用户名: 密码: 验证码:
基于计算智能和GIS的暴雨型泥石流分析预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥石流是山区常见的自然灾害,具有很强的破坏性,直接威胁人民生命和财产安全,严重影响经济的可持续发展。本文基于GIS空间分析技术和计算智能理论建立模型,分析评价泥石流灾害风险,为泥石流预测预报提供科学依据和技术支持。
     泥石流灾害系统属于复杂非线性系统,存在模糊性和不确定性。本文依据泥石流孕育、发展过程不同阶段的特点,以计算智能理论和GIS技术集成泥石流灾害的多元影响因子,建立泥石流灾害的风险评价预测模型。运用研究区观测数据进行仿真,验证了模型的有效性。本文的研究工作与主要结论如下:
     (1)根据泥石流发展过程中的一系列动态过程事件,以事件树理论为基础构建了泥石流灾害发展过程的事件树模型,用模糊语言表达事件树节点事件的发生概率,并对泥石流灾害的发生概率进行模糊评价,最后通过解模糊方法得到泥石流灾害风险概率。事件树模型体现了泥石流孕灾过程的阶段性,计算出的泥石流灾害事件的发生概率与实际吻合。
     (2)将坡度、相对高差、植被覆盖度、沿沟松散物储量、前5天累计降雨量、最大小时雨强和当日雨量作为泥石流灾害预警模型的评价指标,根据评价指标特点制定相应的关联函数来计算关联度,运用可拓学理论建立泥石流预警模型,为泥石流灾害评价提出了形式化的理论方法。
     (3)利用模拟退火遗传算法改进GMDH网络模型,并用改进的GMDH模型预测泥石流灾害。用KLDA判别分析方法选取关联度大的致灾因子,将其作为输入参数,泥石流一次最大冲出量作为输出参数,运用改进的GMDH网络模型进行泥石流灾害预测,模型精度比其他模型(如BP和ANFIS)高。
     (4)提出了基于本地搜索策略的混合蚁群优化方法来优化贝叶斯网络结构学习,以改进贝叶斯网络模型,并将改进的模型用于泥石流灾害风险评估,计算出的泥石流灾害危险度与实际情况吻合。该方法为地学分析中不确定性问题、数据不完整问题的研究提供了一种新技术。
Debris flow is a common natural disaster in mountain area, and it has a strongdestructive, direct threat to people's life and property security, serious impact on thesustainable development of economy. In this paper, based on GIS spatial analysistechnology and computing intelligence theory, models were constructed to analyzedebris flow disaster risk evaluation and provide technical support for debris flowforecasting.It has important theoretical significance and practical application value.
     Debris flow disaster system belongs to complex nonlinear system.And there existfuzziness and uncertainty in the system. According to the characteristics of differentstages in landslide inoculation and development process, multivariate factors wereintegrated to establish debris flow disasters risk assessing and predicting model, basedon computing intelligent theory and GIS technology. Observation data in the studyarea was simulated to verify the validity of the model. In this paper, the research workand main conclusions are as follows:
     (1) Based on event tree theory to build the development process of debris flowdisaster event tree model, using fuzzy language to express the probability of event treenode, and evaluate the fuzzy probability of occurrence of debris flow disasters, thedebris flow disaster risk probability is obtained by defuzzy method. Event tree modelembodies the mudslide subsquently phases of the process, and the calculatedprobability of debris flow disasters was in accordance with the actual.
     (2) the slope, relative elevation difference, the vegetation coverage, loosematerial reserves along the ditch,5d-accumulated rainfall, the maximum hours ofrainfall intensity and the day rain as the assessment indexes of debris flow disasterwarning model, by using the theory of extenics to establish debris flow warningmodel, advanced the theory of formal method for debris flow disaster evaluation.According to the characteristics of the factor set corresponding correlation functionsto calculate the correlation degree, the evaluation process more scientific andreasonable.
     (3) Using the simulated annealing genetic algorithm to improve GMDH(GroupMethod of Data Handling) network model, and use the improved GMDH model toforecast debris flow disasters. With KLDA discriminant analysis method to selectlager factor correlation and it as an input parameter, the biggest quantity debris flowrushing out once a time as the output parameter, using the improved GMDH networkmodel for debris flow disaster prediction, the model precision is higher than othermodels, such as BP and ANFIS).
     (4)A method is proposed based on local search strategy of hybrid ant colonyoptimization algorithm to optimize the bayesian network structure learning, and toimprove the bayesian network model, and the improved model was used for debrisflow disaster risk assessment, and the calculated risk of debris flow hazards was inaccordance with the actual situation. The method provided a new technology foranalyzing the uncertainty problem and the incomplete data problem.
引文
Aram H, Tunc A, Richard D, et al. Dynamic generation of accident progression event trees. NuclearEngineering and Design,2008,238(12):3457-3467
    Ardiansyah, P.O.D., Yokoyama, R. DEM generation method from contour lines based on the steepestslope segment chain and a monotone interpolation function. ISPRS Journal of Photogrammetryand Remote Sensing,2002,57(1–2):86–101
    Ayalew, L., Yamagishi, H. The application of GIS-based logistic regression for landslidesusceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology,2005,65:15-31
    B. Schokopf, A. Smola, K.-R. Muller. Nonlinear component analysis as a kernel eigenvalue problem.Neural Computation,1998,10(3):1299–1319
    B.P. Gupta, B.C. Joshi, Landslide hazard zoning using the GIS approach-a case study fromRamganga Catchment, Himalayas. Engineering Geology,1990,28:119–131
    Baum, R. L. and J. W. Godt. Early warning of rainfall-induced shallow landslides and debris flowsin the USA. Landslides,2010,7(3):259-272
    Berti, M. and A. Simoni. Prediction of debris flow inundation areas using empirical mobilityrelationships. Geomorphology,2007,90(1-2):144-161
    Cai Wen. The ext ension set and non-compatible problems. Chien Weizang ed. AdvancesMathematics and Mechanics in China. New York: International Academic Publishers,1990.299-304
    Calvo B, Savi F. A real-world application of Monte Carlo procedure for debris flow risk assessment.Computers&Geosciences,2009,35:967-977
    Carmassi, F., Liberati, G., Ricciardi, C., Sciotti, M. Stability evaluation for unified power-plantsiting in geothermal areas. Proceedings of the6thInternational Symposium on Landslides,1992,893-898
    Carrara, A., Merenda, L.Landslide inventory in Northern Calabria, Southern Italy. GeologicalSociety of America Bulletin,1976,87:1153–1162
    Chang, TC, Chao, RJ. Application of back-propagation networks in debris flow prediction.Engineering Geology,2006,65(3-4):270-280
    Chen, C. Y., T. C. Chen, et al. Rainfall duration and debris-flow initiated studies for real-timemonitoring. Environmental Geology,2005,47(5):715-724
    Chen, C.-Y., L.-Y. Lin, et al. Improving debris flow monitoring in Taiwan by using high-resolutionrainfall products from QPESUMS. Natural Hazards,2007,40(2):447-461
    Chen,J.W. The Preliminary Analysis on the Relation of Debris Flow and Heavy Rains at YunnanJiangjia Ravine. Bei Jing: Science Press,1985.88-89
    Chen,S.F.Complex systems modeling theory and methods. Nan Jing,China: Southeast UniversityPress,2005.253-255
    Ching-Torng Lin, Wang Mao J.Wang. Hybrid fault tree analysis using fuzzy sets. ReliabilityEngineering&System Safety,1997,58(3):205-213
    Chleborad AF.Preliminary evaluation of a precipitation threshold for anticipating the occurrence oflandslides in the Seattle, Washington area. US Geological Survey Open-File Report,2003,03-463
    Cooper, G.F., Herskovits, E. A Bayesian method for the induction of probabilistic networks from data.Machine Learning,1992,9:309–347
    Crosta, GB. Introduction to the special issue on rainfall-triggered landslides and debris flows.Engineering Geology,2004,73(3-4):191-192
    Cutello,V, Montero J,Yanez J.Structure functions with fuzzy states.Fuzzy Sets and Systems,1996,83(2):189-202
    Cui Peng. The experimental study of starting conditions and mechanism of debris flow. ChineseScience Bulletin,1991,21:1650-1652
    D. Whitley. The GENITOR algorithm and selection pressure: why rank-based allocation ofreproductive trials is best, in: J. David Schaffer (Ed.). Proc. of the Third Int. Conf. on GeneticAlgorithms. San Mateo: Morgan Kaufmann Publishers,1989.116–121
    Dai F C,Lee C F. Frequency-volume relation and prediction of rainfall-induced landslides.Engineering Geology,2001,59:253–266
    DAVID KWN,CAI Wen.Treating Non-compatible Problem from Matter element Analysis toExtenics.ACM SIGICE Bulletin,1997,22(3):1-9
    Dawson, C. W. and R. L. Wilby.Hydrological modelling using artificial neural networks. Progress inPhysical Geography,2001,25(1):80-108
    DDDAS Workshop Report [R/OL]. NSF Workshop Report, January2006. www.cise.nsf.gov/dddas.:
    DeGraff, Jerome.,Wagner, David., Gallegos, Alan. The remarkable occurrence of largerainfall-induced debris flows at two different locations on July12,2008. Southern Sierra Nevada,CA, USA,2011,8(3):343-353
    Dempster, A.P., Laird, N.M., Rubin, D.B. Maximum likelihood from incomplete data via the EMalgorithm. Journal of the Royal Statistical Society: Series B (Methodological),1977,39:1–38
    Di B.F, Chen N.S,Cui p,etc. GIS-based risk analysis of debris flow: an application in Sichuan,southwest China. International Journal of Sediment Research,2008,23(2):138-148
    A.Dostert, P., Efendiev, Y., Hou, T. Y.,&Luo, W. Coarse-gradient Langevin algorithms for dynamicdata integration and uncertainty quantification. Journal of Computational Physics,2006,217(1):123-142
    Dubois, D., Prade, H. Fuzzy sets and systems-Theory and applications. New York: AcademicPress,1980
    Dubois, D., Prade, H. Possibility theory–An approach to computerized processing of uncertainty.New York: Plenum Press,1988
    Dubois, D. Possibility theory and statistical reasoning. Computational Statistics&Data Analysis,2006,51:47–69
    Dougherty, J., Kohavi, R., Sahami, M. Supervised and unsupervised discretization of continuousfeatures. In: Prieditis, A., Russell, S.(Eds.), Proceedings of the Twelfth International Conferenceon Machine Learning, Tahoe City, California, USA,1995.194–202
    Dynamic Data Driven Application Systems [R/OL]. NSF Workshop Report, March2000. www.cise.nsf.gov/dddas.
    E. Zitzler, K. Deb, L. Thiele. Comparison of multiobjective evolutionary algorithms: empiricalresults. Evolutionary Computation,2000,8(2):173–195
    Ercanoglu, M., Gokceoglu, C. Assessment of landslide susceptibility for a landslide-prone area(north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology,2002,41:720–730
    F. Glover, G.A. Kochenberger (Eds.), Handbook of Metaheuristics, Kluwer,2003.251–258
    Fayyad UM, Irani KB. Multi-interval discretization of continuous-valued attributes for classificationlearning. In: Proceedings of the International Joint Conference on Artificial Intelligence. IJCAI-93,Vols1and2: Proceedings of the thirteenth international joint conference on artificial intelligence.Chambery, France,1993.1022–1027
    Friedel, M. J. A data-driven approach for modeling post-fire debris-flow volumes and theiruncertainty. Environmental Modeling&Software,2011,26(12):1583-1598
    G. Baudat., F. Anouar. Generalized discriminant analysis using a kernel approach. NeuralComputation,2000,12(10):2385–2404
    A. G. Ivakhnenko and G. A. Ivakhnenko. The review of problems solvable by algorithms of thegroup method of data handling.Pattern Recognition and Image Analysis,1995,5(4):527-535
    B. Geman, S.&Geman, D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration ofimages.IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6:721–741
    Grefenstette, Jj. Optimization of control parameters for genetic algorithms. IEEE Transactions OnSystems Man And Cybernetics,1986,16(1):122-128
    Gregory B,Baecher,John T,Christian. Reliability and statistics in geotechnical engineering. England:John wiley&Sons Ltd,2003
    Gregory, F.C., Edward, H. A Bayesian method for the induction of probabilistic networks from data.Machine Learning,1992,9(4):309-347
    Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. Landslide hazard evaluation: a review ofcurrent techniques and their application in a multi-scale study. Central Italy. Geomorphology,1999,31:181–216
    Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., Ardizzone, F. Probabilistic landslide hazardassessment at the basin scale. Geomorphology,2005,72:272–299
    Hamzacebi, Coskun. Improving genetic algorithms’ performance by local search for continuousfunction optimization. Applied Mathematics and Computation,2008,196(1):309–17
    Han, D., Chan, L., Zhu, N. Flood forecasting using Support vector machines. Journal ofHydroinformatics,2007,9(4):267-276
    H. Safikhania, A. Hajiloo, M.A. Ranjbar. Modeling and multi-objective optimization of cycloneseparators using CFD and genetic algorithms. Computers and Chemical Engineering,2011,35:1064-1071
    H.X. Lan, C.H. Zhou, L.J. Wang, H.Y. Zhang, R.H. Li, Landslide hazard spatial analysis andprediction using GIS in the Xiaojiang watershed, Yunnan, China,Engineering Geology,2004,76:109–128
    Hanley, J.A., McNeil, B.J.The meaning and use of the area under a receiver operating characteristic(ROC) curve. Radiology,1982,143:29–36
    Hearn, G.J. Landslide and erosion hazard mapping at Ok-Tedi Copper Mine,Papua-New-Guinea.Quarterly Journal of Engineering Geology,1995,28:47-60
    Hernandez, F., Herrera, F. Intelligent identification of a fermentative process using modified GMDHAlgorithm. Revista Iberoamericana De Automatica E Informatica Industrial,2012,9(1):3-13
    Heung Suk Hwang, Fuzzy GMDH-type neural network model and its application to forecasting ofmobile communication. Computers&Industrial Engineering,2006,50:450–457
    Howard, R.A. and Matheson, J.E. Influence diagrams. in: R.A. Howard and J.E. Matheson(Eds.).The Principles and Applications of Decision Analysis (Strategic Decisions Group). MenloPark: CA,1984
    Ishikawa A, Amagasa M, Shiga T, et al. The max-min Delphi method and fuzzy Delphi method viafuzzy integration. Fuzzy Sets and Systems,1993,55(3):241-253
    Is k Yilmaz. Landslide susceptibility mapping using frequency ratio,logistic regression, artificialneural networks and their comparison: A case study from Kat landslides(Tokat—Turkey).Computers and Geosciences,2009,35:1125-1138
    Ivakhnenko, A.G. The group method of data handling in prediction problems. Soviet AutomaticControl,1976,9(6):21–30
    J. Yang., Z. Jin., J.Y. Yang., D. Zhang., A.F. Frangi. Essence of kernel Fisher discriminant: KPCAplus LDA. Pattern Recognition,2004,37:2097–2100
    J.Xiao., C.He., X.Jiang. Structure identification of Bayesian classifiers based on GMDH.Knowledge-Based Systems,2009,22(6):461–470
    Jakob, M., T. Owen, et al. A regional real-time debris-flow warning system for the District of NorthVancouver,Canada. Landslides,2012,9(2):165-178
    Jang, J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on SystemsMan and Cybernetics,1993,23:665–684
    Jiang, H., Eastman, J.R. Application of fuzzy measures in multi-criteria evaluation in GIS.International Journal of Geographical Information Science,2000,14:173–184
    Jensen, F V. Bayesian Networks and Decision. New York: Graphs Springer-Verlag Inc,2001
    Kohonen, T. Self-organizing Maps: Third Extended Edition, Springer Series in Information Sciences,Vol.30. New York: Springer, Berlin, Heidelberg,2001.253
    K. Fukunaga. Introduction to Statistical Pattern Recognition. New York:Academic,1990
    K. Miettinen. Nonlinear Multiobjective Optimization. Boston:Kluwer Academic Publishers,1999
    K.-R. Muller., S. Mika., G. Ratsch., K. Tsuda., B. Scholkopf. An introduction to kernel-basedlearning algorithms. IEEE Transactions on Neural Networks,2001,12(2):181–201
    Khalkhali., Abolfazl., Safikhani., Hamed. Pareto based multi-objective optimization of a cyclonevortex finder using CFD, GMDH type neural networks and genetic algorithms. EngineeringOptimization,2012,44(1):105-118
    Koza, J.R. Genetic Programming: On The Programming Of Computers By Means Of NaturalSelection. Cambridge: The MIT Press,1992
    Kung, H.Y., Chen, C.H., Ku, H.H. Designing intelligent disaster prediction models and systems fordebris-flow disasters in Taiwan. Expert Systems with Applications,2012,39(5):5838-5856
    Kurtulus, Bedri., Flipo, Nicolas. Hydraulic head interpolation using ANFIS-model selection andsensitivity analysis. Computers&Geosciences,2012,38(1):43-51
    Larsen, Mc., Simon, A. A rainfall intensity-duration threshold for landslides in a humid-tropicalenvironment, puerto-rico. Geografiska Annaler Series A-Physical Geography,1993,75(1-2):13-23
    Lauritzen, S.L., Spiegelhalter, D.J. Local Computations with Probabilities on Graphical Structuresand Their Application to Expert Systems, Readings in Uncertain Reasoning. San Francisco:Morgan Kaufmann Publishers Inc.1990.415–448
    Liang, W.-j., D.-f. Zhuang, et al. Assessment of debris flow hazards using a Bayesian Network.Geomorphology,2012,171:94-100
    Liang GS, Wang, MJJ. Evaluating human reliability using fuzzy relation. Microelectronics andReliability,1993,33(1):63-80
    Li, L., Wang, J., Wang, C. Typhoon insurance pricing with spatial decision support tools.International Journal of Geographical Information Science,2005,19:363-384
    J.Xiao., C.He., X.Jiang. Structure identification of Bayesian classifiers based on GMDH.Knowledge-Based Systems,2009,22(6):461–470
    Lim, A., Rodrigues, B., Zhang, X. A simulated annealing and hill-climbing algorithm for the travelingtournament problem. European Journal of Operational Research,2006,174(3):1459-1478
    M. Dorigo, V. Maniezzo, A. Colorni. The ant system: optimization by a colony of cooperating agents.IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics,1996,26(1):29–41
    M. Dorigo, G. Di Caro, Luca Maria, Gambardella, Ant algorithms for discrete optimization.Artificial Life,1999,5(2):137–172
    M. Dorigo, T. Stutzle, The ant colony optimization metaheuristic: algorithms,applications andadvances. in: F. Glover, G.A. Kochenberger (Eds.). Handbook of Metaheuristics, Kluwer,2003.251–258
    Madala, H.R., Ivakhnenko, A.G. Inductive Learning Algorithms for Complex Systems Modeling.Boca Raton: CRC Press,1994
    Madandoust R, Bungey JH, Ghayidel R.Prediction of the concrete compressive strength by means ofcore testing using GMDH-type neural network and ANFIS models.Computational MaterialsScience,2011,51(1):261-272
    Markowski, A. S., M. S. Mannan, et al. Fuzzy logic for process safety analysis. Journal of LossPrevention in the Process Industries,2009,22(6):695-702
    Moon-Hyun Chun, Kwang-Il Ahn. Assessment of the potential applicability of fuzzy set theory toaccident progression event trees with phenomenological uncertainties. Reliability Engineering&System Safety,1992,37(3):237-252
    Naderloo, L., Alimardani, R., Omid, M. Application of ANFIS to predict crop yield based ondifferent energy inputs. Measurement,2012,45(6):1406-1413
    Nandi, A. and A. Shakoor. A GIS-based landslide susceptibility evaluation using bivariate andmultivariate statistical analyses. Engineering Geology,2010,110(1-2):11-20
    Newmark, N.M. Effects of earthquakes on dams and embankments. Geotechnique,1965,15:139–159
    Nilaweera, N.S., Nutalaya, P. Role of tree roots in slope stabilization. Bulletin of EngineeringGeology and the Environment,1999,57:337–342
    Nurmi H. Approach to collective decision making with fuzzy preference relations. Fuzzy Sets andSystems,1981,6:249-259
    Oh, H.-J. and B. Pradhan. Application of a neuro-fuzzy model to landslide-susceptibility mappingfor shallow landslides in a tropical hilly area. Computers&Geosciences,2011,37(9):1264-1276
    Oh, SK., Pedrycz, W., Park, BJ. Polynomial neural networks architecture: analysis and design.Computers&Electrical Engineering,2003,29(6):703-725
    Osanai, N., Shimizu, T., Kuramoto, K., Kojima, S.,&Noro, T. Japanese early-warning for debrisflows and slope failures using rainfall indices with Radial Basis Function Network. Landslides,2010,7(3):325-338
    Ou Jian., Sun Caixin., Hu Xuesong. BP neural network based on genetic algorithm for vibration faultdiagnosis of turbine-generator set. High Voltage Engineering,2006,32(7):46-68
    P. Howland., J. Wang., H. Park.. Solving the small sample size problem in face recognition usinggeneralized discriminant analysis. Pattern Recognition,2006,39:277–287
    Pachauri, A.K., Gupta, P.V., Chander, R. Landslide zoning in a part of the Garhwal Himalayas.Environmental Geology,1998,36:325–334
    Paolo B, Jason K, L.Anthony M, et al. Construction of event-tree/fault-tree models from a Markovapproach to dynamic system reliability. Reliability Engineering and System Safety,2008,93:1616-1627
    Pate-Cornell, M. E. Uncertainties in risk analysis: six level of treatment. Reliability Engineering andSystem Safety,1996,54(2-3):95–111
    Pearl J. Fusion, propagation, and structuring in belief networks. Artificial Intelligence,1986,29(3):241-288
    Pearl, J. and Paz, A., Graphoids: A graph-based logic for reasoning about relevancy relations,Tech.Rep. CSD-850038, Cognitive Systems Laboratory, Computer Science Department,University ofCalifornia, Los Angeles,1985
    Pradhan, B., Lee, S. Regional landslide susceptibility analysis using back-propagation neuralnetwork model at Cameron Highland, Malaysia. Landslides,2010,7(1):13–30
    Quiech, J., Cameron, J. T. Uncertainty representation and propagation in quantified risk assessmentusing fuzzy sets. Journal of Loss Prevention in the Process Industries,1994,7(6):463–473
    Ramoni, M.&Sebastiani, P. Parameter estimation in Bayesian networks from incompletedatabases.Intelligent Data Analysis Journal,1998,2:139–160
    Ramoni, M.&Sebastiani, P. Robust Learning with Missing Data. Machine Learning,2001,45:147-170
    R.O. Duda., P.E. Hart., D.G. Stork. Pattern Classification,2nd edition. New York: Wiley-Interscience,2001
    Renner, G., Ekart, A. Genetic algorithms in computer aided design. Computer-Aided Design,2003,35(8):709-726
    Rickenmann, D. Empirical relationships for debris flows. Natural Hazards,1999,19(1):47-77
    Dawson, C. W. and R. L. Wilby.Hydrological modelling using artificial neural networks. Progress inPhysical Geography,2001,25(1):80-108
    Romang, H., Zappa, M., Hilker, N., Gerber, M., et al. IFKIS-Hydro: an early warning andinformation system for floods and debris flows. Natural Hazards,2011,56(2):509-527
    Rupke, J., Cammeraat, E., Seijmonsbergen, A.C., Vanwesten, C.J. Engineering geomorphology ofthe Widentobel Catchment. Gallen: Appenzell and Sankt-Gallen,1988
    S.S. Rao. Engineering Optimization Theory and Practice,3rd edition. New York: John Wiley,1996.903-906
    Santoso, A. M., K.-K. Phoon, et al. Effects of soil spatial variability on rainfall-induced landslides.Computers&Structures,2011,89(11-12):893-900
    Schittenkopf, C., Deco, G.., Brauer, W. Two strategies to avoid overfitting in feedforwardnetworks.Neural Networks,1997,10(3):505-516
    Schwarz, G. Estimating the dimension of a model. The Annals of Statistics,1978,6:461–464
    Shucheng, Z, Nanyang, Y. Early Warning System to Debris Flow. Journal of Mountain Science,2010,28(3):379-384
    Singer D. A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets and Systems,1990,34(2):145-155
    Song, Y Q, Gong J H, Gao S, et al. Susceptibility assessment of earthquake-induced landslides usingBayesian network: A case study in Beichuan, China. Computers&Geosciences,2011,42:189-199
    Stone, M. Cross-validatory choice and assessment of statistical predictions. Journal of the RoyalStatistical Society: Series B (Methodological),1974,111–147
    Suresh PV, Babar AK, Raj W. Uncertainty in fault tree analysis: A fuzzy approach. Fuzzy Sets andSystems,1996,83(2):135-141
    Swingler, K. Applying Neural Networks: A Practical Guide. Academic Press, New York.
    Switzerland-a geomorphological inventory system applied to geotechnical appraisal of slopestability. Engineering Geology,1996,26:33–68
    T.Onisawa.Fuzzy concepts in human reliability. in: M.M. Gupta, T.Yamakawa (Eds.). Fuzzy Logic inKnowledge-Based System, Decision and Control. New York: North Holland,1988
    T.Y. Chou, T.C. Lei, S. Wan, L.S. Yang, Spatial knowledge database as applied to the detection ofchange in urban land use, International Journal of Remote Sensing,2005,26(14):3047–3068
    Tian-Shy Liou, Wang, M.-J.J. Ranking fuzzy numbers with integral value. Fuzzy sets and systems,1992,50(3):247-255
    Tsaparas, I., H. Rahardjo, et al. Controlling parameters for rainfall-induced landslides. Computersand Geotechnics,2002,29(1):1-27
    Umit C, Benjamin R, Kyle M, et al. Development of a code-agnostic computational infrastructurefor the dynamic generation of accident progression event trees. Reliability Engineering andSystem Safety,2010,95(3):278-294
    Vahidnia, M. H., A. A. Alesheikh., et al. A GIS-based neuro-fuzzy procedure for integratingknowledge and data in landslide susceptibility mapping.Computers&Geosciences,2010,36(9):1101-1114
    Van Westen, C.J., Rengers, N., Terlien, et al. Prediction of the occurrence of slope instabilityphenomenal through GIS-based hazard zonation. Geologische Rundschau,1997,86:404–414
    Vesely W.E.Reliability quantification techniques used in the Rasmussen study, Reliability and FaultTree Analysis.Theoretical and Applied Aspects of System Reliability and System SafetyAssessment@,SIAM,Philadelphia,1975,775-803
    Walczak S, Cerpa N. Heuristic principles for the design of artificial neural networks. Informationand Software Technology,1999,41(2):107-117
    Wan, S.,&Lei, T. C. A knowledge-based decision support system to analyze the debris-flowproblems at Chen-Yu-Lan River, Taiwan. Knowledge-Based Systems,2009,22(8):580-588
    Wang,X.M., Wang,Y.H. Combination of simulated annealing algorithm and genetic algorithm.Chinese journal of computers,1997,20(4):381-384
    Wiley TJ. Relationship between rainfall and debris flows in western Oregon. Oregon Geol,2000,62(2):27–43
    Witten, I H, Frank, E. Data Mining: Practical Machine Learning Tools and Techniques.San Francisco: Morgan Kaufmann Publishers Inc,2011
    Xu, W.B., Yu, W.J., Zhang, G.P. Prediction method of debris flow by logistic model with two types ofrainfall: a case study in the Sichuan, China. Natural Hazards,2012,62(2):733-744
    Yang, H., R. F. Adler, et al. Flood and landslide applications of near real-time satellite rainfallproducts. Natural Hazards,2007,43(2):285-294
    Yi, Jian qiang., Wang, Qian., Zhao, Dongbin. BP neural network prediction-based variable-periodsampling approach for networked control systems. Applied Mathematics and Computation,2007,185(2):976-988
    Yu, F.-C., C.-Y. Chen, et al. A web-based decision support system for slopeland hazard warning.Environmental Monitoring and Assessment,2007,127(1-3):419-428
    Zadeh, L. Fuzzy sets. Information and Control,1965,8:338–353
    Zhang Hui, Liu Xiangnan. Local search for learning algorithm in adaptive fuzzy inference system.Proceedings-20129th International Conference on Fuzzy Systems and Knowledge Discovery,FSKD2012. United States:IEEE Computer Society,2012.93-96
    Zhang Hui, Liu Xiangnan,Cai Erli,et al. Integration of dynamic rainfall data with environmentalfactors to forecast debris flow using an improved GMDH model.Computers&Geosciences,2013,56:23-31.http://dx.doi.org/10.1016/j.cageo.2013.02.003
    Zhou, J., Wang, L., Xie, B., Fei, S.,&Wang, X. A study on the early-warning technique concerningdebris flow disasters. Journal of Geographical Sciences,2002,12(3):363-370
    Zhu, B. He., C.Z, Panos L., Li, X.Y. A GMDH-based fuzzy modeling approach for constructing TSmodel. Fuzzy Sets and Systems,2012,189:19–29
    鲍其云,张一祥,王永,等.浙江省临安市小流域泥石流与降雨关系分析.科技通报,2012,28(5):44-50
    蔡文.可拓集合和不相容问题.科学探索学报,1983,1:83-97
    蔡文.物元模型及其应用.北京:科学技术文献出版社,1994
    蔡文.可拓论及其应用.科学通报,1999,44(7):673-682
    陈百炼.降水诱发地质灾害的气象预警方法研究.贵州气象,2002,26(4):4-7
    陈刚,何政伟,杨洋,等.计算机应用研究,2009,26(1):241-243
    陈洪,陈森发.基于遗传算法的GMDH网络模型及其应用.数据采集与处理,2009,24(6):820-824
    陈剑,杨志法,刘衡秋.滑坡的易滑度分区及其概率预报模式.岩石力学与工程学报,2005,24(13):2392-2396
    陈杰,崔鹏,韦方强,等.基于模糊关系理论的冰川泥石流活动性评价方法.水土保持研究,2003,10(2):1-5
    陈森发.复杂系统建模理论与方法.南京:东南大学出版社,2005
    丛威青,潘懋,任群智,等.泥石流灾害多元信息耦合预警系统建设及其应用.北京大学学报(自然科学版),2006,42(4):446-450
    丁继新,杨志法,尚彦军,等.区域泥石流灾害的定量风险分析.岩土力学,2006,27(7):1071-1078
    方兴,刘章军.基于模糊概率的区域泥石流危险性评价.灾害学,2010,25(S0):232-235
    郭嘉.几种德尔菲法的派生形式.预测园地,1985,3:53-54
    黄翔.对E (U)代数性质的探讨.见:蔡文主编.从物元分析到可拓学(论文集).北京:科学技术文献出版社,1995.131-135
    解家毕,孙东亚.事件树法原理及其在堤坝风险分析中的应用.中国水利水电科学研究院学报,2006,4(2):133-137
    金朝光,林焰,纪卓尚.基于模糊集理论事件树分析方法在风险分析中应用.大连理工大学学报,2003,43(1):97-100
    金鑫.鞍山市岫岩县泥石流危险性评价研究:[硕士学位论文].吉林:吉林大学,2011
    匡乐红,刘宝琛,姚京成.基于模糊可拓方法的泥石流危险度区划研究.灾害学,2006,21(1):68-72
    匡乐红.区域暴雨泥石流预测预报方法研究:[博士学位论文].湖南:中南大学,2006
    李娜,赵然杭,付海军.基于模糊数的事件树法在大坝风险分析中的应用研究.中国农村水利水电,2009,10:135-137
    刘传正.区域滑坡泥石流灾害预警理论与方法研究.水文地质工程地质,2004,3:1-6
    刘丽,王士革.云南昭通滑坡泥石流危险度模糊综合评判.山地研究,1995,13(4):261-266
    刘希林.区域泥石流风险评价研究.自然灾害学报,2000,9(1):54-61
    刘希林,赵源,李秀珍,等.四川德昌县典型泥石流灾害风险评价.自然灾害学报,2006,15(1):11-17
    刘勇,康立山,陈毓屏.非数值并行算法(第二册)遗传算法[M].北京:科学出版社,2003
    孟凡奇.基于GIS的泥石流预测预报:[博士学位论文].吉林:吉林大学,2011
    彭军龙,张学民.灾害气候环境下道路交通安全动态趋势预警分析方法.系统工程,29(4):2011
    唐川,朱大奎.基于GIS技术的泥石流风险评价研究.地理科学,2002,22(3):299-304
    陶云,唐川,段旭.云南滑坡泥石流灾害及其与降水特征的关系.自然灾害学报,2009,18(1):180-186
    田尊华,赵龙,贾焰.基于可拓学的行为模型验证.计算机仿真,2009,21(16):4931-4933
    王学武,石豫川,黄润秋,等.多级模糊综合评判方法在泥石流评价中的应用.灾害学,2004,19(2):1-6
    王雪梅,王义和.模拟退火算法与遗传算法的结合.计算机学报,1997,20(4):381-384
    吴耿峰,彭虎,储阅春,等.具有混沌特征的GMDH网络在降雨量预测中的应用.小型微型计算机系统,2000,21(2):135-137
    汪茜.吉林省磐石市泥石流灾害预测研究:[硕士学位论文].吉林:吉林大学,2006
    杨春燕,蔡文.可拓学论文的发表情况、存在问题及建议.数学的实践与认识,2010,40(4):211-216
    杨珺珺.事件树分析法评估建筑物地震灾害风险.自然灾害学报,2008,17(4):147-151
    叶玮琼.基于可拓学的仿人控制及应用研究:[博士学位论文].广州:广东工业大学,2011
    庄建奇,崔鹏.基于BP神经网络泥石流沟发育阶段的判定——以成昆铁路四川段和昆东铁路为例.长江流域资源与环境,2009,18(9):849-856
    张桂荣,殷坤龙,刘礼领,等.基于WEBGIS和实时降雨信息的区域地质灾害预警预报系统.岩土力学,2005,26(8):1312-1317
    张国平,徐晶,毕宝贵.滑坡泥石流灾害与若干自然地理因子的关系分析.见:中国地理学,2006年学术年会
    张国平,徐晶,毕宝贵.滑坡和泥石流灾害与环境因子的关系.应用生态学报,2009,20(3):653-658
    张慧,刘湘南.基于模拟退火遗传算法的GMDH网络模型.华中师范大学学报(自然科学版),2013,47(2):162-166
    张汉雄.人为泥石流灾害严重等级的定量模糊综合评判.自然灾害学报,1996,5(3):60-69
    张丽萍,唐克丽.矿山泥石流成灾度模糊综合评价-以神府东胜矿区为例.山地学报,2002,20(2):212-217
    张玉成,杨光华,张玉兴.滑坡的发生与降雨关系的研究.灾害学,2007,22(1):82-85
    章书成,余南阳.泥石流早期警报系统.山地学报,2010,28(3):379-384
    赵衡,宋二祥.诱发区域性滑坡的降雨阈值.吉林大学学报(地球科学版),2011,41(5):1481-1487
    朱华藏,丁伯阳.绪云县泥石流地质灾害与降雨量关系分析.西部探矿工程,2010,3:145-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700