用户名: 密码: 验证码:
注塑制品质量参数在线检测、建模与优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着注塑成型技术的不断完善,人们对注塑成型的了解不断加深,对注塑制品质量的要求也不断提高。然而,在现有工艺和设备条件下,落后的注塑制品检测技术成为提高注塑制品质量的主要阻力。因此,研究快速、准确的注塑制品质量检测相关方法,获取制品的质量信息是解决上述问题的关键。注塑制品在成型过程中,经历诸多复杂的阶段,在不同的阶段,制品的质量受到不同注塑过程参数的影响。因此,研究制品在生产过程中的过程参数与制品质量之间的关系;并利用该关系获取用于生产满足用户设定的制品质量要求的注塑过程参数是提高制品质量的重要保证。基于此,本文针对注塑制品质量参数在线检测、建模以及优化等相关方法展开研究:
     (1)在注塑制品质量参数在线检测方面,本文利用基于机器视觉的检测系统实现对注塑制品图像信息的获取;在此基础上,实现了对注塑制品形状缺陷以及尺寸指标的检测。在形状缺陷检测方面,针对用户对精度要求的不同,分别提出基于面积以及基于差影法的注塑制品形状缺陷检测方法;针对检测过程中注塑制品轮廓提取问题,提出一种改进主动轮廓模型的注塑制品轮廓提取方法,该方法能够有效获取到图像中注塑制品的轮廓信息;对于注塑制品图像配准问题中现有基于虚拟三角形的特征匹配方法存在的问题,提出一种改进的虚拟三角形方法,旨在提高图像配准中特征匹配方法的准确程度。在尺寸指标的检测方面,研究了摄像机针孔模型以及镜头畸变模型;并分别采用具有较强针对性的摄像机标定方法实现了对上述模型的标定;针对标定过程中模板特征点检测问题,提出一种黑白棋盘格角点检测方法,该方法能够自动获取到棋盘格图像中的角点信息。
     (2)在注塑制品质量参数建模方面,本文研究了基于数据驱动的建模方法。针对基于神经网络的建模方法存在的泛化能力较差的问题,提出一种基于神经网络集成的注塑制品质量建模方法,该方法将Bagging方法与负相关学习方法相结合,能够有效提高集成后神经网络的泛化能力:针对基于数据驱动的建模方法建立在大量数据的基础上,而通过实际生产过程产生试验数据的方式存在需要付出较高试验代价的问题,提出一种新的注塑制品质量建模方法,该方法首先利用计算机辅助工程软件提供(?)数据建立基于神经网络集成的模型,在此基础上,结合基于模型迁移的建模方法(?)基本思想建立注塑过程参数与制品质量之间的关系模型,能够有效减少建模过程(?)所付出的试验代价。
     (3)在注塑制品质量参数优化方面,本文研究了应用上述建立的注塑过程参数与制品(?)量之间的关系模型代替实际生产过程解决注塑过程参数优化问题。然而,由于上(?)建模方法在建模过程中考虑到模型的全局准确性,使得利用上述模型所获取到的(?)优注塑过程参数无法在实际应用中满足用户要求。针对这个问题,本文提出采用(?)泛应用于电磁优化问题的空间映射方法优化实际生产过程中的注塑过程参数;并(?)对应用过程中存在的需要付出较高试验代价的问题,提出改进空间映射方法,该(?)法能够有效降低注塑过程参数优化过程中所付出的试验代价。同时,由于注塑制(?)在生产过程中常常受到噪声等因素的影响,因此有必要通过研究鲁棒注塑过程参(?)优化方法来保证注塑制品的合格率。然而,由于现有鲁棒注塑过程参数优化方法(?)在需要付出较高试验代价等问题,因此本文提出一种基于两步法的注塑过程参数(?)化方法,从而有效减少了获取鲁棒注塑过程参数的过程中所付出的试验代价。最后,对本文主要研究工作及取得的研究成果进行了总结,并对文中所涉及的主(?)方法的未来发展进行了展望,提出作者的建议。
Due to the continuously improvements of the injection molding technology, people are more familiar with the injection molding process and require higher quality of injection molding product. On the basis of the current technology and equipment, the laggard inspection technology is the main resistance to improve the quality of injection molding product. Based on a great deal of studies, it can be overcome by using fast and accurate quality inspection methods to obtain the quality information of injection molding product online. During the injection molding process, the product quality is affected by many injection molding parameters. Base on the model between injection molding parameters and product quality, optimized injection molding parameters can be obtained to produce products whose quality satisfy customers'needs. Therefore, the dissertation focuses on researching quality parameter inspection online, modeling and optimization of injection molding product.
     (1) On the research of quality parameter inspection online of injection molding product, shape defect and size index of injection molding product are detected by machine vision inspection system. An area based inspection method and a difference image algorithm based inspection method are proposed for satisfying different requirements of users. An improved active contour model algorithm is proposed to extract contour of injection molding product from its image. An improved virtual triangle method is proposed to improve the accuracy of feature matching in the process of image registration. Pin-hole model and lens distortion model are applied to construct the relation between space coordinates and image coordinates. Robust metric calibration method is applied to calibrate the camera models above. A black and white X-corner detection method is proposed to detect X-corner in chess board image automatically.
     (2) Data based modeling method is studied to construct the relation between injection molding parameters and product quality. A neural network (NN) ensemble approach is proposed to improve the generalization ability of ensemble neural network by combining BAGGING and negative correlation learning algorithm with a selection strategy. Computer aided engineering (CAE) software are applied to generate data for modeling, since high experiment costs are need if the data for modeling are generated by experiments on actual production process. However, CAE software cannot substitute actual production process. In this thesis, a new modeling method is proposed to improve the accuracy of NN ensemble model by assisting only few experiments on actual production process.
     (3) The model obtained by using the proposed modeling method is applied for optimizing injection molding parameters. However, the optimized parameters obtained by using the above model cannot satisfy the requirement of users. In this thesis, a space mapping algorithm is applied to optimize injection molding parameters. An improved space mapping algorithm is proposed to save experiment costs. Meanwhile, since injection molding process is often affected by disturbances, robust injection molding parameters optimization method is studied to guarantee the quality of injection molding product. Since high experiment costs should be paid by using the existing robust parameters optimization method, a two-stage approach for optimizing the robust injection molding parameters is proposed to save experiment costs.
     At the end of the dissertation, the potential further research direction in the area of quality parameter inspection, modeling and optimization of injection molding product is discussed after summarizing the whole work.
引文
1. T. S. Newman, A. K. Jain. A Survey of Automated Visual Inspection[J], Computer Vision and Image Understanding,1995,61(2):231-262.
    2.钟汉如.注塑机控制系统[M].北京:化学工业出版社,2004.
    3.刘来英.注塑成型工艺[M].北京:机械工业出版社,2004.
    4.赵清杰,钱芳,蔡利栋.计算机视觉[M].北京:机械工业出版社,2005.
    5. J. R. Martinez, B. C. Arrue, A. Ollero. Computer vision techniques for forest fire perception[J], Image and Vision Computing,2008,26(4):578-591.
    6. E. N. Malamas. A survey on industrial vision systems, applications and tools[J], Image and Vision Computing,2003,21(2):171-188.
    7. Y. Cheng, M. A. Jafari. Vision-based online process control in manufacturing applications[J], IEEE Transactions on Automation Science and Engineering,2008,5(1): 140-153.
    8.黄正福.面向尺寸检测的机器视觉系统研究[D].杭州:浙江大学,2004.
    9. B. G. Batchilor. Automated visual inspection in industry[J], The Industrial Robot,1978, 5(1):174-176.
    10.罗振璧,郑力,汪劲松,张伯鹏,潘尚峰,唐晓红.机器视觉在尺寸在线检测中的应用[J],机械工程学报,1994,6.
    11.刘济林,阮苏苏,张汝文,顾伟康.基于机器视觉的残肢表面形状测量[J],中国生物医学工程学报,1996,3.
    12. Z. X. Hu, R. Bicker, P. Taylor. Computer vision for shoe upper profile measurement via upper and sole conformal matching[J], Optics and Lasers in Engineering,,2007,45(1): 183-190.
    13. F. Lahajnar. Machine vision system for inspecting electric plates[J], Computer in Industry, 2002,47:113-122.
    14. J. Lassoe. Future vision system for glass works[J], Glass Technology,1997,38(2):43-45.
    15. D. Kosmopoulos. Automated inspection of gaps on the automobile production line through stereo vision and specular reflection[J], Computer in Industry,2001,46:49-63.
    16. J. F. Bremner. Automatic vision inspection system for the inspection of shapes cut in sheet material[J], Pro, On Image Processing,1986:40-43.
    17. R. Mills. Development of a line-scan camera for 2D high accuracy measurement[J], Machine Vision,1991:267-277.
    18.程云勇,张定华,毛海鹏.一种基于工业CT的航空发动机涡轮叶片生产检测系统关键技术研究[C]CMES,2003,27-31.
    19.张少军,苟中魁,李庆利.利用数字图像处理技术测量直齿圆柱齿轮几何尺寸[J],光学精密工程,2004,12(6):619-625.
    20. A. Kumar. Computer vision based fabric defect detection:a survey[J], IEEE Transactions on Industrial Electronics,2008,55(1):348-363.
    21. S. L. Lu, X. M. Zhang, Y. C. Kuang. An integrated inspection method based on machine vision for solder paste depositing[C]. Proceedings of IEEE International Conference on Control and Automation, GuangZhou,2007,137-141.
    22. I. Edinbarough, R. Balderas, S. Bose. A vision and robot based on-line inspection monitoring system for electronic manufacturing[J], Computers in Industry,2005,56(8): 986-996.
    23.左奇,史忠科.基于机器视觉的胶囊完整性检测系统研究[J],西安交通大学学报,2002,36(2):1262-1265.
    24. C. Lu, D. Tsai. Automatic defect inspection for LCDs using singular value decomposition J], The International Journal of Advanced Manufacturing Technology,2005,25(1):53-61.
    25. D. Tsai, C. Hung,. Automatic defect inspection of patterned thin film transistor-liquid crystal display (TFT-LCD) panels using one-dimensional Fourier reconstruction and wavelet decomposition[J], International Journal of Production Research,2005,43(21): 4589-4607.
    26.从家慧,颜云辉,董德威Gabor滤波器在带钢表面缺陷检测中的应用[J],东北大学学报(自然科学版),2010,2.
    27.乐静,郭俊杰,朱虹.基于EMD和Snakes模型信息融合的表面缺陷检测方法[J],仪器仪表学报,2006,12.
    28. X. L. Yu, X. G. Wang, B. Y. Liu. Supervised kernel neighborhood preserving projections for radar target recognition[J], Signal Processing,2008,88(9):2335-2339.
    29.郝麟,冯少彤,聂守平.利用深度和灰度图像实现三维目标的识别与分类[J],光电 子激光,2010,2.
    30. J. G. Cheng, J. Tian. Fingerprint enhancement with dyadic scale-space[J], Pattern Recognition Letters,2004,25(11):1273-1284.
    31. F. Wang, J. D. Wang, C. S. Zhang. Face recognition using spectral features [J], Pattern Recognition Letters,2007,40(10):2786-2797.
    32. J. J. Liu, J. F. Macgregor. Modeling and Optimization of Product Appearance: Application to Injection-Molded Plastic Panels[J], Industrial Engineering and Chemistry Research,2005,44(3):4687-4696.
    33.陈廉清,高立国,史永杰.基于图像识别的微小塑料齿轮检测研究[J],中国机械工程,2007,18(13):1535-1539.
    34.贺秋伟,王龙山,陈向伟.基于计算机视觉的塑料齿轮齿形缺陷检测[J],机床与液压,2008,36(1):126-128.
    35.吕哲.注塑制品视觉检测关键技术研究[D].沈阳:东北大学,2008.
    36.吕哲,王福利,常玉清,刘阳.区域自适应中值滤波器[J],系统仿真学报,2007,19(23):5411-5414.
    37.吕哲,王福利,常玉清,刘阳.一种改进的骨架曲线多边形近似算法[J],自动化学报,2008,34(12):1467-1474.
    38.吕哲,王福利,常玉清.一种改进的数学形态学边缘检测算法[J],计算机工程,2008,34(10):173-175.
    39. J. R. A. Pearson. Mechanical principles of polymer melt processing:Oxford,1966.
    40. M. R. Kamal, S. Kenig. The injection molding of thermoplastics[J], Polym. Eng. Sci., 1972,12:294-308.
    41. J. F. Stevenson. An experimental study and simulation of disk filling by injection molding[J], Soc. Plastic Engrs. Tech,1976,22:282-288.
    42. D. H. Harry, R. G. Parrott. Numerical simulation of injection mold filling[J], Polym. Eng. Sci.,1970,10:209-214.
    43. C. A. Hieber. Coupled-flow-path method for simulation the injection molding filling slage[J], Soc. Plastic Engrs. Tech,1982,28:356-358.
    44. Z. Tadmor, E. Broyer, C. Gutginger. Flow analysis network(FAN)-A method for solving flow problems in polymer processing[J], Polymer Eng. And Sci.,1974,14(3).
    45. C. A. Hieber, S. F. Shen. A finite-element/finite-difference simulation of the injection-molding filling process[J], Journal of Non-Newtonian Fluid Mechanics,1980,7: 1-32.
    46. K. Hasan, E. Tuncay. Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm[J], Int. Adv. Manuf. Technol.,2006, 27:468-472.
    47.王利霞.基于数值模拟的注塑成型工艺优化及制品质量控制研究[D].郑州:郑州大学,2004.
    48. W. C. Chen, P. H. Tai, M. W. Wang, W. J. Deng, C. T. Chen. A neural network-based approach for dynamic quality prediction in a plastic injection molding process[J], Expert Systems with Applications,2008,35:843-849.
    49. C. Y. Shen, L. X. Wang, Q. Li. Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method[J], Journal of Materials Processing Technology,2007,183:412-418.
    50. Y. H. Gao, X. C. Wang. An effective warpage optimization method in injection molding based on the Kriging model[J], Int. J. Adv. Manuf. Technol.,2008,37:953-960.
    51. T. Erzurumlu, B. Ozcelik. Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method[J], Materials and Design,2006, 27:853-861.
    52. H. Oktem, T. Erzurumlu, I. Uzman. Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part[J], Materials and Design,2007,28:1271-1278.
    53.王桂龙,赵国群,李辉平,管延锦.薄壁注塑制品翘曲影响因素分析与工艺优化[J],中国机械工程,2009,20(4):488-492.
    54.王利霞,杨杨,王蓓,申长雨.注塑成型工艺参数对制品体收缩率变化的影响及工艺参数优化[J],高分子科学与工程,2004,20(2):173-176.
    55. B. Ozcelik, T. Erzurumlu. Comparison of the waipage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm[J], Journal of Materials Processing Technology,2006,171(3):437-445.
    56. W. C. Chen. ANN and GA-Based Process Parameter Optimization for MIMO Plastic Injection Molding[C]. International Conference on Machine Learning and Cybernetics, 2007.
    57. M. Kass, A. Witkin, D. Terzopoulos. Snakes:Active contour models[J], International Journal of Computer Vision,1987,1(4):321-331.
    58. A. K. Jain, Y. Zhong, M. P. D. Jolly. Deformable template models:A review[J], Signal Processing,1998,71(2):109-129.
    59. M. Jacob, T. Blu, M. Unser. Efficient energies and algorithms for parametric Snakes[J], IEEE Transactions on Image Processing,2004,,13(9):1231-1244.
    60. B. Li, S. T. Acton. Active contour external force using vector field convolution for image segmentation[J], IEEE Transactions on image processing,2007,8(16):2096-2106.
    61. C. Xu, J. L. Prince. Snakes, shapes, and gradient vector flow[J], IEEE Transactions on Image Processing,1998,7(3):359-369.
    62. M. A. Figueiredo, J. M. N. Leitao. Unsupervised contour representation and estimation using b-splines and a minimum description length criterion[J], IEEE Transactions on Image Processing,2000,6(9):1075-1087.
    63. P. Brigger, J. Hoeg, M. Unser. B-spline snakes:A flexible tool for parametric contour detection[J], IEEE Transactions on Image Processing,2000,9(9):1484-1496.
    64. G. Sapiro. Geometric Partial Differential Equations and Image Analysis[M]. UK: Cambridge University Press,2001.
    65. X. Xie, M. Mirmehdi. RAGS:Reigion-aided geometric snake[J], IEEE Transactions on Image Processing,2004,5(13):640-652.
    66.吴一全,朱兆达.图像处理中阈值选取方法30年[J],数据采集与处理,1993,8(4):268-277.
    67.王福生,齐国清.二值图像中目标物体轮廓的边界跟踪算法[J],大连海事大学学报,2006,32(1):62-64.
    68. L. G. Brown. A survey of image registration techniques[J], ACM Computer Surveys, 1992,24(4):325-376.
    69.温江涛,王伯雄,秦壵.基于局部灰度梯度特征的图像快速配准方法[J],清华大学学报(自然科学版),2009,49(5):57-59.
    70.许俊泽,胡波,林青.对数极坐标变换域下互信息图像配准方法[J],信息与电子工程,2009,7(4):289-293.
    71. J. Chappelow, A. Madabhushi, M. Rosen, J. Tomaszeweski, M. Feldman. A combined feature ensemble based mutual information scheme for robust inter-modal, inter-protocol image registration[C]. Biomedical Imaging:From Nano to Macro,2007. ISBI 2007.4th IEEE International Symposium on,2007,644-647.
    72. H. Gang, Y. Zhang. Combination of feature-based and area-based image registration technique for high resolution remote sensing image[C]. Geoscience and Remote Sensing Symposium,2007. IGARSS 2007. IEEE International,2007,377-380.
    73. L. Shu, A. C. S. Chung. Feature Based Nonrigid Brain MR Image Registration With Symmetric Alpha Stable Filters[J], Medical Imaging, IEEE Transactions on,2010,29(1): 106-119.
    74. H. P. C. Moravec. Towards automatic visual obstacle avoidance[C]. In 5th International Joint Conference on Artificial Intelligence,1977.
    75. C. Harris, S. Mike. A Combined Corner And Edge Detector[C]. Processing of the fourth Alvery vision conference,1988,147-151.
    76.赵杰,马海超.基于SUSAN分层快速角点检测的改进算法[J],电子设计工程,2010,18(1):5-7.
    77. D. M. Tsai, H. T. Hou, H. J. Su. Boundary-based corner detection using eigenvalues of covariance matrices[J], Pattern Recognition Letters,1999,20:31-40.
    78. F. Mokhtarian, R. Suomela. Robust image corner detection through curvature scale space[J], IEEE Transactions on Pattern analysis and Machine Intelligence,1998,20: 1376-1381.
    79. X. C. He, N. H. C. Yung. Curvature scale space corner detector with adaptive threshold and dynamic region of support[C]. IEEE Proceedings of thel7th International Conference on Pattern Recognition,2004,791-794.
    80. X. H. Zhang, H. X. Wang, A. W. B. Smith, X. Ling. Corner detection based on gradient correlation matrices of planar curves[J], Pattern Recognition,2010,43(4):1207-1223.
    81. A. Johnson, M. Hebert. Object recognition by matching oriented points[C]. Proc. Conf. CVPR,1997,684-689.
    82. A. Baumberg. Reliable feature matching across widely separated views[C]. Proc. CVPR, 2000,774-781.
    83.徐小明.图像的特征提取与描述的研究[D].重庆:重庆大学,2007.
    84.吕金建,文贡坚,李德仁,高峰.一种基于角点特征的图像自动配准方法[J],遥感技术与应用.2007,22(3):438-441.
    85.吕金建,文贡坚,李德仁,高峰.一种基于虚拟三角形的图像自动配准方法[J],信号处理,2008,24(5):737-741.
    86. M. Y. Shih, A. Shishido, I. C. Khoo. All-optical Image Processing by Means of a Photosensitive Non-linear Liquid-crystal Film:Edge Enhancement and Image Addition Subtraction[J], Optics Letters,2001,26(15):1140-1142.
    87.张黄群,于盛林,白银刚.形态学图像去噪中结构元素选取原则[J],数据采集与处理,2008,23:81-83.
    88.王兆旭、刘守义.动目标识别过程中的二值图像噪声消除[J],微计算机信息,2008,24(6-3):300-301.
    89.张广军.机器视觉[M].北京,2005.
    90. Z. J. Hou, J. Zhao, L. G. Gu, G. L. Lv. Automatic Calibration Method Based on Traditional Camera Calibration Approach[C]. Information Science and Engineering (ICISE),20091st International Conference on,2009,1168-1171.
    91. Y. Nomura, M. Sagara, H. Naruse,A. Ide. Simple calibration algorithm for high-distortion lens camera[J], Pattern Analysis and Machine Intelligence, IEEE Transactions on,1992, 14(11):1095-1099.
    92. C. Harris, M. Stephens. A Combined Corner And Edge Detector[C]. Processing of the fourth Alvery vision conference,1988,147-151.
    93.胡海峰,熊银根.一种基于两次Radon变换检测棋盘格方格点的新算法[J],中山大学学报,2003,42(2):23-26.
    94. I. Sobel. Camera models and machine perception[J], Stanford AI Memo,1971,121(5).
    95. J. P. Seung, B. A. Muhammad, S. H. Rhee. Image Corner Detection Using Radon Transform[J], Lecture Notes in Computer Science,2004:948-955.
    96. G. Zhang, J. He, X. Yang. Calibrating camera radial distortion with cross-ratio invariability[J], Optics and Laser Technology,2003,35:457-461.
    97. M. Ahmed, A. Farag. Non-metric calibration of camera lens distortion:differential methods and robustest imation[J], IEEE Transactions on image processing,2005,14: 1215-1230.
    98. R. V. Carlos, S. Salmeron, A. Jose. Robust metric calibration of non-linear camera lens distortion[J], Pattern Recognition,2010,43(4):1688-1699.
    99. P. K. D. V. Yarlagadda. Development of an integrated neural network system for prediction of process parameters in metal injection moulding[J],J. Materials Processing Technology,2002.130-131:315-320.
    100.S. Hashem. Optimal linear combinations of neural networks[J], Neural Networks,1997, 10:599-614.
    101.R. E. Schapire. The strength of weak learn ability[J], Machine Learning,1990,5: 197-227.
    102.L. Breiman. Bagging predictors[J], Machine Learning,1996,24:123-140.
    103.P. Kraipeerapun, C. F. Chun, W. Brown, and K. W. Wong. Neural Network Ensembles using Interval Neutrosophic Sets and Bagging for Mineral Prospectivity Prediction and Quantification of Uncertainty[C]. IEEE Conference on Cybernetics and Intelligent Systems,2006,1-6.
    104.R. Q. Chen, and S. J. Yu. An Improved Bagging Neural Network Ensemble Algorithm and Its Application[A]. Int. Conference on Natural Computation,2007,730-734.
    105.H. X. Tian, and Z. Z. Mao. An ensemble ELM based on modified AdaBoost.RT algorithm for Predicting the temperature of molten steel in ladle furnace[J], IEEE Trans. Automation Science and Engineering,2010,7(1):73-80.
    106.Y. Liu, and X. Yao. Ensemble learning via negative correlation[J], Neural Networks, 1999,12:1399-1404.
    107.S. H. C. Zeke, and K. Nik. Fast neural network ensemble learning via negative-correlation data correction[J], IEEE Trans. Neural Networks,2005,16(6): 1707-1710.
    108.Y. Chauvin. Generalization performance of overtrained backpropagation networks[J], Proc. EUROSZP Workshop,1990,2:46-55.
    109.Md. M. Islam, X. Yao, M. S. Nirjon, Md. A. Islam, and K. Murase. Bagging and boosting negatively correlated neural networks[J], IEEE Trans. System, Man, and Cybernetics-part b:Cybernetics,2008,38(3):771-784.
    110. J. D. Lu, F. R. Gao. Process Modeling Based on Process Similarity[J], Ind. Eng. Chem. Res.,2008,47:1967-1974.
    111.S. L. Chiu. Fuzzy model identification based on cluster estimation[J], J. Intell. Fuzzy Syst.,1994,2:267-278.
    112.J. W. Bandler, et al. Space mapping technique for electromagnetic optimization[J], IEEE Transactions on Microwave Theory and Techniques,1994,42(12):2536-2544.
    113. J. W. Bandler, Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen, and J. Sondergaard. Space mapping:The state of the art[J], IEEE Transactions on Microwave Theory and Techniques,2004,52(1):337-360.
    114. J. W. Bandler, et al. Electromagnetic opdmization exploiting aggressive space mapping[J], IEEE Transactions on Microwave Theory and Techniques,1995,43(12): 2874-2882.
    115.J. W. Bandler, R. M. Biernacki, S. H. Chen, and D. Omeragic. Design optimization of interdigital filters using aggressive space mapping and decomposition[J], IEEE Trans. Microwave Theory Tech.,1997,45:761-769.
    116.J. W. Bandler, Q. S. Cheng, D. H. Gebre-Mariam, K. Madsen, F. Pedersen, J. Sondergaard. EM-based surrogate modeling and design exploiting implicit, frequency and output space mappings[C]. Microwave Symposium Digest,2003 IEEE MTT-S International,2003,1003-1006 vol.2.
    117.J. W. Bandler, Q. S. Cheng, N. K. Nikolova, and M. A. Ismail. Implicit space mapping optimization exploiting preassigned parameters[J], IEEE Trans. Microwave Theory Tech., 2004,52:378-385.
    118.S. Koziel, J. W. Bandler, K. Madsen. Towards a rigorous formulation of the space mapping technique for engineering design[C]. Circuits and Systems,2005. ISCAS 2005. IEEE International Symposium on,2005,5605-5608 Vol.6.
    119.F. Ding, Y. S. Xiao. A finite-data-window least squares algorithm with a forgetting factor for dynamical modeling[J], Applied Mathematics and Computation,2007,186:184-192.
    120.M. S. Huang, and T.Y. Lin. An innovative regression model-based searching method for setting the robust injection molding parameters[J], Journal of Materials Processing Technology,2008,198:436-444.
    121. J. A. Nelder, R. Mead.. A Simplex method for function minimization[J], Comput. J., 1965,7:308-313.
    122. A. Kamoun, M. Jaziri, and M. Chaabouni.. The use of the simplex method and its derivatives to the on-line optimization of the parameters of an injection moulding process[J], Chemometrics and Intelligent Laboratory Systems,2009,96(2):117-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700