启刚,马泽忠.支持向量机在泥石流危险度评价中的应用研究[J].中国地质灾害与防治学报,2007,18(4):29-33.
    [70]袁永博,于雪峰.自然灾害危害度模糊模式识别[J].地震工程与工程振动,2003,23(6):194-197.
    [71]王霖琳. GIS支持下的泰山地区泥石流危险性评价研究[D].济南:山东农业大学硕士毕业论文,2004.
    [72]秦军.铁路泥石流多时相遥感技术及动态信息提取[D].成都:西南交通大学博士学位论文,2005.
    [73]赵汀.基于遥感和GIS的矿山环境监测与评价—以江西德兴铜矿为例[D].北京:中国地质科学院博士学位论文,2007.
    [74]李新坡,莫多闻.应用GIS和神经网络方法进行泥石流危险度评价的研究一以云南省为例[J].水土保持研究,2005,12(4):7-9.
    [75]刘洪江,唐川.东川城区泥石流数字减灾系统的开发[J].云南地理环境研究,2004,16(1):33-36.
    [76]刘光.泥石流致灾系数遥感信息模型初探[J].水土保持研究,2001,8(2):50-51.
    [77]张晨,陈剑平,王清,等.基于水系三维模型及分形理论对泥石流活动强度的研究[J].岩石力学与工程学报,2010,29(6):1214-1221.
    [78]谭春,陈剑平,李会中,等.加权距离判别法在泥石流危险度评价中的应用[J].吉林大学学报(地球科学版),2012,42(6):1847-1852.
    [79]铁永波.强震区城镇泥石流灾害风险评价方法与体系研究[D].成都:成都理工大学博士学位论文,2009.
    [80]唐川,朱大奎.基于GIS技术的泥石流风险评价研究[J].地理科学,2002,22(3):300-304.
    [81]段永候.中国地质灾害[M].北京:中国建筑工业出版社,1993:31-67.
    [82]刘孝盈.印度尼西亚的泥石流预警预报系统[J].中国水土保持,1995,(3):17~19.
    [83]赵洪.某矿山排土场泥石流形成机理及其防治对策研究[D].昆明:昆明理工大学硕士学位论文,2008.
    [84] C.M.弗莱施曼(姚德基译).泥石流.北京:科学出版社,1986.
    [85]刘涛.密云县泥石流危险度评价及防治措施体系研究[D].北京:北京林业大学硕士学位论文,2009.
    [86]刘江,奥地利泥石流防治简介[M].重庆:科学技术文献出版社重庆分社,1981:15-17.
    [87]吴积善,康志成,田连权等.云南东川蒋家沟泥石流观测研究[M].北京:科学出版社,1993:12-19.
    [88]唐晓春.泥石流防治模式初探[J].水土保持学报,1991,5(4):8-17.
    [89]唐晓春.中国西南山区的泥石流防治及展望[J].海洋地质与第四纪地质,1995,15(3):105-112.
    [90]唐晓春,刘会平,唐川.云南省泥石流防治模式研究[J].自然灾害学报,2001,(04):94-99.
    [91]唐晓春.泥石流防治模式的构想[J].中国减灾,2002,2(2):40-43.
    [92]崔鹏.风景区泥石流研究与防治[M].北京:科学出版社,2005.
    [93]钟敦伦,谢洪,韦方强.长江上游泥石流危险度区划研究[J].山地研究,1994,12(2):65-70.
    [94]王士革.山坡型泥石流的危害与防治[J].中国地质灾害与防治学报,1999,10(3):45-50.
    [95]柳素清,唐邦兴,刘世建.攀西地区人为泥石流和防治对策[J].水土保持通报,1987,7(1):27-32.
    [96]徐永年,曹文洪,周新福等.山洪灾害特性及其防治对策[J].中国水利水电科学研究院学报,2004,2(2):115-119.
    [97]邓辉.高精度卫星遥感技术在地质灾害调查与评价中的应用[D].成都:成都理工大学博士学位论文,2007.
    [98]徐鹏杰,邓磊.遥感技术在减灾救灾中的应用[J].遥感技术与应用,2011,26(8):512-519.
    [99]杨金香.遥感在地质灾害研究中的应用[J].煤田地质与勘探,2005,33:30-32.
    [100]石菊松,吴树仁,石玲.遥感在滑坡灾害研究中的应用进展[J].地质评论,2008,54(4):505-514.
    [101]薛东剑. RS与GIS在区域地质灾害风险评价中的应用—以青川、平武县为例[D].成都:成都理工大学博士学位论文,2010.
    [102]朱静,唐川.遥感技术在我国滑坡研究中的应用综述[J].遥感技术与应用,2012,27(3):458-464.
    [103]石菊松.基于遥感和地理信息系统的滑坡风险评估关键技术研究[D].北京:中国地质科学院博士学位论文,2008.
    [104]吴露露,罗旭,张雁等.中低分辨率遥感影像几何精校正[J].北京林业大学学报,2008,30(Supp.1):78-82.
    [105]何平,赵子都.突变理论及其应用[M].大连:大连理工大学出版社,1989.
    [106]Poston T,Ian Stewant. Catastrophe Theory and Application[M]. Lord: Pitman,1978.
    [107]桑博德(P.T.saunders)(英)著,凌复华译.突变理论入门[M].上海:上海科学技术文献出版社,1983.
    [108]门峰,刘子先,杜慧滨.基于突变理论的评价方法在经营者激励评价中的应用[J].内蒙古农业大学学报(社会科学版),2008,10(5):112-116.
    [109]Zhen-yu Zhao, Wen-jun Ling, George Zillante. An evaluation of Chinese Wind TurbineManufacturers using the enterprise niche theory[J]. Renewable and Sustainable EnergyReviews,2012,16:725-734.
    [110]Shiliang Su, Dan Li, Xiang Yu, Zhonghao Zhang, et al. Assessing land ecological security inShanghai (China) based on catastrophe theory[J]. Stoch Environ Res Risk Assess,2011,25:737-746.
    [111]Shiliang Su, Zhonghao Zhang, Rui Xiao, et al. Geospatial assessment of agroecosystemhealth: development of an integrated index based on catastrophe theory[J]. Stoch EnvironRes Risk Assess,2012,26:321-334.
    [112]李绍飞,孙书洪,王向余.突变理论在海河流域地下水环境风险评价中的应用[J].水利学报,2007,38(11):1312-1317.
    [113]何金平,李珍照.基于环境突变理论综合评价的水电站建设方案优选[J].水电站设计,1998,14(1):11-15.
    [114]黄润秋,许强.突变理论在工程地质中的应用[J].工程地质学报,1993,1(1):65-73.
    [115]Henley S. Catastrophe Theory Models in Geology[J]. Mathematical Geology,1976,8(6):649-655.
    [116]John M. C., Brian S. The Geological Implication of Steady-State Mechanisms in CatastropheTheory[J]. Mathematical Geology,1976,8(6):657-662.
    [117]梁桂兰,徐卫亚,何育智等.突变级数法在边坡稳定综合评判中的应用[J].岩土力学,2008,29(7):1895-1899.
    [118]田卿燕.块裂岩质边坡崩塌监测预报理论与应用研究[D].长沙:中南大学博士学位论文,2008.
    [119]龙辉,秦四清,万志清.降雨触发滑坡的尖点突变模型[J].岩石力学与工程学报,2002,21(4):502-508.
    [120]周小平,钱七虎,张永兴等.基于突变理论的滑坡时间预测模型[J].工程力学,2011,28(2):165-174.
    [121]罗红明,唐辉明,胡斌等.基于突变理论的反倾层状岩石边坡稳定性研究[J].地质科技情报,2007,26(6):101-104.
    [122]左宇军,李夕兵,马春德等.动静组合荷载作用下岩石失稳破坏的突变理论模型与试验研究[J].岩石力学与工程学报,2005,24(5):741-746.
    [123]李军霞.西藏隆子县滑坡灾害形成机理及非线性预测研究[D].长春:吉林大学博士学位论文,2011.
    [124]安玉华,王清,张晨等.基于突变模型的泥石流危险度评价[J].吉林大学学报(地球科学版),2012,42(增1):355-361.
    [125]王富强,刘中培,杨松林.基于突变理论的灌区水资源开发利用状况综合评价[J].中国农村水利水电,2011,(12):19-25.
    [126]张晨.基于非线性系统的金沙江攀西河段水系形态及泥石流危害研究[D].长春:吉林大学博士学位论文,2011.
    [127]田伟.乌东德水电站近坝库岸泥石流的影响研究[D].长春:吉林大学硕士学位论文,2009.
    [128]刘光旭,戴尔阜,吴绍洪,等.泥石流灾害风险评估理论与方法研究[J].地理科学进展,2012,31(3):383-391
    [129]张帅.水电工程地质灾害风险评价技术研究—以梨园水电工程为例[D].成都:成都理工大学硕士学位论文,2010.
    [130]周必凡,李基德,罗德富,等.泥石流防治指南[M].北京:科学出版社,1991.
    [131]于玲.自然保护区生态旅游可持续性评价指标体系研究[D].北京:北京林业大学博士学位论文,2006.
    [132]刘希林,唐川.泥石流危险性评价[M].北京:科学出版社,1995.
    [133]刘厚成,谷秀芝.基于可拓层次分析法的泥石流危险性评价研究[J].中国地质灾害与防治学报,2010,21(3):61-66.
    [134]Xilin Liu, Zhang Dan. Comparison of Two Empirical Models for Gullly-Specific DebrisFlow Hazard Assessment in Xiaojiang Valley of Southwestern China,2004,31:157-175.
    [135]周广志,李广杰,陈伟韦.磐石市富太镇泥石流危险性评价与危险范围预测[J].2007,(2):101-105.
    [136]徐黎明,陈剑平,王清.多参数岩体结构面优势分组方法研究[J].岩土力学,2013,34(1):189-195.
    [137]刘传正,李铁锋,程凌鹏,等.区域地质灾害评价预警的递进分析理论与方法[J].水文地质与工程地质,2004,(4):1-8.
    [138]陈红旗,张若琳.单体滑坡灾害风险建议评价研究[J].地质灾害与环境保护,2010,21(1):45-48.
    [139]刘树林,王建智,朱有禄,等.略阳先泥石流灾害风险评价[J].水利与建筑工程学报,2011,9(6):129-133.
    [140]张春山,李国俊,张业成,等.黄河上游地区崩塌滑坡泥石流地质灾害风险评价[J].地质力学学报,2006,12(2):211-218.
    [141]刘加龙,吕希奎,刘贵应.模糊综合评判法在泥石流灾度评价中的应用[J].地质科技情报,2001,20(4):86-88.
    [142]陈果,贾苍琴.沟谷泥石流灾害风险评价[J].内蒙古大学学报(自然科学版),2009,40(2):233-238
    [143]Wilson R., Crouch E.A.C. Risk assessment and eom Parisons: an introduction[J]. Sicence,1987,236:267-270
    [144]Maskrey A. Disaster Mitigation: A Community Based Approaeh[M].Osford: Oxfam,1989,l-100.
    [145]Smith K. Environmental Hazards: Assessing Risk and Reducing Disaster[M]. London:Routledge,1996, l-389.
    [146]Tobin G.and Montz B.E. Natural Hazards:Explanation and Ingration[M]. New Yord:TheGuilford Press,1997, l-388.
    [147]Hurst N.W. Risk Assessmeni: the Human Dimension[M].Cambridge: The Royal Society ofChemistry.1998, l-101.
    [148]唐垒庆. S303线映秀至卧龙段震后公路泥石流风险评价[D].成都:成都理工大学硕士学位论文,2012.
    [149]崔鹏.泥石流起动条件及机理的实验研究[J].科学通报,1991,(21):1650-1652.
    [150]Younus Ahmed Khan, Habibah lateh. M. Azizul Baten, et al. Critical antecedent rainfallconditions for shallow landslides in Chittagong City of Bangladesh[J]. Environment EarthScience,2012,67:97-106.
    [151]Rosi Ascanio, Segoni Samuele, Catani Filippo, et al. Statistical and environmental analysesfor the definition of a regional rainfall threshold system for landslide triggering in Tuscany(Italy)[J]. J. Geotr. Sci.,2012,22(4):617-629.
    [152]Chien-Yuan Chen, Lee-Yao Lin, Fan-Chieh Yu et al. Improving debris flow monitoring inTaiwan by using high-resolution rainfall products from QPESUMS[J]. Natural Hazards,2007,40:447-461.
    [153]Francesco Ponziani, Claudia Pandolfo, Marco Stelluti, et al. Assessment of rainfallthresholds and soil moisture modeling for operational hydrogeological risk prevention in theUmbria region (central Italy)[J]. Landslides,2012,9:229-237.
    [154]Matthias Jakob, T. Owen, T. Simpson. A regional real-time debris-flow warning system forthe District of North Vancouver, Canada[J]. Landslides,2012,9:165-178.
    [155]文科军,王礼先,谢宝元等.暴雨泥石流实时预报的研究[J].北京林业大学学报,1998,2(6):59-64.
    [156]陈家华.北京北山地区泥石流灾害特点及其防治现状研究[J].中国地质灾害与防治学报,1994,5:36-44.
    [157]白利平,孙佳丽,南赟.北京地区泥石流灾害临界雨量阈值分析[J].地质通报,2008,27(5):674-680.
    [158]吴正华.北京泥石流灾害及其降雨触发条件[J].水土保持研究,2001,8(1):67-72.
    [159]Davide Tiranti, Davide Rabuffetti. Estimation of rainfall thresholds triggering shallowlandslides for an operational warning system implementation[J]. Landslides,2010,7:471-481.
    [160]Rex L. Baum, Jonathan W. Godt. Early warning of rainfall-induced shallow landslides anddebris flows in the USA[J]. Landslides,2010,7:259-272.
    [161]F. Guzzetti, S. Peruccacci, M. Rossi1, and C. P. Stark. Rainfall thresholds for the initiation oflandslides in central and southern Europe[J]. Meteorogogy and Atmospheric Physics,2007,98:239-267.
    [162]Jiongxin Xu. Some rainfall-related thresholds for erosion and sediment yield in the upperYangtze River basin[J]. Environ Geol,2009,56:1183-1192.
    [163]Susan H. Cannon, Eric M. Boldt, Jayme L. Laber. Rainfall intensity–duration thresholds forpostfire debris-flow emergency-response planning[J]. Natural Hazards,2011,59:209-236.
    [164]彭涛.泥石流形成的降雨条件及其预测预报研究—以重庆市北碚区为例[D].重庆:西南大学硕士学位论文,2006.
    [165]谭万沛.中国暴雨泥石流预报研究基本理论与现状[J].土壤侵蚀与水土保持学报,1996,2(1):88-95.
    [166]潘华利,欧国强,黄江成等.缺资料地区泥石流预警雨量阈值研究[J].岩土力学,2012,33(7):2122-2126.
    [167]白利平.北京山区泥石流灾害临界雨量预测[J].地质灾害与环境保护,2006,17(4):101-104.
    [168]He Siming, Li Dexin, Wu Yong, Luo Yu. Study on the Rainfall and Aftershock Threshold forDebris Flow of Post-earthquake[J]. Journal of Mountain Science,2011,(8):750-756.
    [169]陈景武.云南东川蒋家沟泥石流暴发与暴雨关系的初步分析[A].中国科学院兰州冰川冻土研究所集刊(4)[C].北京:科学出版社,1985:88-96.
    [170]陈正洪,孟斌.湖北省降雨型滑坡泥石流及其降雨因子的时空分布、相关性浅析[J].岩土力学,1995,16(3):62-68.
    [171]魏永明,谢又予.降雨型泥石流(水石流)预报模型研究[J].自然灾害学报,1997,6(4):48-53.
    [172]陈晓清,崔鹏,冯自立,陈杰,李泳.滑坡转化泥石流起动的人工降雨试验研究[J].岩石力学与工程学报,2006,25(1):106-116.
    [173]丛威青,潘懋,李铁锋,任群智,李仁锋.降雨型泥石流临界雨量定量分析[J].岩石力学与工程学报,2006,25(1):2809-2812.
    [174]Diana Salciarini, Claudio Tamagnini, Pietro Conversini, et al. Spatially distributed rainfallthresholds for the initiation of shallow landslides[J]. Natural Hazards,2012,61:229-245.
    [175]Apip, Kaoru Takara, Yosuke Yamashiki, et al. A distributed hydrological-geotechnical modelusing satellite-derived rainfall estimates for shallow landslide prediction system at acatchment scale[J]. Landslides,2010,7:237-258.
    [176]黄芮.基于PPA的乌东德水电站库区泥石流流速模型建立与计算[D].长春:吉林大学博士学位论文,2011.
    [177]陈宁生,杨成林,周伟等.流勘查技术[M].北京:科学出版社,2011.
    [178]DZ/T0239-2004,泥石流灾害防治工程设计规范[S].
    [179]游勇,柳金峰,欧国强.泥石流常用排导槽水力条件的比较[J].岩石力学与工程学报,2006,25:(增1):2820-2825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700