用户名: 密码: 验证码:
高分子共混物的微结构调控及其热膨胀行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,降低热膨胀系数一直是高分子材料实现以塑代钢、钢塑结合的一个重要难题。传统的解决方案是添加热膨胀系数较低的第二组分,如碳酸钙、滑石粉、玻璃纤维等,但是填充大量的无机粒子不仅降低材料的加工流动性,而且严重损害材料的冲击韧性。我们试图突破这种简单的加和复合概念,利用橡胶的高膨胀和低模量特性,通过成型加工过程中层状分散结构的多尺度、多层次形态控制,实现橡胶增韧高分子合金的低膨胀化目的。以填充橡胶来降低热膨胀系数是层状共连续高分子合金体现高度协同效应的一个新现象,其研究成果有可能突破橡胶增韧高分子材料的尺寸稳定性限制,为制备新型的高性能塑料车身板提供科学依据。
     本论文主要包括五个部分,在研究分子链结构、结晶行为、纳米粒子渗流网络对单组分或多组分聚合物热膨胀行为影响后,重点考察了成型加工条件、橡胶种类、界面相容性以及纳米粒子定向聚集对层状共连续结构细微化、稳定化和连续化的调控作用,分析了层状结构与热膨胀行为的内在联系。主要研究内容和结果总结如下:
     首先考察了分子主链结构和结晶性能对单一高分子材料热膨胀行为的影响。通过热膨胀测试,差示扫描量热分析(DSC)、广角X射线衍射(WAXD)与傅里叶变换红外光谱(FTIR)等方法研究了四种脂肪族聚酰胺玻璃化转变温度(Tg),结晶行为以及氢键强度对热膨胀行为的影响,探索了影响脂肪族聚酰胺热膨胀的本质。结果表明,聚酰胺的热膨胀系数随Tg的升高而减小,尽管结晶部分的热膨胀系数低于无定形部分,但是结晶熔融温度和结晶度均与热膨胀系数没有对应关系。进一步研究发现,脂肪族聚酰胺的Tg取决于分子链中亚甲基/酰胺基(CH2/CONH)比例,CH2/CONH比例越低,分子链间的氢键密度和氢键强度越大,导致材料的热膨胀系数显著减小。由此可见,聚酰胺分子链间的氢键密度和氢键强度随温度升高衰减的程度是影响其热膨胀行为的关键因素。
     其次,深入研究了碳纳米碳管(CNT)含量和分散状态对生物基尼龙热膨胀行为的影响。随着CNT含量的提高,纳米复合物的热膨胀系数明显降低。研究发现,不同的尼龙基体均存在一个临界含量,当CNT含量超过该临界值时,热膨胀系数的减低幅度明显大于理论计算值,说明CNT网络的形成可能导致热膨胀系数进一步降低。为了验证这一设想,考察了等温热处理促进CNT网络的形成以及CNT在两种不相容生物基尼龙共混物中定向聚集等实验方法对热膨胀系数的影响。结果表明,热处理可以有效降低材料的热膨胀系数;加入少量CNT就可以促进PA56和PA510共混体系形成共连续结构,同时双渗流效应有效地降低了形成CNT网络的临界值,发现在PA56/CNT共混组分的相反转点同样出现了热膨胀系数突降现象。这些研究结果清楚地阐明了CNT网络的形成可以抑制复合材料热膨胀。
     第四章重点研究了橡胶增韧聚乳酸体系层状共连续结构的成型加工技术以及层状结构演变对热膨胀行为的影响。考察了橡胶分子结构、界面相容性和粘度比与层状共连续结构的形成及其细微化、稳定化和连续化的关联性,分析了微层结构(厚度和连续度)和结晶取向状态对材料热膨胀系数的影响。结果表明,在PLA/乙烯-丙烯酸乙酯-甲基丙烯酸缩水甘油酯三嵌段共聚物(EGMA)合金中,由于EGMA具有较低粘度,并且与PLA具有良好的界面相容性,在注塑成型的PLA/EGMA(60/40)合金中能获得精细的层状共连续结构,而这种结构能显著降低PLA共混物沿流动方向(FD)和截面方向(TD)上的线热膨胀系数(CLTE)。进一步研究发现,在注塑成型的PLA/橡胶合金中,层状共连续结构的微层厚度对其CLTE和冲击强度具有非常重要的影响。微层越薄,CLTE越低,同时缺口冲击强度越高。实验证明,PLA结晶取向不是CLTE降低的主要原因,而层状共连续结构才是降低CLTE的主要驱动力。
     第五章探索了纳米粒子调控橡胶增韧体系层状共连续结构的可行性,目的是进一步提高层状结构细微化、稳定化和连续化,在降低热膨胀系数的同时改善材料的耐热性。本章的研究对象是有机粘土填充尼龙6/苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(PA6/m-SEBS=60/40)。研究发现,无论怎样改变共混顺序,有机粘土都定向偏聚在PA6相中,并且促使PA6相由海岛结构向共连续结构转变;但共混顺序不同,粘土的分散状态和剥离程度不一样,导致共混体系在随后注塑成型过程中形成的层状结构有很大差异。粘土分散状态好,剥离程度高则容易促进共混体系形成精细的层状共连续结构。相比较PA6/m-SEBS共混物,加入少量有机粘土可以进一步降低热膨胀系数,同时在维持材料高冲击韧性的前提下显著改善耐热性能和力学强度。
     最后巧妙地利用相同组分不同微结构的橡胶增韧高分子合金具有迥然不同的热膨胀系数这一特性,设计和制备了一种新型的光(热)致变形材料。基本原理是:将黑色具有海岛结构的PP/EOR(70/30)合金薄层(高热膨胀系数)在注塑成型过程中与白色具有层状共连续结构的PP/EOR(70/30)合金薄层(低热膨胀系数)紧密粘结,构成吸光系数不同、黑白相间的复合体。由于这两种材料巨大的线膨胀系数差异,该复合体具有很高的光致变形效果。当光照10s后,复合体从平直状态转为弯曲状态,120s后,变形率最大能达到28%并保持稳定。移去光源,迅速恢复平直状态。为了提高复合体中两种材料的粘结强度,我们还研究了相同材料不同注塑温度以及不同材料相同注塑温度下的界面结构对界面粘结强度的影响,并且借助形貌观察和力学性能测试,确立了界面微观结构形态和粘结强度的有效表征方法。对于同组分(PP)不同注塑温度体系,研究发现无论一次注塑温度为何值,提高二次成型温度可以有效促进分子链在界面的扩散,提高界面粘结强度;而对于不同材料相同注塑温度体系,聚合物间相容性与界面弯曲强度直接相关。
As is known to all, one of barriers in replacing steel with polymer material or using them together is the mismatch of thermal expansion of both materials and molding shrinkage of polymer. Traditional way was to add inorganic filler with low thermal expansion, such as calcium carbonate, talc, glass fiber etc. bringing about the problem of damaging materials' processability and toughness. We are trying to break these simple addition concepts, obtain the multi-scale and multi-level layered structure by the use of high inflation and low modulus characteristics of the rubber and achieve the purpose of low thermal expansion of rubber toughened polymer alloys. The additions of rubber to polymer reduced the coefficient of thermal expansion is a new phenomenon in polymer alloys with co-continuous microlayer structure which reflects the high degree of synergies, the results of this research may exceed the stability limit of the size of the rubber-toughened polymer materials, and provide a scientific basis for the preparation of new high-performance plastic body panels.
     This thesis includes five parts, firstly, the influence of molecular chain structure, crystallization behavior and nanoparticles percolation network on the thermal expansion behavior of single-component or multi-component polymer blends was studied. Then, the influence of the processing conditions, rubber type, interfacial compatibility and selectively dispersed of nanoparticles on the fine, stable and continuous of the co-continuous microlayer structure was also researched, the internal relation of the co-continuous microlayer structure and the thermal expansion behavior was simultaneously discussed. The main contents and results are summarized as follows:
     First, we investigated the effect of the molecular main chain structure and crystallization properties on the thermal expansion behavior of a single polymer material. The influences of the glass transition temperature (Tg), the crystallization behavior and the hydrogen bond strength on the thermal expansion behavior of four types of aliphatic polyamides were studied in details by thermal expansion test, differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR). DSC and X-ray diffraction results showed that the coefficient of linear thermal expamsion (CLTE) of crystalline part is lower than that of amorphous part for different types of aliphatic polyamides. However, the correspondence between the melting temperature, crystallinity and the aliphatic polyamide on CLTE is not clear. Further study found that the Tg of the aliphatic polyamide depends on the methylene/amide groups (CH2/CONH) ratio of the molecular chain, the lower CH2/CONH ratio, the higher density and strength of hydrogen bonds, and shows a much lower CLTE. Thus, the density and strength of hydrogen bonds are the key factors influencing the thermal expansion behavior of aliphatic polyamides.
     Second, the influence of the CNT content and dispersion state on the thermal expansion behavior of bio-nylons was investigated in details. The CLTE of nanocomposites significantly decreased with the increase content of CNT. It found that there exists a critical content of CNT in the different nylon matrix. The CLTE of nanocomposites was further reduced compared with the theoretical value when the CNT content exceeded the threshold value. It indicated that the formation of CNT network was another important factor influencing the CLTE. To verify this idea, the influence of a CNT network inducing by the isothermal treatment and selectively dispersed CNT in the immiscible PA/PA blends on the thermal expansion behavior was deeply studied. The results show that the CLTE of the materials was effectively reduced by the isothermal treatment; It is demonstrated that, under the direction of CNT self-networking, the CNT-localized polymer domains tend to fuse together into co-continuous organization with little phase coarsening in PA56/PA510blend, while the critical value of the CNT to form the CNT network was effectively reduced due to the double percolation effect. We also found that the CLTE of the nanocomposites significantly decreased at the phase inversion point of PA56/PA510blend. These findings clearly demonstrated that the formation of CNT network can inhibit the thermal expansion behavior of the nanocomposites.
     The forth chapter focuses on the processing technology of the co-continuous micolayer structure of a rubber toughened PLA system, and the relationship between the evolution of co-continuous micolayer structure and the thermal expansion behavior. The influence of the rubber structure, interfacial compatibility and viscosity ratio on the formation of fine, stable and continuous co-continuous micolayer structure was investigated. The impact of microlayer structure (thickness and continuity) and the crystal orientation on the CLTE of PLA blends was also further discussed. Electron microscopy (SEM and TEM) revealed that a fine co-continuous microlayer structure is formed in the injection-molded PLA/EGMA alloys. This leads to the polymer alloy owning super toughness and a very low thermal expansion both in the flow direction and in the transverse direction. The microlayer thickness of rubber in PLA blends, which can be tuned by viscosity ratio and compatibility of rubber to PLA, was found to play a key role in reducing the thermal expansion and achieving super toughness of the blends. Furthermore, it was testified that the significant reduction in the CLTE in PLA/rubber systems is mainly due to the formation of the co-continuous microlayer structure but not the crystal orientation.
     Fifth, we studied the effects of dispersion state, the extent of exfoliation and content of the nanoparticles on the morphology, thermal expansion behaviors and heat resistance properties of PA6/m-SEBS(60/40) blend which explored a new way to improve the stability of co-continuous microlayer structure. The preferential dispersion of organoclay in PA6domains was observed, irrespective of varying the blending sequence, and to promote the PA6phase evolve from the sea-island structure to co-continuous structure. It was shown that PA6/m-SEBS/organoclay nanocomposites prepared by different blending sequences exhibited distinct microstructure and thermal expansion properties owing to a different extent of the exfoliation of the organoclay. A significant reduction in the CLTE along the flow direction of the injection-molded PA6/m-SEBS/organoclay ternary nanocopomsites could be achieved for those having a very fine co-continuous nanolayer structure. The well dispersion and exfoliation of the organoclay in the matrix is benefit to improve the formation of fine co-continuous nanolayer structure. In contrast to the binary PA6/m-SEBS blends, very low concentrations of nanometric-sized organoclay in the ternary system can lead to remarkable improvements in mechanical strength and heat resistance without loss of toughness.
     Finally, the feature of the rubber-toughened polymer alloy having a quite different CLTE with different microstructure at the same composition was used to design and prepare a new type of light (heat) deformable material.The different CLTE of polymer materials with different pigments were combined. Thus, the straight laminated material was bent toward the side with low thermal expansion in the light irradiation which due to the different thermal expansion coefficient of polymer materials. The resulting complex responded rapidly when gave light contact for only10s, and eventually reached stability when the sample achieves the deformation rate of28%. Removal of light, the resulting complex temperature drops, and the state will recover from the bending into a flat state. Furthermore, in order to improve the interfacial bonding strength of the resulting complex, the interfacial structure and bonding strength at the condition of the same components with different injection temperature or different components with the same injection temperature by means of SEM and mechanical tests during multi-gate injection molding were studied. For the same component (PP) and different injection temperature system, the interfacial bonding strength was significantly improved by the increase of the second injection-molding temperature which was ascribed to effectively promote the diffusion of molecular chains at the interface; for the different component and the same injection temperature system, the compatibility between polymers played an important role on enhancing the interfacial bonding strength.
引文
[1]Wu G, Nishida K, Takagi K, Sano H, Yui H. Rubber as additives to lower thermal expansion coefficient of plastics:1. Morphology and properties[J]. Polymer 2004,45 (9): 3085-3090
    [2]Wu G, Xu H, Zhou T. Morphology evolution, crystalline orientation, and thermal expansion of PA6/SEBS blends with nanolayer networks[J]. Polymer 2010,51 (15): 3560-3567
    [3]Ono M, Washiyama J, Nakajima K, Nishi T. Anisotropic thermal expansion in polypropylene/poly (ethylene-co-octene) binary blends:influence of arrays of elastomer domains[J]. Polymer 2005,46 (13):4899-4908
    [4]Boyer R, Spencer R. Thermal Expansion and Second-Order Transition Effects in High Polymers:PART II. Theory[J]. Journal of applied physics 1945,16 (10):594-607
    [5]Choy C, Chen F, Young K. Negative thermal expansion in oriented crystalline polymers[J]. Journal of Polymer Science:Polymer Physics Edition 1981,19 (2): 335-352
    [6]Itoh T. Change with Temperature in Crystal Structures of Nylons 6,66 and 610[J], Japanese Journal of Applied Physics 1976,15 (12):2295-2306
    [7]Choy C, Chen F, Ong E. Anistropic thermal expansion of oriented crystalline polymers[J]. Polymer 1979,20 (10):1191-1198
    [8]Choy C, Leung W, Ong E. Thermal expansivity of oriented nylon-6 and nylon-6,6[J]. Polymer 1985,26 (6):884-888
    [9]Davis G, Eby R, Colson J. Thermal expansion of polyethylene unit cell:effect of lamella thickness[J]. Journal of applied physics 1970,41 (11):4316-4326
    [10]Kardos J, Raisoni J, Piccarolo S, Halpin J. Prediction and measurement of the thermal expansion coefficient of crystalline polymers[J]. Polymer Engineering & Science 1979, 19(14):1000-1009
    [11]Porter RS, Weeks NE, Capiati NJ, Krzewki RJ. Concerning the negative thermal expansion for extended chain polyethylene[J]. Journal of Thermal Analysis and Calorimetry 1975,8 (3):547-555
    [12]Mason P. Thermal expansion and viscoelasticity of rubber in relation to crosslinking and molecular packing[J]. Polymer 1964,5:625-635
    [13]Fahmy A, Ragai A. Thermal Expansion of Graphite-Epoxy Composites[J], Journal of Applied Physics 1970,41 (13):5112-5115
    [14]Fahmy A, Ragai A. Thermal-Expansion Behavior of Two-Phase Solids[J]. Journal of Applied Physics 1970,41 (13):5108-5111
    [15]Feltham S, Yates B, Martin R. The thermal expansion of particulate-reinforced composites[J]. Journal of Materials Science 1982,17 (8):2309-2323
    [16]Kaji M, Nakahara K, Ogami K, Endo T. Synthesis of a novel epoxy resin containing pyrene moiety and thermal properties of its cured polymer with phenol novolac[J]. Journal of Applied Polymer Science 2000,75 (4):528-535
    [17]Lee H, Fasulo PD, Rodgers WR, Paul D. TPO based nanocomposites. Part 2. Thermal expansion behavior[J]. Polymer 2006,47 (10):3528-3539
    [18]Nandan B, Lal B, Pandey K, Alam S, Kandpal L, Mathur G. Miscibility behaviour of poly (ether ether ketone)/poly (ether ketone) blends-thermal and morphological studies[J]. European Polymer Journal 2001,37 (10):2147-2151
    [19]Rao YQ, Blanton TN. Polymer nanocomposites with a low thermal expansion coefficient[J]. Macromolecules 2008,41 (3):935-941
    [20]Yoon P, Fornes T, Paul D. Thermal expansion behavior of nylon 6 nanocomposites[J]. Polymer 2002,43 (25):6727-6741
    [21]Holbery J, Houston D. Natural-fiber-reinforced polymer composites in automotive applications[J]. Journal of the Minerals, Metals and Materials Society 2006,58 (11): 80-86
    [22]Cai C, Shen Z, Zheng Y, Xing Y, Ma S. A novel technology for powder dispersion and surface modification[J]. Journal of Materials Science 2007,42 (11):3745-3753
    [23]徐庆玉,范和平.低热膨胀聚酰亚胺研究进展[J].高分子材料科学与工程2002,18(6):29-31
    [24]Kerner E. The elastic and thermo-elastic properties of composite media[J]. Proceedings of the physical society. Section B 1956,69:808
    [25]Wang T, Kwei T. Effect of induced thermal stresses on the coefficients of thermal expansion and densities of filled polymers[J]. Journal of Polymer Science Part A: Polymer Physics 1969,7 (5):889-896
    [26]Chow T. Effect of particle shape at finite concentration on the elastic moduli of filled polymers[J]. Journal of Polymer Science:Polymer Physics Edition 1978,16 (6): 959-965
    [27]Schapery R. Thermal expansion coefficients of composite materials based on energy principles[J]. Journal of Composite Materials 1968,2 (3):380-404
    [28]Rosen BW, Hashin Z. Effective thermal expansion coefficients and specific heats of composite materials[J]. International Journal of Engineering Science 1970,8 (2): 157-173
    [29]Sideridis E. Thermal expansion coefficients of fiber composites defined by the concept of the interphase[J]. Composites science and technology 1994,51 (3):301-317
    [30]Karadeniz ZH, Kumlutas D. A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials[J]. Composite structures 2007,78 (1):1-10
    [31]Komarov PV, Chiu YT, Chen SM, Reineker P. Investigation of Thermal Expansion of Polyimide/SiO2 Nanocomposites by Molecular Dynamics Simulations[J]. Macromolecular Theory and Simulations 2010,19(1):64-73
    [32]Park Y, Veytsman B, Coleman M, Painter P. The miscibility of hydrogen-bonded polymer blends:Two self-associating polymers[J]. Macromolecules 2005,38 (9): 3703-3707
    [33]Tucker P, Barlow J, Paul D. Thermal, mechanical, and morphological analyses of poly (2, 6-dimethyl-1,4-phenylene oxide)/styrene-butadiene-styrene copolymer blends[J]. Macromolecules 1988,21 (6):1678-1685
    [34]Qiu Z, Ikehara T, Nishi T. Miscibility and crystallization in crystalline/crystalline blends of poly (butylene succinate)/poly (ethylene oxide)[J]. Polymer 2003,44 (9):2799-2806
    [35]Qiu Z, Ikehara T, Nishi T. Miscibility and crystallization of poly (ethylene oxide) and poly (ε-caprolactone) blends[J]. Polymer 2003,44 (10):3101-3106
    [36]Liu A, Liau W, Chiu W. Studies on blends of binary crystalline polymers.1. Miscibility and crystallization behavior in poly (butylene terephthalate)/polyarylates based on Bisphenol Aisophthalate[J]. Macromolecules 1998,31 (19):6593-6599
    [37]Ellis TS. Miscibility and immiscibility of polyamide blends[J]. Macromolecules 1989,22 (2):742-754
    [38]Ellis TS. Miscibility of polyamide blends:effects of configuration [J]. Polymer 1995,36 (20):3919-3926
    [39]Zang G, Watanabe T, Yoshida H, Kawai T. Phase transition behavior of nylon-66, nylon-48, and blends[J]. Polymer journal 2003,35 (2):173-177
    [40]Wildes G, Keskkula H, Paul D. Fracture characterization of PC/ABS blends:effect of reactive compatibilization, ABS type and rubber concentration[J]. Polymer 1999,40 (25):7089-7107
    [41]Potschke P, Paul D. Formation of co-continuous structures in melt-mixed immiscible polymer blends[J]. Journal of Macromolecular Science, Part C:Polymer Reviews 2003, 43 (1):87-141
    [42]Lee HM, Park OO. Rheology and dynamics of immiscible polymer blends[J]. Journal of rheology 1994,38 (5):1405-1426
    [43]Roland C, Bouhm G. Shear-induced coalescence in two-phase polymeric systems. I. Determination from small-angle neutron scattering measurements [J]. Journal of Polymer Science:Polymer Physics Edition 1984,22 (1):79-93
    [44]益小苏,沈烈.原位复合高分子材料的成纤过程与增强机制[J].材料研究学报1996,10(4):337-346
    [45]金日光,崔秀国.温度,剪切速率对HDPE/PET层状分散合金形态的影响[J].材料研究学报1999,13(5):539-542
    [46]Babinec S, Mussell RD, Lundgard R, Cieslinski R. Electroactive thermoplastics[J]. Advanced Materials 2000,12(23):1823-1834
    [47]Okamoto S, Ishida H. Nondestructive evaluation of the three-dimensional morphology of polyethylene/polystyrene blends by thermal conductivity [J]. Macromolecules 2001,34 (21):7392-7402
    [48]Pernot H, Baumert M. Design and properties of co-continuous nanostructured polymers by reactive blending[J]. Nature Materials 2002,1(1):54-58
    [49]Roy X, Sarazin P, Favis BD. Ultraporous Nanosheath Materials by Layer-by-Layer Deposition onto Co-continuous Polymer-Blend Templates[J]. Advanced Materials 2006, 18(8):1015-1019
    [50]Borggreve R, Gaymans R, Schuijer J, Housz J. Brittle-tough transition in nylon-rubber blends:effect of rubber concentration and particle size[J]. Polymer 1987,28 (9): 1489-1496
    [51]Borggreve R, Gaymans R Impact behaviour of nylon-rubber blends:4. Effect of the coupling agent, maleic anhydride[J]. Polymer 1989,30 (1):63-70
    [52]Borggreve R, Gaymans R, Schuijer J. Impact behaviour of nylon-rubber blends:5. Influence of the mechanical properties of the elastomer[J]. Polymer 1989,30 (1):71-77
    [53]Borggreve R, Gaymans R, Eichenwald H. Impact behaviour of nylon-rubber blends:6. Influence of structure on voiding processes; toughening mechanism[J]. Polymer 1989, 30(1):78-83
    [54]蔡富,冯连芳,王嘉骏,顾雪萍PP/PP-g-PA6/PA6的相容性和低温冲击性能[J].现代塑料加工应用2010,22(4):1-4
    [55]赵丽,杨红梅,上官勇刚,张发饶,郑强HDPE/PA6反应增容体系的形态演化与黏弹行为[J].高分子学报2008,(9):849-854
    [56]Filippi S, Minkova L, Dintcheva N, Narducci P, Magagnini P. Comparative study of different maleic anhydride grafted compatibilizer precursors towards LDPE/PA6 blends: Morphology and mechanical properties [J]. Polymer 2005,46 (19):8054-8061
    [57]Jiang C, Filippi S, Magagnini P. Reactive compatibilizer precursors for LDPE/PA6 blends. Ⅱ:maleic anhydride grafted polyethylenes[J]. Polymer 2003,44 (8):2411-2422
    [58]Filippi S, Yordanov H, Minkova L, Polacco G, Talarico M. Reactive Compatibilizer Precursors for LDPE/PA6 Blends[J]. Macromolecular Materials and Engineering 2004, 289 (6):512-523
    [59]Karger-Kocsis J, Kallo A, Kuleznev V. Phase structure of impact-modified polypropylene blends[J]. Polymer 1984,25 (2):279-286
    [60]Min K, White JL, Fellers JF. High density polyethylene/polystyrene blends:phase distribution morphology, rheological measurements, extrusion, and melt spinning behavior[J]. Journal of Applied Polymer Science 1984,29 (6):2117-2142
    [61]Favis B. The effect of processing parameters on the morphology of an immiscible binary blend[J]. Journal of Applied Polymer Science 1990,39 (2):285-300
    [62]Sundararaj U, Macosko C. Drop breakup and coalescence in polymer blends:the effects of concentration and compatibilization[J]. Macromolecules 1995,28 (8):2647-2657
    [63]Kiss G. In situ composites:blends of isotropic polymers and thermotropic liquid crystalline polymers[J]. Polymer Engineering & Science 1987,27 (6):410-423
    [64]Weiss R, Huh W, Nicolais L. Novel reinforced polymers based on blends of polystyrene and a thermotropic liquid crystalline polymer[J]. Polymer Engineering & Science 1987, 27 (9):684-691
    [65]Fakirov S, Kamo H, Evstatiev M, Friedrich K. Microfibrillar reinforced composites from PET/LDPE blends:Morphology and mechanical properties [J]. Journal of Macromolecular Science, Part B 2005,43 (4):775-789
    [66]Friedrich K, Evstatiev M, Fakirov S, Evstatiev O, Ishii M, Harrass M. Microfibrillar reinforced composites from PET/PP blends:processing, morphology and mechanical properties[J]. Composites science and technology 2005,65 (1):107-116
    [67]Li ZM, Li L, Shen KZ, Yang MB, Huang R In situ poly (ethylene terephthalate) microfibers-and shear-induced non-isothermal crystallization of isotactic polypropylene by on-line small angle X-ray scattering[J]. Polymer 2005,46 (14):5358-5367
    [68]Li ZM, Li LB, Shen KZ, Yang MB, Huang R. In-situ microfibrillar PET/iPP blend via slit die extrusion, hot stretching, and quenching:Influence of hot stretch ratio on morphology, crystallization, and crystal structure of iPP at a fixed PET concentration[J]. Journal of Polymer Science Part B:Polymer Physics 2004,42 (22):4095-4106
    [69]Li ZM, Li LB, Shen KZ, Yang W, Huang R, Yang MB. Transcrystalline morphology of an in situ microfibrillar poly (ethylene terephthalate)/poly (propylene) blend fabricated through a slit extrusion hot stretching-quenching process [J]. Macromolecular rapid communications 2004,25 (4):553-558
    [70]Li ZM, Lu A, Lu ZY, Shen KZ, Li LB, Yang MB. In-Situ Microfibrillar PET/iPP Blend via a Slit Die Extrusion, Hot Stretching and Quenching Process:Influences of PET Concentration on Morphology and Crystallization of iPP at a Fixed Hot Stretching Ratio[J]. Journal of Macromolecular Science, Part B:Physics 2005,44 (2):203-216
    [71]Li ZM, Yang MB, Lu A, Feng JM, Huang R Tensile properties of poly (ethylene terephthalate) and polyethylene in-situ microfiber reinforced composite formed via slit die extrusion and hot-stretching[J]. Materials letters 2002,56 (5):756-762
    [72]Li ZM, Yang MB, Xie BH, Feng JM, Huang R. In-situ microfiber reinforced composite based on PET and PE via slit die extrusion and hot stretching:influences of hot stretching ratio on morphology and tensile properties at a fixed composition[J]. Polymer Engineering & Science 2003,43 (3):615-628
    [73]La Mantia FP, Valenza A. Shear flow characterization of blends containing liquid crystal polymers[J]. Makromolekulare Chemie. Macromolecular Symposia 1992, 56(1):151-159
    [74]Kim JY, Kim SH. Influence of viscosity ratio on processing and morphology of thermotropic liquid crystal polymer-reinforced poly (ethylene 2,6-naphthalate) blends[J]. Polymer international 2006,55 (4):449-455
    [75]Pesneau I, Kadi AA, Bousmina M, Cassagnau P, Michel A. From polymer blends to in situ polymer/polymer composites:Morphology control and mechanical properties [J]. Polymer Engineering & Science 2002,42 (10):1990-2004
    [76]Xu HS, Li ZM, Pan JL, Yang MB, Huang R. Morphology and rheological behaviors of polycarbonate/high density polyethylene in situ microfibrillar blends[J]. Macromolecular Materials and Engineering 2004,289 (12):1087-1095
    [77]Xu HS, Li ZM, Yang S, Pan JL, Yang W, Yang MB. Rheological behavior comparison between PET/HDPE and PC/HDPE microfibrillar blends[J]. Polymer Engineering & Science 2005,45(9):1231-1238
    [78]O'Donnell HJ, Baird DG. In situ reinforcement of polypropylene with liquid-crystalline polymers:effect of maleic anhydride-grafted polypropylene[J]. Polymer 1995,36 (16): 3113-3126
    [79]Datta A, Baird DG. Compatibilization of thermoplastic composites based on blends of polypropylene with two liquid crystalline polymers[J]. Polymer 1995,36 (3):505-514
    [80]Seo Y, Hong SM, Kim KU. Structure development during flow of ternary blends of a polyamide (nylon 46), a thermotropic liquid crystalline polymer (poly (ester amide)), and a thermoplastic elastomer (EPDM)[J]. Macromolecules 1997,30 (10):2978-2988
    [81]Seo Y, Hwang SS, Hong SM, Park TS, Kim KU. Effect of die geometry on the structural development of a thermotropic liquid crystalline polymer in a thermoplastic elastomer matrix[J]. Polymer Engineering & Science 1995,35 (20):1621-1628
    [82]黎学东,陈呜才.拉伸作用对PP/PA6原位成纤复合体系的影响[J].高分子材料科学与工程1999,15(004):78-80
    [83]Xu XB, Li ZM, Dai K, Yang MB. Anomalous attenuation of the positive temperature coefficient of resistivity in a carbon-black-filled polymer composite with electrically conductive in situ microfibrils[J]. Applied physics letters 2006,89 (3):032105-032108
    [84]Xu XB, Li ZM, Yang MB, Jiang S, Huang R. The role of the surface microstructure of the microfibrils in an electrically conductive microfibrillar carbon black/poly (ethylene terephthalate)/polyethylene composite[J]. Carbon 2005,43 (7):1479-1487
    [85]Li ZM, Xu XB, Lu A, Shen KZ, Huang R, Yang MB. Carbon black/poly (ethylene terephthalate)/polyethylene composite with electrically conductive in situ microfiber network[J]. Carbon 2004,42 (2):428-432
    [86]Yesil S, Koysuren O, Bayram G. Effect of microfiber reinforcement on the morphology, electrical, and mechanical properties of the polyethylene/poly (ethylene terephthalate)/carbon nanotube composites[J]. Polymer Engineering & Science 2010,50 (11):2093-2105
    [87]Goitisolo I, Eguiazabal J, Nazabal J. Stiffening of poly (ethylene terephthalate) by means of polyamide 6 nanocomposite fibers produced during processing[J]. Composites science and technology 2010,70 (5):873-878
    [88]Goitisolo I, Eguiazabal J, Nazabal J. Structure and properties of an hybrid system based on bisphenol A polycarbonate modified by A polyamide 6/organoclay nanocomposite[J]. European Polymer Journal 2008,44 (7):1978-1987
    [89]Goitisolo I, Eguiazabal JI, Nazabal J. Stiffening of Polycarbonate by Addition of a Highly Dispersed and Fibrillated Amorphous Polyamide-Based Nanocomposite [J]. Macromolecular Materials and Engineering 2010,295 (3):233-242
    [90]乔放,朱晓光,关淑敏.聚烯烃/聚酰胺合金层状结构形态控制研究进展[J].高分子通报1996,2:77-83
    [91]张洪斌,周持兴.高分子共混物分散相的剪切形变与仿射形变[J].上海交通大学学报1997,31(7):107-110
    [92]张洪斌,周持兴.两相不相容粘弹性聚合物体系中分散相最大增宽形变的预测[J]. 化学世界1998,3:161
    [93]崔秀国,金日光,朴哲.HDPE/PET层状分散合金亚微相态与相容性关系[J].材料研究学报1998,12(2):221-224
    [94]舒文艺.层状分散型聚合物合金的开发及应用[J].塑料1993,22(6):10-15
    [95]Utracki L. Polymer blends and alloys for molding applications [J]. Polymer-plastics technology and engineering 1984,22 (1):27-54
    [96]陈永芬,向明,孙杨宣.HDPE/EVOH高阻隔性材料的形态结构[J].塑料工业1999,27(3):40-41
    [97]李锦春,丁永红.HDPE/MPA共混物层状结构及阻隔性能研究[J].高分子材料科学与工程1999,15(004):166-168
    [98]邓剑如,盛亚俊.HDPE/PA6层状共混阻隔材料的研制[J].湖南大学学报:自然科学版2005,32(005):79-82
    [99]李震,宋文韬.HDPE/PA6层状阻隔材料的形态与性能研究[J].高分子材料科学与工程2001,17(003):153-156
    [100]Samios CK, Kalfoglou NK. Compatibilization of poly (ethylene-co-vinyl alcohol)(EVOH) and EVOH/HDPE blends with ionomers. Structure and properties[J]. Polymer 1998,39 (16):3863-3870
    [101]丁运生,张志成.γ-射线辐照法制备HDPE/PA6辐隔性材料及其性能研究[J].功能高分子学报2002,15(2):137-141
    [102]Karger-Kocsis J. Stick-slip type crack growth during instrumented high-speed impact of HDPE and HDPE/Selar(?) discontinuous laminar microlayer composites[J]. Journal of Macromolecular Science, Part B 2001,40 (3-4):343-353
    [103]Li JC, Ding YH, Liu CL. Laminar structures and barrier properties for HDPE/mPA blends[J]. Polymeric Materials Science & Cngineering 1999,4:167-169
    [104]Kamal M, Sourour S. Kinetics and thermal characterization of thermoset cure[J]. Polymer Engineering & Science 1973,13 (1):59-64
    [105]Rodriguez-Veloz O, Kamal M. The development of laminar morphology in a co-rotating twin screw extruder[J]. Advances in Polymer Technology 1999,18 (2): 89-108
    [106]Kim SW, Chun YH. Barrier property by controlled laminar morphology of LLDPE/EVOH blends[J]. Korean Journal of Chemical Engineering 1999,16 (4): 511-517
    [107]戴莹莹,李姜,郭少云.两步法制备HDPE/PA6复合材料的结构和阻隔性能[J].高分子材料科学与工程2011,27(8):106-108
    [108]Wang C, Su JX, Li J, Yang H, Zhang Q, Du RN, Fu Q. Phase morphology and toughening mechanism of polyamide 6/EPDM-MA blends obtained via dynamic packing injection molding[J]. Polymer 2006,47 (9):3197-3206
    [109]Wang H, Keum JK, Hiltner A, Baer E. Confined Crystallization of PEO in Nanolayered Films Impacting Structure and Oxygen Permeability [J]. Macromolecules 2009,42 (18): 7055-7066
    [110]Liu RYF, Jin Y, Hiltner A, Baer E. Probing Nanoscale Polymer Interactions by Forced-Assembly [J]. Macro molecular rapid communications 2003,24 (16):943-948
    [111]Langhe DS, Hiltner A, Baer E. Melt crystallization of Syndiotactic Polypropylene in Nanolayer Confinement Impacting Structure[J]. Polymer 2011,52(25):5879-5889
    [112]Gupta M, Lin Y, Deans T, Baer E, Hiltner A, Schiraldi DA. Structure and Gas Barrier Properties of Poly (propylene-graft-maleic anhydride)/Phosphate Glass Composites Prepared by Microlayer Coextrusion[J]. Macromolecules 2010,43 (9):4230-4239
    [113]Ponting M, Burt TM, Korley LSTJ, Andrews J, Hiltner A, Baer E. Gradient Multilayer Films by Forced Assembly Coextrusion[J]. Industrial & Engineering Chemistry Research 2010,49(23):12111-12118
    [114]Ranade AP, Hiltner A, Baer E, Bland DG. Structure-property relationships in coextruded foam/film microlayers[J]. Journal of cellular plastics 2004,40 (6):497
    [115]Ranade AP. Structure property relationships in various layered polymeric systems[M]. Case Western Reserve University,2007.
    [116]Wang H, Keum JK, Hiltner A, Baer E, Freeman B, Rozanski A, Galeski A. Confined crystallization of polyethylene oxide in nanolayer assemblies [J]. Science 2009,323 (5915):757-760
    [117]Willemse R Co-continuous morphologies in polymer blends:stability [J]. Polymer 1999, 40 (8):2175-2178
    [118]Willemse R, Ramaker E, Van Dam J, De Boer AP. Coarsening in molten quiescent polymer blends:The role of the initial morphology [J]. Polymer Engineering & Science 1999,39(9):1717-1725
    [119]Willemse R, Posthuma de Boer A, Van Dam J, Gotsis A. Co-continuous morphologies in polymer blends:a new model[J]. Polymer 1998,39 (24):5879-5887
    [120]Scott CE, Macosko CW. Morphology development during the initial stages of polymer-polymer blending[J]. Polymer 1995,36 (3):461-470
    [121]Walheim S, Boltau M, Mlynek J, Krausch G, Steiner U. Structure formation via polymer demixing in spin-cast films[J]. Macromolecules 1997,30 (17):4995-5003
    [122]Sundararaj U, Macosko C, Rolando R, Chan H. Morphology development in polymer blends[J]. Polymer Engineering & Science 1992,32 (24):1814-1823
    [123]Sundararaj U, Dori Y, Macosko CW. Sheet formation in immiscible polymer blends: model experiments on initial blend morphology[J]. Polymer 1995,36 (10):1957-1968
    [124]Lee JK, Han CD. Evolution of polymer blend morphology during compounding in a twin-screw extruder[J]. Polymer 2000,41 (5):1799-1815
    [125]Paul DR, Barlow JW. Polymer blends[J]. Journal of Macromolecular Science, Reviews in Macromolecular Chemistry 1980,18 (1):109-168
    [126]Jordhamo GM, Manson JA, Sperling LH. Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks[J]. Polymer Engineering & Science 1986,26 (8):517-524
    [127]Avgeropoulos GN, Weissert FC, Biddison PH, Bohm GGA. Heterogeneous blends of polymers. Rheology and morphology[J]. Rubber Chemistry and Technology 1976,49: 93-104
    [128]Sarazin P, Favis BD. Morphology control in co-continuous poly (L-lactide)/polystyrene blends:A route towards highly structured and interconnected porosity in poly (L-lactide) materials[J]. Biomacromolecules 2003,4 (6):1669-1679
    [129]Omonov TS, Harrats C, Groeninckx G. Co-continuous and encapsulated three phase morphologies in uncompatibilized and reactively compatibilized polyamide 6/polypropylene/polystyrene ternary blends using two reactive precursors [J]. Polymer 2005,46(26):12322-12336
    [130]Li J, Favis B. Characterizing co-continuous high density polyethylene/polystyrene blends[J]. Polymer 2001,42 (11):5047-5053
    [131]Omonov T, Harrats C, Groeninckx G, Moldenaers P. Anisotropy and instability of the co-continuous phase morphology in uncompatibilized and reactively compatibilized polypropylene/polystyrene blends[J]. Polymer 2007,48 (18):5289-5302
    [132]Majumdar B, Keskkula H, Paul D. Morphology of nylon 6/ABS blends compatibilized by a styrene/maleic anhydride copolymer[J]. Polymer 1994,35 (15):3164-3172
    [133]Postema AR, Fennis PJ. Preparation and properties of self-reinforced polypropylene/liquid crystalline polymer blends [J]. Polymer 1997,38 (22):5557-5564
    [134]Veenstra H, Lent BJJ, Dam J, Posthuma BA. Co-continuous morphologies in polymer blends with SEBS block copolymers[J]. Polymer 1999,40 (24):6661-6672
    [135]Marin N, Favis BD. Co-continuous morphology development in partially miscible PMMA/PC blends[J]. Polymer 2002,43 (17):4723-4731
    [136]Calberg C, Blacher S, Gubbels F, Brouers F, Deltour R, Jerome R. Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends[J]. Journal of Physics D:Applied Physics 1999,32(13):1517-1525
    [137]Dedecker K, Groeninckx G. Reactive compatibilisation of A/(B/C) polymer blends. Part 1. Investigation of the phase morphology development and stabilisation[J]. Polymer 1998,39 (21):4985-4992
    [138]Macosko CW, Jeon HK, Hoye TR Reactions at polymer-polymer interfaces for blend compatibilization[J]. Progress in Polymer Science 2005,30 (8):939-947
    [139]Jeon HK, Zhang J, Macosko CW. Premade vs. reactively formed compatibilizers for PMMA/PS meltblends[J]. Polymer 2005,46 (26):12422-12429
    [140]Filippone G, Dintcheva NT, La Mantia F, Acierno D. Using organoclay to promote morphology refinement and co-continuity in high-density polyethylene/polyamide 6 blends-Effect of filler content and polymer matrix composition[J]. Polymer 2010,51 (17):3956-3965
    [141]Li Y, Shimizu H. Co-continuous Polyamide 6 (PA6)/Acrylonitrile-Butadiene-Styrene (ABS) Nanocomposites[J]. Macromolecular rapid communications 2005,26 (9): 710-715
    [142]Wu G, Li B, Jiang J. Carbon black self-networking induced co-continuity of immiscible polymer blends[J]. Polymer 2010,51 (9):2077-2083
    [143]Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL. Selective localization of carbon black in immiscible polymer blends:a useful tool to design electrical conductive composites[J]. Macromolecules 1994,27 (7): 1972-1974
    [144]Gubbels F, Blacher S, Vanlathem E, Jerome R, Deltour R, Brouers F, Teyssie P. Design of electrical composites:determining the role of the morphology on the electrical properties of carbon black filled polymer blends[J]. Macromolecules 1995,28 (5): 1559-1566
    [145]Steinmann S, Gronski W, Friedrich C. Influence of selective filling on rheological properties and phase inversion of two-phase polymer blends[J]. Polymer 2002,43 (16): 4467-4477
    [146]Zou H, Zhang Q, Tan H, Wang K, Du R, Fu Q. Clay locked phase morphology in the PPS/PA66/clay blends during compounding in an internal mixer[J]. Polymer 2006,47 (1):6-11
    [147]Moghbelli E, Sue HJ, Jain S. Stabilization and control of phase morphology of PA/SAN blends via incorporation of exfoliated clay[J]. Polymer 2010,51 (18):4231-4237
    [148]Khatua B, Lee DJ, Kim HY, Kim JK Effect of Organoclay Platelets on Morphology of Nylon-6 and Poly (ethylene-r an-propylene) Rubber Blends[J]. Macromolecules 2004, 37 (7):2454-2459
    [149]Tiwari RR, Paul D. Effect of organoclay on the morphology, phase stability and mechanical properties of polypropylene/polystyrene blends[J]. Polymer 2011, 52(4):1141-1154
    [150]Kelnar I, Khunova V, Kotek J, Kapralkova L. Effect of clay treatment on structure and mechanical behavior of elastomer-containing polyamide 6 nanocomposite[J]. Polymer 2007,48 (18):5332-5339
    [151]Kontopoulou M, Liu Y, Austin JR, Parent JS. The dynamics of montmorillonite clay dispersion and morphology development in immiscible ethylene-propylene rubber/ polypropylene blends[J]. Polymer 2007,48 (15):4520-4528
    [152]Gelfer M, Song HH, Liu L, Hsiao BS, Chu B, Rafailovich M, Si M, Zaitsev V. Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly (methyl methacrylate) blends[J]. Journal of Polymer Science Part B:Polymer Physics 2003,41 (1):44-54
    [153]Ahn YC, Paul D. Rubber toughening of nylon 6 nanocomposites[J]. Polymer 2006,47 (8):2830-2838
    [154]Gonzalez I, Eguiazabal J, Nazabal J. Rubber-toughened polyamide 6/clay nanocomposites[J]. Composites science and technology 2006,66 (11-12):1833-1843
    [155]Ono M, Nakajima K, Misawa M, Nishi T. Real-time morphological observation of isotactic polypropylene and poly (ethylene-co-octene) rubber blend during temperature change[J]. Journal of Applied Polymer Science 2008,108 (3):1857-1864
    [156]Ono M, Nakajima K, Nishi T. Study on thermal expansion in injection-molded isotactic polypropylene and thermoplastic elastomer blends[J]. Journal of Applied Polymer Science 2008,107 (5):2930-2943
    [157]Ono M, Nakajima K, Nishi T, Kawasaki KJ. Filler-less PP/elastomer blends with extremely low thermal expansion[J]. Kautschuk und Gummi Kunststoffe 2006,59 (11): 574-581
    [158]Halpin J. Stiffness and expansion estimates for oriented short fiber composites[J]. Journal of Composite Materials 1969,3 (4):732-734
    [159]周霆,吴国章.层状共连续PA6/SEBS体系的结晶取向及其低膨胀化机理研究[J].高分子学报2008,9:893-898
    [160]Zeng H, Gao C, Wang Y, Watts PCP, Kong H, Cui X, Yan D. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior[J]. Polymer 2006,47 (1):113-122
    [161]金国珍,工程塑料:化学工业出版社[M].2001
    [162]Morales-Gamez L, Soto D, Franco L, Puiggali J. Brill transition and melt crystallization of nylon 56:An odd-even polyamide with two hydrogen-bonding directions [J]. Polymer 2010,51 (24):5788-5798
    [163]Villasenor P, Franco L, Subirana J, Puiggali J. On the crystal structure of odd-even nylons:Polymorphism of nylon 5,10[J]. Journal of Polymer Science Part B:Polymer Physics 1999,37 (17):2383-2395
    [164]Schroeder L, Cooper S. Hydrogen bonding in polyamides[J]. Journal of applied physics 1976,47 (10):4310-4317
    [165]殷敬华,莫志深.现代高分子物理学:科学出版社[M].2001
    [166]Ramesh C. New crystalline transitions in nylons 4,6,6,10, and 6,12 using high temperature X-ray diffraction studies[J]. Macromolecules 1999,32 (11):'3721-3726
    [167]Skrovanek DJ, Painter PC, Coleman MM. Hydrogen bonding in polymers.2. Infrared temperature studies of nylon 11[J]. Macromolecules 1986,19(3):699-705
    [168]Kim JA, Seong DG, Kang TJ, Youn JR. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites [J]. Carbon 2006,44 (10): 1898-1905
    [169]Tang W, Santare MH, Advani SG. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films[J]. Carbon 2003,41 (14):2779-2785
    [170]Cong H, Zhang J, Radosz M, Shen Y. Carbon nanotube composite membranes of brominated poly (2,6-diphenyl-1,4-phenylene oxide) for gas separation[J]. Journal of membrane science 2007,294 (1-2):178-185
    [171]Castro M, Lu J, Bruzaud S, Kumar B, Feller JF. Carbon nanotubes/poly (s-caprolactone) composite vapour sensors[J]. Carbon 2009,47 (8):1930-1942
    [172]Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RA. Deformation-morphology correlations in electrically conductive carbon nanotube-thermcplastic polyurethane nanocomposites[J]. Polymer 2005,46 (12):4405-4420
    [173]Byrne MT, Gun'ko YK. Recent advances in research on carbon nanotube-polymer composites[J]. Advanced Materials 2010,22 (15):1672-1688
    [174]Tai N, Yeh M, Liu J. Enhancement of the Mechanical Properties of Carbon Nanotube/Phenolic Composites using a Carbon Nanotube Network as the Reiforcement[J]. Carbon 2004,42:2735-2777
    [175]Alig I, Skipa T, Lellinger D, Potschke P. Destruction and formation of a carbon nanotube network in polymer melts:rheology and conductivity spectroscopy[J]. Polymer 2008,49 (16):3524-3532
    [176]Song YS, Youn JR. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites[J]. Carbon 2005,43 (7):1378-1385
    [177]Choi E, Brooks J, Eaton D, Al-Haik M, Hussaini M, Garmestani H, Li D, Dahmen K. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing[J]. Journal of Applied Physics 2003,94: 6034-6039
    [178]Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes [J]. Advanced Functional Materials 2007,17 (16):3207-3215
    [179]Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. Organic functionalization of carbon nanotubes[J]. Journal of the American chemical society 2002, 124 (5):760-761
    [180]Ramasubramaniam R, Chen J, Liu H. Homogeneous carbon nanotube/polymer composites for electrical applications[J]. Applied physics letters 2003,83 (14): 2928-2930
    [181]Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes[J]. Progress in Polymer Science 2010,35 (7):837-867
    [182]Jiang H, Liu B, Huang Y, Hwang K. Thermal expansion of single wall carbon nanotubes[J]. Journal of engineering materials and technology 2004,126:265
    [183]Wu G, Asai S, Zhang C, Miura T, Sumita M. A delay of percolation time in carbon-black-filled conductive polymer composites[J]. Journal of Applied Physics 2000, 88(3):1480-1487
    [184]Konishi Y, Cakmak M. Nanoparticle induced network self-assembly in polymer-carbon black composites[J]. Polymer 2006,47 (15):5371-5391
    [185]Cipriano BH, Kota AK, Gershon AL, Laskowski CJ, Kashiwagi T, Bruck HA, Raghavan SR. Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing[J]. Polymer 2008,49 (22):4846-4851
    [186]Wu G, Asai S, Sumita M. Carbon black as a self-diagnosing probe to trace polymer dynamics in highly filled compositions [J]. Macromolecules 2002,35 (5):1708-1713
    [187]Fragiadakis D, Pissis P, Bokobza L. Glass transition and molecular dynamics in poly (dimethylsiloxane)/silicananocomposites[J]. Polymer 2005,46 (16):6001-6008
    [188]Bokobza L. Multiwall carbon nanotube elastomeric composites:A review[J]. Polymer 2007,48 (17):4907-4920
    [189]Walia P, Gupta R, Kiang C. Influence of interchange reactions on the crystallization and melting behavior of nylon 6,6 blended with other nylons[J]. Polymer Engineering & Science 1999,39 (12):2431-2444
    [190]Ellis T. On the Miscibility of Blends of Nylon 66 and Poly (hexamethylene isophthalamide), Nylon 6I[J]. Macromolecules 1996,29 (5):1836-1838
    [191]Besco S, Lorenzetti A, Roso M, Modesti M. PA66/PA12/clay based nanocomposites: morphology and physical properties[J]. Polymers for Advanced Technologies 2011, 22(12):1563-1571
    [192]Besco S, Lorenzetti A, Roso M, Modesti M. PA66/PA12/clay based nanocomposites: structure and thermal properties[J]. Polymers for Advanced Technologies 2011,22(11): 1518-1528
    [193]Penning J, Manley RSJ. Miscible blends of two crystalline polymers.1. Phase behavior and miscibility in blends of poly (vinylidene fluoride) and poly (1,4-butylene adipate)[J]. Macromolecules 1996,29 (1):77-83
    [194]Penning J, Manley RSJ. Miscible blends of two crystalline polymers.2. Crystallization kinetics and morphology in blends of poly (vinylidene fluoride) and poly (1,4-butylene adipate)[J]. Macromolecules 1996,29 (1):84-90
    [195]Holliday L, Robinson J. Review:The thermal expansion of composites based on polymers[J]. Journal of Materials Science 1973,8 (3):301-311
    [196]Lombardo N. Effect of an inhomogeneous interphase on the thermal expansion coefficient of a particulate composite[J]. Composites science and technology 2005,65 (14):2118-2128
    [197]Engberg K, Stromberg O, Martinsson J, Gedde U. Thermal and mechanical properties of injection molded liquid crystalline polymer/amorphous polymer blends [J]. Polymer Engineering & Science 1994,34 (17):1336-1345
    [198]Engberg K, Ekblad M, Werner PE, Gedde U. Thermal and mechanical properties of injection molded blends of a liquid crystalline polymer and poly (butylene terephthalate)[J]. Polymer Engineering & Science 1994,34 (17):1346-1353
    [199]Kim DH, Fasulo PD, Rodgers WR, Paul D. Effect of the ratio of maleated polypropylene to organoclay on the structure and properties of TPO-based nanocomposites. Part II:Thermal expansion behavior[J]. Polymer 2008,49 (10): 2492-2506
    [200]Oyama HT. Super-tough poly (lactic acid) materials:Reactive blending with ethylene copolymer[J]. Polymer 2009,50 (3):747-751
    [201]Lee PC, Kuo WF, Chang FC. In situ compatibilization of PBT/ABS blends through reactive copolymers[J]. Polymer 1994,35 (26):5641-5650
    [202]Leu Y, Mohd Ishak Z, Chow W. Mechanical, thermal, and morphological properties of injection molded poly (lactic acid)/SEBS-g-MAH/organo-montmorillonite nanocomposites[J]. Journal of Applied Polymer Science 2012,124(2):1200-1207
    [203]Paul D, Barlow J. Polymer blends[J]. Journal of Macromolecular Science, Part C: Polymer Reviews:Polymer Reviews 1980,18(1):109-168
    [204]Zou H, Wang K, Zhang Q, Fu Q. A change of phase morphology in poly (p-phenylene sulfide)/polyamide 66 blends induced by adding multi-walled carbon nanotubes[J]. Polymer 2006,47 (22):7821-7826
    [205]Dasari A, Yu ZZ, Mai YW. Effect of blending sequence on microstructure of ternary nanocomposites[J]. Polymer 2005,46 (16):5986-5991
    [206]Zhao J, Morgan AB, Harris JD. Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion[J]. Polymer 2005, 46 (20):8641-8660
    [207]Galgali G, Ramesh C, Lele A. A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites[J]. Macromolecules 2001,34 (4):852-858
    [208]Abu-Zurayk R, Harkin-Jones E, McNally T, Menary G, Martin P, Armstrong C, McAfee M. Structure-property relationships in biaxially deformed polypropylene nanocomposites[J]. Composites science and technology 2010,70 (9):1353-1359
    [209]Cho J, Paul D. Nylon 6 nanocomposites by melt compounding [J]. Polymer 2001,42 (3): 1083-1094
    [210]Hoon Kim D, Fasulo PD, Rodgers WR, Paul D. Effect of the ratio of maleated polypropylene to organoclay on the structure and properties of TPO-based nanocomposites. Part I:Morphology and mechanical properties [J]. Polymer 2007,48 (20):5960-5978
    [211]Muller A, Balsamo V, Arnal M. Nucleation and crystallization in diblock and triblock copolymers[J]. Advances in Polymer Science 2005,190:1-63
    [212]Tol R, Mathot V, Groeninckx G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro-and nanometer sized PA6 droplets, part 1: uncompatibilized PS/PA6,(PPE/PS)/PA6 and PPE/PA6 blends[J]. Polymer 2005,46(2): 369-382
    [213]Tol R, Mathot V, Groeninckx G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro-and nanometer sized PA6 droplets, part 2: reactively compatibilized PS/PA6 and (PPE/PS)/PA6 blends[J]. Polymer 2005,46 (2): 383-396
    [214]Tol R, Mathot V, Groeninckx G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro-and nanometer sized PA6 droplets, part 3: crystallization kinetics and crystallinity of micro-and nanometer sized PA6 droplets crystallizing at high supercoolings[J]. Polymer 2005,46 (9):2955-2965
    [215]Tol R, Mathot V, Reynaers H, Goderis B, Groeninckx G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro-and nanometer sized PA6 droplets part 4:polymorphous structure and (meta)-stability of PA6 crystals formed in different temperature regions[J]. Polymer 2005,46 (9):2966-2977
    [216]Wang S, Hu Y, Song L, Liu J, Chen Z, Fan W. Study on the dynamic self-organization of montmorillonite in two phases[J]. Journal of Applied Polymer Science 2004,91 (3): 1457-1462
    [217]Jiang J, Zhang K, Wu G. Effect of organoclays on the morphology and thermal expansion of PA6/SEBS alloy [J]. Polymer Composites 2011,32:2010-2016
    [218]Zou H, Ning N, Su R, Zhang Q, Fu Q. Manipulating the phase morphology in PPS/PA66 blends using clay[J]. Journal of Applied Polymer Science 2007,106 (4): 2238-2250
    [219]Wang K, Li JF. Domain Engineering of Lead-Free Li-Modified (K, Na) NbO3 Polycrystals with Highly Enhanced Piezoelectricity[J]. Advanced Functional Materials 2010,20(12):1924-1929
    [220]Liu C, Luo Y, Maxwell EJ, Fang N, Chen DDY. Reverse of Mixing Process with a Two-Dimensional Electro-Fluid-Dynamic Device[J]. Analytical chemistry 2010,82 (6): 2182-2185
    [221]Yu BY, Lin WC, Wang WB, Iida S, Chen SZ, Liu CY, Kuo CH, Lee SH, Kao WL, Yen GJ. Effect of Fabrication Parameters on Three-Dimensional Nanostructures of Bulk Heterojunctions Imaged by High-Resolution Scanning ToF-SIMS[J]. ACS nano 2010,4 (2):833-840
    [222]Jiang H, Kelch S, Lendlein A. Polymers move in response to light[J]. Advanced Materials 2006,18(11):1471-1475
    [223]Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light[J]. Nature 2003, 425 (6954):145
    [224]Qiu J, Tsuboi A, Izumi K, Wu H, Guo S, Huang Y. Effects of interfacial morphology on the welding strength of injection-molded polyamide[J]. Polymer Engineering & Science 2007,47 (12):2164-2171
    [225]Huang D, Chen R. Bonding strength at solid-melt interface for polystyrene in a sequential two-staged injection molding process [J]. Polymer Engineering & Science 1999,39 (11):2159-2171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700