用户名: 密码: 验证码:
原位熔融缩聚改性的PET及其CO_2发泡过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酸乙二醇酯(简称PET)在工程塑料领域有着广泛的应用,轻量化是工程塑料应用领域对材料所提出的新要求,因此具有优异机械和物理性能的PET发泡材料备受关注。常规PET一般是分子量相对较低且分子量分布相对较窄的线性聚合物,熔体强度较低,发泡过程中气泡在PET熔体中的生长过程容易发生泡孔壁的破裂和泡孔的塌陷,因此发泡用PET基料必须通过改性以提高熔体强度;同时,PET具有强吸水性,在熔融过程中容易发生热、氧降解和水解,导致分子量急剧下降,熔体强度大幅降低,也不利于PET发泡。本文成功制备了发泡性能优异的改性PET;基于CO2在改性PET熔体中溶解度和改性PET熔体在C02环境下表面张力等基础数据的测定,模拟分析了改性PET的CO2发泡成核过程;创新提出了超临界CO2辅助的改性PET增粘和发泡一体化过程,并实验证实了其可行性和优越性,具体如下:
     首先,采用原位聚合改性的方法制备了具有较高熔体强度改性PET。选取醇N和酸M两种多官能团化合物为第三单体原位聚合分别制备了具有长链支化结构的醇改性PET和酸改性PET,有效地提高了聚酯的熔体强度,当醇N的添加含量0.3wt%、酸M的添加含量0.8wt%时,改性PET的特性粘度Ⅳ从常规线性PET的0.659dL/g分别提高到0.860dL/g和0.865dL/g,熔融流动指数MFI从29.3g/10min分别减小到15.1g/lOmin和15.0g/10min。两种改性PET的结晶温度Tc,结晶焓△Hc,熔点Tm,,熔融焓△Hm均有所降低,复数粘度η*、储能模量G’和耗能模量G”较未改性PET均有显著提高,且呈现出剪切变稀的流动特性。以超临界CO2为发泡剂的间歇熔融发泡实验表明,两种改性PET在发泡温度265~280℃范围内可成功制备泡孔直径35~57μm、泡孔密度106~107cells/cm3的发泡样品,而同样条件下线性PET无法发泡,另外醇改性PET的发泡样品泡孔尺寸较酸改性PET的小、泡孔密度高。
     其次,通过高温高压磁悬浮天平(MSB)测定表观溶解度、高温高压视窗釜进行溶胀度校正的方法研究了CO2在PET熔体中的溶解度。考察了温度、CO2压力对改性前后PET在CO2环境中的溶胀度和CO2溶解度的影响,结果表明,PET在CO2环境中的溶胀度和CO2溶解度均随温度的增加而减小,随压力增加而增加,但高压下溶胀度的增加趋势减缓并趋于某定值。与常规线性PET相比,改性PET具有较小的溶胀度和溶解度。在250~280℃,1~6MPa下CO2在PET熔体中的溶解行为符合亨利定律,4-6MPa下溶解度具有10-2(gCO2/g PET melt)的量级。利用S-L方程对PET熔体在1~14MPa下CO2中,的溶胀度进行了拟合,进而预测了较高压力下的CO2在PET熔体中的溶解度。
     第三,利用对称悬滴法,在温度范围250~290℃,CO2压力范围0-14MPa内,测定了改性PET熔体在CO2环境下的表面张力。结果表明,改性PET熔体在CO2环境中的表面张力随着温度和CO2压力的增加呈现减小的趋势,且随着CO2压力的增加,改性PET熔体的表面张力对温度的依赖性减弱。由于长链支化结构的存在限制了其熔体的流动性,改性PET熔体较常规PET熔体具有较大的表面张力。基于实验数据,建立了改性PET熔体在CO2环境中表面张力的经验方程。
     第四,对改性PET的CO2发泡成核过程进行了模拟分析。分别引入了成核能垒的校正因子F和Zeldovich因子的校正因子f0对经典成核公式进行修正:只引入F时发现,相同的发泡温度下F值随着饱和压力的增加呈现出上升的趋势;相同的饱和压力下F值随着温度的增加而线性增加。同时引入F以及f0时,拟合发泡实验结果显示,不同发泡温度下f0均具有10-21的量级,且数值较为接近;F值具有10-5~104的量级;固定f0为10-21后,F值同样随着饱和压力的增加而上升、随温度的增加而线性增加。
     最后,研究了超临界CO2辅助的改性PET熔融缩聚增粘和发泡一体化过程。考察了CO2流量、CO2压力和处理时间对改性PET的熔体强度及其发泡材料泡孔形貌的影响,结果表明,相比N2,CO2能够有效地强化改性PET的熔融缩聚增粘过程,改性PET的特性粘度随着CO2流量、CO2压力和处理时间的增加而增加。在相同处理时间下,PET发泡样品的密度随着CO2流量的增加而减小;随着处理时间的增加,PET的热降解加剧,因而得到的PET发泡样品的密度呈现增加的趋势;而CO2压力对发泡样品的密度的影响是非单调的。对本文的实验体系来说,温度280℃,饱和压力8~14MPa,CO2流量3~5L/min,处理时间30~50min时,一体化过程制备的PET发泡样品的泡孔直径在32~62μm之间,泡孔密度在1×107~4×107cells/cm3之间。同时,对比进行了常规的“一步法”发泡过程、分步实施的超临界CO2的辅助改性PET熔融缩聚增粘和发泡过程,发现一体化过程提高了聚合物熔体强度、避免了PET再熔融降解,在相同或较短的处理时间内能够得到更优的泡孔结构。
Poly(ethylene terephthalate)(PET) is an important polymer for significant practical use in the field of engineering plastic. Besides excellent properties, light-weight is a new demand for engineering plastic. Thus, PET foams with both low density and high mechanical performance has been drawing great interests. Traditional PET is a sort of linear polymer with relative low molecular weight and narrow molecular weight distribution, and is characterized by its insufficient melt strength which is not compatible with foaming process. During bubble growth stage, bubble walls tend to fracture and bubbles tend to collapse. PET matrix, therefore, should be modified to improve its melt strength. Besides, PET has high affinity with moisture, and quite easy to degrade when exposed to heat and oxygen, making molecular weight and melt strength decrease sharply and thus, difficult to be foamed. In this study, modified PET with excellent foaming properties has been successfully prepared. Based on the determination of solubility of CO2in the modified PET melt and surface tension of the modified PET melt in CO2, cell nucleation in CO2foaming process has been simulated. A novel integrated process of supercritical CO2assisted melt polycondensation modification and foaming of PET is proposed, and the feasibility and advantage of this integrated process have been confirmed. The detailed works are as following:
     In-situ preparation of foamable high melt strength modified PET. Acid M and alcohol N are selected as modifying monomers for the preparation of modified PET with long chain branching structure. The results show that the melt strength of modified PETs has been improved effectively. When the amount of alcohol N is0.3wt%and acid M is0.8wt%, the intrinsic viscosity (Ⅳ) of the modified PET can be increased to0.860dL/g and0.865dL/g, respectively as well as their melt flow index (MFI) can be decreased to15.1g/10min and15.0g/10min. Differential scanning calorimeter (DSC) tests reveal that the crystallization temperature T., enthalpy of crystallization△Hc, the melting temperature Tm and enthalpy of melting△Hm of modified PETs are all somewhat decreased due to the presence of the branched structures. Rheological test demonstrates that the complex viscosity, the storage modulus and loss modulus all increase compared with unmodified PET. A rapid depressurization batch molten PET foaming test using CO2as blowing agent is carried out and it is found that both modified PETs can be foamed in the temperature range of265-280℃. PET foams with average cell diameter of35~57μm, cell density of106-107cells/cm3can be successfully prepared, whereas traditional PET cannot be foamed under the same condition. In addition, the average cell diameter of alcohol N modified PET foam is smaller than that of acid M modified PET.
     Solubility of CO2in PET melt. CO2solubility in PET is studied using magnetic suspension balance (MSB) combined with high-temperature and high-pressure view cell. The former is used to obtain apparent solubility and the latter to determine the swelling volume through direct observation in the presence of CO2, which is necessary to correct the gas buoyancy acting on PET melts in the MSB measurement. The effects of temperature and CO2pressure on the swelling ratio and CO2solubility in traditional and modified PET melt are investigated, respectively. The results show that swelling ratio of PET and CO2solubility both decrease with increasing temperature and increase with CO2pressure, however, the swelling ratio increases slowly and approaches a plateau region under higher pressure. Compared with traditional linear PET, modified PET displays both lower swelling ratio and solubility. Solubility value of CO2in PET melt has an order of magnitude of10-2(g CO2/g PET melt) at4~6MPa CO2pressure in the temperature range of250~280℃. and confirms with Henry's law within the pressure range of1~6MPa. S-L EOS is adopted to fit the swelling ratio in the CO2pressure range of1~14MPa, and CO2solubility at higher pressure is also predicted.
     Surface tension of PET melt in CO2. Using the Axisymmetric Drop Shape Analysis-Profile method, surface tension of PET melt in CO2at temperatures of250to290℃and CO2pressure of0to14MPa is measured using high-temperature and high-pressure view cell. It is found that surface tensions of modified PET melt decrease with increase of either temperature or CO2pressure, and with CO2pressure increasing, the dependence of surface tension on temperature weakens. Modified PET shows a higher surface tension than traditional linear PET due to the more conformation restriction exhibited by its branched structure. Based on experiment, an empirical equation is proposed to predict the surface tension of modified PET in CO2.
     Simulation and analysis of cell nucleation in modified PET foaming process. Classical nucleation model is adopted with the introduction of the correction factors both for the free energy barrier (F) and the Zeldovich factor (f0). With only F factor introduced, it is found that F value increases with saturation pressure once the foaming temperature is fixed, and when saturation pressure is fixed. F value increases linearly with temperature. With both F and f0introduced, it is observed that under the three foaming temperatures, fo values all have an order of magnitude of10-21and F values have an order of magnitude of10-5~10-4. When fo is fixed at10-21. it is found that F value also increases with saturation pressure and linearly increases with temperature.
     Integrated process of supercritical CO2assisted melt polycondensation modification and foaming of PET. The influences of CO2flow rate, CO2pressure and treating time on melt strength of the modified PETs and cell morphologies of foamed PETs are investigated respectively. It is proved that compared with N2sweeping, CO2sweeping can effectively enhance the melt polycondensation of preliminary modified PET. The viscosity of the modified PET increases with CO2flow rate, CO2pressure and CO2treating time. It is found that foam density will decrease with increasing CO2flow rate for the same treating time while it will increase with increasing treating time due to thermal degradation. The influence of CO2pressure on the foam density is non-monotonic. For our experimental system, PET foams with an average diameter of32~62μm and cell density of1×107~4×107cells/cm3can be obtained under the saturation pressure8-14MPa, CO2flow rate3-5L/min, treating time30~50min and temperature280℃. Meanwhile,"one step" foaming method and separated process of supercritical CO2assisted melt polycondensation modification and foaming are carried out for comparison, and the results demonstrate that better cell morphologies can be obtained from the integrated process within the same or shorter time.
引文
[1]陈志兵,何继敏.PET发泡成型研究进展[J].塑料科技.2010,38(4):100-104.
    [2]http://www.cnfrp.net/news/echo.php?id=40086.
    [3]http://www.cnfrp.net/news/echo.php?id=37131.
    [4]http://www.furukawa.co.jp/foam/english/mcpet/.
    [5]Subramanian, M. Pallatheri, T. L. Christopher. Melt fabrication of foam articles. US 5128202[P].1991-04-12.
    [6]Kumar, Vipin. Polyethylene terephthalate foams with integral crystalline skins. US 5223545[P].1993-06-29.
    [7]http://www.microgreeninc.com/
    [8]邹耀邦,苏湘,牟小波等.发泡PET片材及其制备方法[P].CN 200910302063.1.2009-09-30.
    [9]L. C. Muschiatti. High melt strength PET polymers for foam application and methods relating thereto, in, E.I. Du Pont de Nemours and Company, Wilmington, Del., US,1993.
    [10]D. C. Li. T. Liu, L. Zhao, W. K. Yuan. Controlling Sandwich-Structure of PET Microcellular Foams Using Coupling of CO2 Diffusion and Induced Crystallization[J]. AIChE Journal.2012,58,2512-2523.
    [11]D. F. Baldwin, C. B. Park, M. P. Suh. A Microcellular Processing Study of Poly(Ethylene Terephthalate) in the Amorphous and Semicrystalline States. Part Ⅰ:Microcell Nucleation[J]. Polymer Engineering & Science,1996,36:1437-1445.
    [12]D. F. Baldwin, C. B. Park, M. P. Suh. A Microcellular Processing Study of Poly(Ethylene Terephthalate) in the Amorphous and Semicrystalline States. Part Ⅱ:Cell Growth and Process Design[J]. Polymer Engineering & Science,1996,36:1446-1453.
    [13]熊春燕,朱江疆,王依民.新形多聚酯纤维的制备[J].合成技术及应用,2005,20(4):48-51.
    [14]M. T. Liang. C. M. Wang. Production of engineering plastics foams by supercritical CO2[J]. Industrial & Engineering Chemical Research,2000,39:4622-4626.
    [15]R. Guan, B. L. Xiang, Z. X. Xiao, et al. The processing structure relationships in thin microcellular PET sheet prepared by compression molding[J]. European Polymer Journal. 2006.42(5):1022-1032.
    [16]向帮龙.模压法制备微孔发泡PET片材及其机理研究[D].武汉:湖北大学.2006.
    [17]颜采敬.超临界CO2环境中聚合物模压发泡的研究[D].上海:华东理工大学,2012.
    [18]R. H. Hansen. W. Martin. Novel methods for the production of foamed polymers. I & EC Product Research and Development.1964.3(2):137-141.
    [19]崔周波.PET挤出改性及微孔注塑成型[D].上海:华东理工大学,2010.
    [20]张方林.原位聚合改性PET及其熔融可发泡性研究[D].上海:华东理工大学,2010.
    [21]X. Xu, C. B. Park, D. L. Xu, R. Pop-Iliev. Effects of die geometry on cell nucleation of PS foams blown with CO2[J]. Polymer Engineering & Science,2003,43:1378-1390.
    [22]J. W. S. Lee, C. B. Park. Use of nitrogen as a blowing agent for the production of fine-celled high-density polyethylene foams[J]. Macromolecular Materials and Engineering,2006,291:1233-1244.
    [23]C. B. Park, P. C. Lee, J. Wang, V. Padareva. Strategies for achieving microcellular LDPE foams in extrusion[J]. Cellular Polymers,2006,25:1-18.
    [24]W. Kaewmesri, P. C. Lee, C. B. Park, J. Pumchusak. Effects of CO2 and talc contents on foaming behavior of recyclable high-melt-strength PP[J]. Journal of Cellular Plastics, 2006,42:405-428.
    [25]W. G. Zheng, Y. H. Lee, C. B. Park. The effects of exfoliated nano-clay on the extrusion microcellular foaming of amorphous and crystalline nylon[J]. Journal of Cellular Plastics.2006,42:271-288.
    [26]G. Guo, K. H. Wang, C. B. Park, Y. S. Kim, G. Li. Effects of nanoparticles on the density reduction and cell morphology of extruded metallocene polyethylene/wood fiber nanocomposites[J]. Journal of Applied Polymer Science,2007,104:1058-1063.
    [27]Y. H. Lee, K. H. Wang. C. B. Park, M. Sain. Effects of clay dispersion on the foam morphology of LDPE/clay nanocomposites[J]. Journal of Applied Polymer Science, 2007,103:2129-2134.
    [28]Y. H. Lee, C. B. Park. K. H. Wang, M. H. Lee. HDPE-clay nanocomposite foams blown with supercritical CO2[J]. Journal of Cellular Plastics,2005,41:487-502.
    [29]C. B. Park, D. F. Baldwin, N. P. Suh. Cell nucleation by rapid pressure drop in continuous processing of microcellular plastics[J]. American Society of Mechanical Engineers, Materials Division,1993,46:537-552.
    [30]L Di Maio, I Coccorullo. S Montesano, et al. Chain extension and foaming of recycled PET inextrusion equipment[J]. Macromolecular Symposia,2005,228(1):185-199.
    [31]黄超.以CO2为发泡剂的聚酯PET挤出发泡过程[D].上海:华东理工大学.2011.
    [32]R·克拉纳发泡聚酯、特别是PET的制造方法:IT,988048728[P].2004-04-21.
    [33]S. Japon, L. Boogh. Y. Leterrier. et al. Reactive processing of poly(ethylene terephthalate) modified with multi-functional epoxy-based additives[J]. Polymer.2000.41(15): 5809-5818.
    [34]孙俊.王庆海.MDI对低粘度PET树脂改性的结构和性能研究[J].工程塑料应用.2008.36(11):4-6.
    [35]M. Xanthos. C. Wan. R. D. havalikar. et al. Identification of rheological and structural characteristics of foamable poly(ethylene terephthalate)by reactive extrusion[J]. Polymer International,2004,53(8):1161-1168.
    [36]H. Inanta, S. Matusumura, Chain extenders for Polyesters Ⅰ. Addition-type chain extenders reactive with carboxyl end groups of Polyesters[J]. Journal of Applied Polymer Science.1985,30:3325-3337.
    [37]H. Inanta, S. Matsumura. Chain extenders for polyesters Ⅱ. Reactive of carboxyl-additon-type chain with hydroxyl end goups of polyesters[J]. Journal of Applied Polymer Science,1986,32:4581-4594.
    [38]H. Inanta, S. Matsumura. Chain extenders for polyesters Ⅲ. Additon-type nitrogen-containning extenders reactive with carboxyl end groups of polyester[J]. Journal of Applied Polymer Science,1985,30:4581-4594.
    [39]H. Inanta.S. Matsumura. Chain extenders for polyesters Ⅳ. Properties of the Polyester chain-extended by 2,2'-bis(2-oxazoline) [J]. Journal of Applied Polymer Science.1987, 33:3069-3079.
    [40]H. Inanta, S. Matsumura, Chain extenders for polyesters Ⅴ. Reactives of hydrox-yl-addition-type chain extenders; 2,2'-bis(4th-3,1-benzoxazin-4-one) [J]. Journal of Applied Polymer Science,1987,34:2609-2617.
    [41]M. K. Akkapeddi, J. Gervasi. Chain extension of PET and nylon in an extruder[J]. Polymer Preprint.1988,29:567-569.
    [42]D. N. Bikiaris. P. George, et al. Chain extension of polyesters PET and PBT with N,N'-bis(glycidyl ester) pyromellitimides[J]. Journal of Polymer Science-Polymer Chemistry Edition,1995,33:1705-1714.
    [43]D. N. Bikiaris, P. George, et al. Chain extension of polyesters PET and PBT with two new diimidiepoxidesll [J]. Journal of Polymer Science-Polymer Chemistry Edition,1996, 34:1337-1342.
    [44]L. Qin. et al. Synthesis and Characterization of Poly(ethylene glycol) Methyl Ether Endcapped Poly(ethylene terephthalate)[J]. Macromolecular Symposia,2003,199: 163-172.
    [45]J. Sunarso, S. Ismadji. Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction:Areview[J]. Journal of Hazardous Materials, 2009.161:1-20.
    [46]A. Bouchard. N. Jovanovic. A. H. de Boer, A. Martin. W. Jiskoot. D. J. A. Crommelin. G.W. Hofland. G. J. Witkamp. Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying[J]. European Journal of Pharmaceutics and Biopharmaceutics,2008.70:389-401.
    [47]E. Franceschi. A. M. De Cesaro. M. Feiten. S. R. S. Ferreira. C. Dariva. M. H. Kunita. A. F. Rubira, E. C. Muniz, M. L. Corazza, J. V. Oliveira. Precipitation of beta-carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2[J]. The Journal of Supercritical Fluids,2008,47:259-269.
    [48]Y. M. Wang, Y. J. Wang, X. B. Lu. "Grafting-from" polymerization for uniformly bulk modification of pre-existing polymer materials via a supercritical-fluid route[J]. Polymer, 2008,49:474-480.
    [49]S. P. Nalawade, F. Picchioni, L. P. B. M. Janssen. Supercritical carbon dioxide as a green solvent for processing polymer melts:Processing aspects and applications[J]. Progress in Polymer Science,2006,31:19-43.
    [50]E. Reverchon, M.C.Volpe, G. Caputo. Supercritical fluid processing of polymers: composite particles and porous materials elaboration[J]. Current Opinion in Solid State and Materials Science,2003,7:391-397.
    [51]G. Li, F. Gunkel, J. Wang, C.B. Park, V. Altstadt. Solubility Measurements of N2 and CO2 in Polypropylene and Ethene/Octene Copolymer[J]. Journal of Applied Polymer Science, 2007,103:2945-2953.
    [52]Y. Sato, M. Yurugi, K. Fujiwara, S. Takishima, H. Masuoka. Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure[J]. Fluid Phase Equilibria,1996,125(1-2):129-138.
    [53]Y. Sato, K. Fujiwara, T. Takikawa, K. Takishima, H. Masuoka. Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures [J]. Fluid Phase Equilibria,1999, 162(1-2):261-276.
    [54]Y. Sato, T. Takikawa. S. Takishima, H. Masuoka. Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene[J]. The Journal of Supercritical Fluids.2001,19:187-198.
    [55]J. Schnitzler, R. Eggers. Mass transfer in polymers in a supercritical CO2-atmosphere[J]. The Journal of Supercritical Fluids,1999,16:81-92.
    [56]李大超.低熔体强度结晶型聚合物CO2发泡过程设计和控制[D].上海:华东理工大学,2011.
    [57]N. H. Brantley, S. G. Kazarian, C. A. Eckert. In situ FTIR measurement of carbon dioxide sorption into poly(ethylene terephthalate) at elevated pressures[J]. Journal of Applied Polymer Science.2000.77:764-775.
    [58]D. F. Baldwin, M. Shimbo, N. P. Suh. The Role of Gas Dissolution and Induced Crystallization During Microcellular Polymer Processing:A Study of Poly (Ethylene Terephthalate) and Carbon Dioxide Systems[J]. Journal of Engineering Materials and Technology.1995.117.62-74.
    [59]P. K. Davis, G. D. Lundy, J. E. Palamara, J. L. Duda, R. P. Danner. New pressure-decay techniques to study gas sorption and diffusion in polymers at evaluated pressures[J]. Industrial & Engineering Chemistry Research,2004,43:1537-1542.
    [60]E. S. Sanders, W. J. Koros, H. B. Hopfenberg, V. T. Stannett. Pure and mixed gas sorption of carbon dioxide and ethylene in poly(methyl methacrylate)[J]. Journal of Membrane Science,1984,18:53-74.
    [61]E. Sada, H. Kumazawa, P. Xu. Sorption and diffusion of carbon dioxide in polyimide films[J]. Journal Applied Polymer Science,1988,35:1497-1509.
    [62]W. J. Koros, D. R. Paul, A. A. Rocha. Carbon dioxide sorption and transport in polycarbonate [J]. Journal Polymer Science B:Polymer Physics,1976,14:687-702.
    [63]V. M. Shah, B. J. Hardy, S. A. Stern. Solubility of carbon dioxide, methane, and propane in silicone polymers:Effect of polymer side chains[J]. Journal Polymer Science B: Polymer Physics,1986,24:2033-2047.
    [64]D. H. Rein, R. F. Csernica, R. F. Baddour, R. E. Cohen. CO2 Diffusion and Solubility in a Polystyrene-Polybutadiene Block Copolymer with a Highly Oriented Lamellar MorphologyfJ]. Macromolecules,1990,23:4456-4460.
    [65]V. I. Bondar, B. D. Freeman. Sorption of gases and vapors in an amorphous glassy perfluorodioxole copolymer[J]. Macromolecules.19999.32:6163-6171.
    [66]S. Hilic. A. Padua, J. P. E Grolier. Simultaneous measurement of the solubility of gases in polymers and of the associated volume change[J]. Review of Scientific Instruments, 2000,71:4236-4241.
    [67]R. Kleinrahm, W. Wagner. Measurement and correlation of the equilibrium liquid and vapour densities and the vapour pressure along the coexistence curve of methane[J]. The Journal of Chemical Thermodynamics,1986,18:739-760.
    [68]C. A. Lockemann, T. Riede, P. Magin. An experimental method to determine the sorption and swelling behavior of solids at high pressures, in:R. Ph. Rudolf von, T. Ch (Eds.) Process Technology Proceedings, Elsevier.1996,547-552.
    [69]G. Li, H. Li, J. Wang, C. B. Park. Investigating the solubility of CO2 in Polypropylene Using Various EOS Models[J]. Cellular Polymers,2006.25(4),237-248.
    [70]T. S. Chow. Molecular Interpretation of the Glass Transition Temperature of Polymer-Diluent Systems[J]. Macromolecules,1980.13:362-364.
    [71]Z. Zhang. Y. P. Handa. An in situ study of plasticization of polymers by high-pressure gases[J]. Journal of Polymer Science:Part B:Polymer Physics,1998.36:977-982.
    [72]Y. P. Handa. Z. Zhang, B. Wong. Solubility, diffusivity. and retrograde vitrification in PMMA-CO2. and development of sub-micron cellular structures [J]. Cellular Polymer, 2001.20:1-16.
    [73]S. K. Goel, E. J. Beckman. Generation of microcellular polymeric foams using supercritical carbon dioxide. I:Effect of pressure and temperature on nucleation[J]. Polymer Engineering & Science,1994,34:1137-1147.
    [74]M. Takada, S. Hasegawa, M. Ohshima. Crystallization kinetics of poly(L-lactide) in contact with pressurized CO2[J]. Polymer Engineering & Science,2004,44:186-196.
    [75]K. Mizoguchi, T. Hirose, Y. Naito, Y. Kamiya. CO2-induced crystallization of polyethylene terephthalate) [J]. Polymer,1987,28:1298-1302.
    [76]S. M. Lambert, M. E. Paulaitis. Crystallization of poly(ethylene terephthalate) induced by carbon dioxide sorption at elevated pressures[J]. The Journal of Supercritical Fluids, 1991,4:15-23.
    [77]Y. P. Handa, Z. Zhang, B. Wong. Effect of Compressed CO2 on Phase Transitions and Polymorphism in Syndiotactic Polystyrene[J]. Macromolecules,1997,30:8499-8504.
    [78]L. Yu, H. Liu, K. Dean. Thermal behaviour of poly(lactic acid) in contact with compressed carbon dioxide[J]. Polymer International,2009,58:368-372.
    [79]J. R. Royer and J. M. DeSimone. High-pressure rheology and viscoelastic scaling predictions of polymer melts containing liquid and supercritical carbon dioxide. Journal of Polymer Science:Part B:Polymer Physics,2001,39:3055-3066.
    [80]L. J. Gerhardt, C. W. Manke, E. Gulari. Rheology of polydimethylsiloxane swollen with supercritical carbon dioxide[J]. Journal of Polymer Science, Part B:Polymer Physics, 1997.35:523-534.
    [81]Y. C. Bae and E. Gulari. Viscosity reduction of polymeric liquid by dissolved carbon dioxide[J]. Journal of Applied Polymer Science,1997,63:459-466.
    [82]Y. Xiong and K. Erdogan. Miscibility, density and viscosity of poly(dimethylsiloxane) in supercritical carbon dioxide[J]. Polymer,1995,36:4817-4826.
    [83]R. Mertsch and B. A. Wolf. Solutions of Poly(dimethylsiloxane) in Supercritical CO2: Viscometric and Volumetric Behavior[J]. Macromolecules,1994,27:3289-3294.
    [84]E. Weidner, V. Wiesmet, Z. Knez, and M. Skerget. Phase equilibrium (solid-liquid-gas) in polyethyleneglycol-carbon dioxide systems[J]. The Journal of Supercritical Fluids,1997, 10:139-147.
    [85]J. A. Lopes, D. Gourgouillion, P. J. Pereira, A.M. Ramos, and M. Nunes da Ponte. On the effect of polymer fractionation on phase equilibrium in CO2+ poly(ethylene glycol)s systems[J]. The Journal of Supercritical Fluids,2000,16:261-267.
    [86]D. Gourgouillion and M. Nunes da Ponte. High pressure phase equilibria for poly(ethylene glycol)s+CO2:experimental results and modeling. Physical Chemistry Chemical Physics.1999.1:5369-5375.
    [87) D. Gourgouillion. H. M. N. T. Avelino. J. M. N. A. Fareleira. and M. Nunes da Ponte. Simultaneous viscosity and density measurement of supercritical CO2-saturated PEG 400[J]. The Journal of Supercritical Fluids,1998,13:177-185.
    [88]M. Danesshaver, S. Kim, and E. Gulari. Journal of Physics Chemical,1990,94:2124.
    [89]M. Lee, C. B. Park, C. Tzoganakis. Extrusion of PE/PS blends with supercritical carbon dioxide[J]. Polymer Engineering & Science,1998,38:1112-1120.
    [90]M. Lee, C. Tzoganakis, C. B. Park. Effects of supercritical CO2 on the viscosity and morphology of polymer blends[J]. Advances in Polymer Technology,2000,19:300-311.
    [91]M. D. Elkovitch, D. Tomasko, and J. Lee. Supercritical carbon dioxide assisted blending of polystyrene and poly(methyl methyacrylate)[J]. Polymer Engineering & Science, 1999,39:2075-2084.
    [92]J. D. Martinache, J. R. Royer, S. Siripurapu, F. E. Henon, J. Genzer, S. A. Khan, R. G. Carbonell. Processing of polyamide11 with supercritical carbon dioxide[J]. Industrial and Engineering Chemistry Research,2001,40:5570-5577.
    [93]S. Areerat, T. Nagata, M. Ohshima. Measurement and prediction of LDPE/CO2 sulution viscosity[J]. Polymer Engineering & Science,2002,42(11):2234-2245.
    [94]K. L. Harrison, K. P. Johnston, and I. C. Sanchez. Effect of Surfactants on the Interfacial Tension between Supercritical Carbon Dioxide and Polyethylene Glycol[J]. Langmuir, 1996,12:2637-2644.
    [95]K. L. Harrison, S. R. P. Rocha, M. Z. Yates, K. P. Johnston. Interfacial Activity of Polymer Surfactants at the Polystyrene-Carbon Dioxide Interface[J]. Langmuir,1998,14: 6855-6863.
    [96]H. Park, R. B. Thompson, N. Lanson, C. Tzoganakis, C. B. Park, and P. Chen. Effect of Temperature and Pressure on Surface Tension of Polystyrene in Supercritical Carbon Dioxide[J]. Journal of Physics Chemical B,2007,111:3859-3868.
    [97]H. B. Li, L. J. Lee, D. L. Tomasko. Effect of carbon dioxide on the interfacial tension of polymer melts[J]. Industrial & Engineering Chemistry Research,2004,43:509-514.
    [98]M. Takada and M. Oshima. Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate) [J]. Polymer Engineering & Science,2003.43:479-489.
    [99]S. G. Kazarian, N. H. Brantley. and C. A. Eckert. Applications of vibrational spectroscopy to characterize poly(ethylene terephthalate) processed with supercritical CO2[J]. Vibrational Spectroscopy,1999,19:277-283.
    [100]O. S. Fleming and S. G. Kazarian. Confocal Raman Microscopy of Morphological Changes in Poly(ethylene terephthalate) Film Induced by Supercritical CO2[J]. Applied Spectroscopy,2004,58:390-394.
    [101]O. S. Fleming, K. L. A. Chan, and S. G. Kazarian. FTIR imaging and Raman microscopic study of poly(ethylene terephthalate) film processed with supercritical CO2[J]. Vibrational Spectroscopy,2004,35:3-7.
    [102]J. S. Chiou, J. W. Barlow, and D. R Paul. Polymer crystallization induced by sorption of CO2 gas[J]. Journal of Applied Polymer Science,1985,30:3911-3924.
    [103]Z. Zhong, S. Zheng, and Y. Mi. High-pressure DSC study of thermal transitions of a polyethylene terephthalate)/carbon dioxide system[J]. Polymer,1999,40:3829-3834.
    [104]A. L. C. Burke, R. D. Givens, M. Jikei, J. M. DeSimone. Use of CO2 in step growth polymerization:from plasticized polymer melts to solid state polymerization[J]. Polymer Preprints,1997,38:387-388.
    [105]M. K. Parashar, R. P. Gupta, A. Jain, et al. Reaction rate enhancement during swollen-state polymerization of poly(ethylene terephthalate)[J]. Journal of Applied Polymer Science,1998,67(9):1589-1595.
    [106]S. Tate, F. Ishimaru. Swollen-state polymerization of poly(ethylene terephthalate): kinetic analysis of reaction rate and polymerization conditions[J]. Polymer,1995,36(2): 353-356.
    [107]J. L. Hedrick, L. J. Mulcahey, L. T. Taylor. Supercritical Fluid Extraction of Phenols from Water[J]. ACS Symposium Series,1992,488:206-220.
    [108]S. M. Gross, D. Flowers, G. Roberts, D. J. Kiserow, J. M. DeSimone. Solid-state polymerization of polycarbonates using supercritical CO2[J]. Macromolecules,1999,32: 3167-3169.
    [109]O. Faruk, A. K. Bledzki, L. M. Matuana. Microcellular foamed wood-plastic composites by different processes:a review[J]. Macromolecular Materials and Engineering,2007,292:113-227.
    [110]Z. M. Xu, X. L. Jiang, T. Liu, G. H. Hu, L. Zhao and W. K. Yuan. Foaming of Polypropylene with Supercritical Carbon Dioxide[J]. The Journal of Supercritical Fluids, 2007,41:299-310.
    [111]J. Wang, X. G. Cheng, M. J. Yuan, et al. An investigation on the microcellular structure of polystyrene/LCP blends prepared by using supercritical carbon dioxide[J]. Polymer, 2001.42:8265-8275.
    [112]J. Wang, X. G. Cheng, X. J. Zheng, et al. Preparation and characterization of microcellular polystyrene/polystyrene ionomer blends with supercritical carbon dioxide[J]. Journal of Polymer Science:Part B:Polymer Physics.2003.41:368-377.
    [113]J. S. Colton, N. P. Suh. The nucleation of microcellular thermoplastic foam with additives:Part II:Experimental results and discussion[J]. Polymer Engineering & Science.1987,27:493-499.
    [114]J. S. Colton, N. P. Suh. The nulceation of microcellular thermoplastic foam with additives:Part I:Theoretical considerations. Polymer Engineering & Science[J].1987. 27:485-492.
    [115]J. R. Street, A. L. Fricke, L. P. Reiss. Dynamics of phase growth in viscous, non-newtonian liquids. Initial stages of growth[J]. Industrial & Engineering Chemistry Fundamentals,1971,10:54-64.
    [116]M. Amon, C. D. Denson. A study of the dynamics of foam growth analysis of the growth of closely spaced spherical bubbles[J]. Polymer Engineering & Science.1984, 24(13):1026-1034.
    [117]M. Amon, C. D. Denson. A study of the dynamics of foam growth:Simplified analysis and experimental results for bulk density in structural foam molding[J]. Polymer Engineering & Science.1986,26(3):255-267.
    [118]S. K. Goel, E. J. Beckman. Nucleation and growth in microcellular materials: supercritical CO2 as foaming agent[J]. AIChE Journal.1995,41(2):357-367.
    [119]W. G. Zheng, P. C. Lee, C. Patrick, C. B. Park. Extrusion foaming behaviors of PET with CO2[J]. Plastics Encounter at ANTEC Conference Proceedings,2007,3020-3024.
    [120]S. Japon, L. Boogh, Y. Leterrier, J.-A.E. Manson. Reactive processing of poly(ethylene terephthalate) modified with multifunctional epoxy-based additives[J]. Polymer,2000, 41:5809-5818.
    [121]M. Xanthos, M. W. Young, G. P. Karayannidis. D. N. Bikiaris. Reactive Modification of Polyethylene Terephthalate with Polyepoxides[J]. Polymer Engineering & Science,2001, 41(4):643-655.
    [122]S. T. Lee. Foam extrusion:Principle and practice. Technomic Publishing Co.INC,2000, 307-338.
    [123]F. Awaja, F. Daver, E. Kosior, F. Cser. The Effect of chain extension on the thermal behavior and crystallinity of reactive extended recycled PET[J]. Journal of Thermal Analysis and Calorimetry,2004,78:865-884.
    [124]H. A. K. AlGhatta, T. Severini, L. Astarita. Foamed cellular polyester resins and process for their preparation. US Pat.,5422381 (1995).
    [125]M. Hayashi, N. Amano, T. Taki, T. Hirai. Process for producing polyester resin foam and polyester resin foam sheet. US Pat.,5000991 (1991).
    [126]L. Incarnatoa, P. Scarfatoa, L. Di Maioa, D. Aciernob. Structure and rheology of recycled PET modified by reactive extrusion[J]. Polymer.2000,41:6825-6831.
    [127]K. C. Khemani. Society of plastics engineers. In:Proceedings of the 56th SPE ANTEC, Brookfleld, CT.1934(1998).
    [128]H. A. Pohl. Determination of Carboxyl End Groups in a Polyester, Polyethylene Terephthalate[J]. Analytical Chemistry.1956.26:1614-1616.
    [129]E. Borsig. M. van Duin. A. D. Gotsis. F. Picchioni. Long chain branching on linear poly-propylene by solid state reactions[J]. European Polymer Journal,2008,44:200-212.
    [130]Zeevenhoven. ADGBLF. Effect of long branches on the rheology of polypropylene[J]. Journal of Rheology,2004,48:895-914.
    [131]A. Csar, B. A. H. Garca-Franco, D. J. Lohse. Effect of short-chain branching on the rheology of polyolefins[J]. Macromolecules,2008,39:2710-2717.
    [132]J. h. Tian, W. Yu, C. X. Zhou. The preparation and rheology characterization of long chain branching polypropylene[J]. Polymer,2006,47:7962-7969.
    [133]E. Kolodka, W. J. Wang, S. P. Zhu, E. A. Hamielec.Copolymerization of propylene with poly(ethylene-co-propylene) macromonomer and branch chain-length dependence of rheological properties [J]. Macromolecules,2002.35:10062-10070.
    [134]D. N. Bikiaris, G. P. Karayannidis. Thermomechanical analysis of chain-extended PET and PBT[J]. Journal of Applied Polymer Science.1996,60:55-61.
    [135]J. F. Lacoste, V. B. Legare, M. F. Llauro, C. Monnet, P. Cassagnau, A. Michel. Functionalization of Poly(ethylene terephthalate) in the melt state:Chemical and rheological aspects[J]. Journal of Polymer Science:Part A:Polymer Chemistry,2005,43: 2207-2223.
    [136]E. Schneider. Polyesters with bisoxazolines. DE Pat..1426409 (1976).
    [137]J. M. Dealy, K. F. Wissbrun. Melt Rheology and its Role in Plastics Processing— Theory and Applications[M]. Van Nostrand Reynold, New York (1990).
    [138]D. Yan, W. J. Wang, S. Zhu. Effect of long chain branching on rheological properties of metallocene polyethylene[J]. Polymer,1999,40:1737-1744.
    [139]M. Xanthos, U. Yilmazer, S. K. Dey, J. Quintans. Melt viscoelasticity of polyethylene terephthalate resins for low density extrusion foaming[J]. Polymer Engineering & Science,2000,40:554-566.
    [140]U. Yilmazer, M. Xanthos, G. Bayram, V. Tan. Viscoelastic characteristics of chain extended/branched and linear polyethylene terephthalate resins[J]. Journal of Applied Polymer Science,2000,75:1371-1377.
    [141]A. A. Haralabakopoulos, D. Tsiourvas, C. M. Paleos. Chain extension of poly(ethylene terephthalate) by reactive blending using diepoxides[J]. Journal of Applied Polymer Science,1999,71:2121-2127.
    [142]L. Zirkel, M. Jakob, H. Munstedt. Foaming of thin films of a fluorinated ethylene propylene copolymer using supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2009.49:103-110.
    [143]Y. Sato, T. Takikawa. A. Sorakubo. S. Takishima. H. Masuoka. M. Imaizumi. Solubility and diffusion coefficient of carbon dioxide in biodegradable polymers[J]. Industrial & Engineering Chemistry Research,2000,39:4813-4819.
    [144]I. C. Sanchez. R. H. Lacombe. An elementary molecular theory of classical fluids. Pure fluids[J]. Journal of Chemical Physics,1976,80:2352-2362.
    [145]I. C. Sanchez, R. H. Lacombe. Statistical thermodynamics of polymer solutions[J]. Macromolecules,1978,11:1145-1156.
    [146]R. Simha, T. Somcynsky. On the statistical thermodynamics of spherical and chain molecule fluids[J]. Macromolecules.1969,2:342-350.
    [147]R. K. Jain, R. Simha. Statistical thermodynamics of multicomponent fluids.2:equation of state and phase relations[J]. Macromolecules,1984,17:2663-2668.
    [148]P. Coutsikos, K. Magoulas, D. Tassios, A. Cortesi, I. Kikic. Correlation and prediction of infinite-dilution partial molar volumes of organic solutes in SCCO2 using the Peng-Robinson and PHCT equations of state and the LCVM EOS/GE model[J]. The Journal of Supercritical Fluids,1997,11:21-35.
    [149]J. Gross, G. Sadowski. Perturbed-chain SAFT:an equation of state based on a perturbation theory for chain molecules[J]. Industrial & Engineering Chemistry Research, 2001,40:1244-1260.
    [150]Z. H. Chen, K. Cao. Z. Yao, Z. M. Huang. Modeling solubilities of subcritical and supercritical fluids in polymers with cubic and non-cubic equations of state[J]. The Journal of Supercritical Fluids,2009.49:143-153.
    [151]J. Chen, T. Liu, L. Zhao, W. K. Yuan. Determination of CO2 solubility in isotactic polypropylene melts with different polydispersities using magnetic suspension balance combined with swelling correction [J]. Thermochimica Acta,2012,530:79-86.
    [152]Y. G. Li, C. B. Park, H. B. Li, J. Wang. Measurement of the PVT property of PP/CO2 solution[J]. Fluid Phase Equilibria.2008,270(1-2):15-22.
    [153]Y. Xiong, E. Kiran. Comparison of Sanchez-Lacombe and SAFT Model in Predicting Solubility of Polyethylene in High-Pressure Fluids[J]. Journal of Applied Polymer Science,1995,55(13):1805-1818.
    [154]D. Liu, H. Li, M. S. Noon, D. L. Tomasko. CO2-Induced PMMA Swelling and Multiple Thermodynamic Property Analysis Using S-L EOS[J]. Macromolecules,2005,38(10): 4416-4424.
    [155]J. R. Royer, J. M. DeSimone. S. A. Khan. Carbon Dioxide-Induced Swelling of Poly-(dimethylsiloxone)[J]. Macromolecules.1999,32(26):8965-8973.
    [156]R. G. Wissinger, M. E. Paulaitis. Swelling and sorption in polymer-CO2 mixtures at elevated pressures[J]. Journal of Polymer Science:Part B:Polymer Physics.1987, 25(12):2497-2510.
    [157]Z. G. Lei, H. Ohyabu. Y. Sato. H. Inomata. J. R. L. Smith. Solubility, swelling dedree and crystallinity of carbon dioxide-polypropylene[J]. The Journal of Supercritical Fluids, 2007,40(3):452-461.
    [158]S. Areerat, Y. Hayata, R. Katsumoto, T. Kegasawa, H. Egami, M. Ohshima. Solubility of carbon dioxide in polyethylene/titanium dioxide composite under high pressure and temperature [J]. Journal of Applied Polymer Science,2002,86(2):282-288.
    [159]P. A. Rodgers. Pressure-Volume-Temperature relationships for polymeric liquids:A review of equations of state and their characteristic parameters for 56 polymers[J]. Journal of Applied Polymer Science,1993,48:1061-1080.
    [160]R. C. Reid, T. K. Skierwood, M. P. John. The properties of gases and liquids[M]. The 3rd edition. New York, McGraw-Hill Book Company.1987.
    [161]R. J. Roe, V. L. Bacchetta, P. M. G. Wong. Refinement of Pendant Drop Method for the Measurement of Surface Tension of Viscous Liquid[J]. Journal of Chemical Physics, 1967,71:4190-4193.
    [162]R. J. Roe. Surface Tension of Polymer Liquids[J]. Journal of Chemical Physics,1968, 72:2013-2017.
    [163]S. Wu. Surface and Interfacial Tensions of Polymer Melts. Ⅱ. Poly-(methyl methacrylate), Poly(n-butyl methacrylate). and Polystyrene [J]. Journal of Chemical Physics,1970,74:632-638.
    [164]S. Wu. Polymer Interface and Adhesion; Marcel Dekker:New York,1982.
    [165]S. H. Anastasiadis, J. K. Chen, J. T. Koberstein, J. E. Sohn, A. Emerson. The Determination of Polymer Interfacial Tension by Drop Image Processing:Comparison of Theory and Experiment for the Pair, Poly(dimethyl siloxane)/Polybutadiene[J]. Polymer Engineering & Science,1986.26:1410-1418.
    [166]N. R. Demarquette, M. R. Kamal. Interfacial Tension in Polymer Melts. I:An Improved Pendant Drop Apparatus[J]. Polymer Engineering & Science,1994,34:1823-1833.
    [167]D. Y. Kwok, L. K. Cheung, C. B. Park, A. W. Neumann. Study on the Surface Tensions of Polymer Melts Using Axisymmetric Drop Shape Analysis[J]. Polymer Engineering & Science,1998,38:757-764.
    [168]M. Wulf, S. Michel. K. Grundke. O. I. delrio. D. Y. Kwok, A. W. Neumann. Simultaneous Determination of Surface Tension and Density of Polymer Melts Using Axisymmetric Drop Shape Analysis[J]. Journal of Colloid and Interface Science,1999, 210:172-181.
    [169]Z. Funke. C. Schwinger. R. Adhikari. J. Kressler. Surface Tension in Polymer Blends of Isotactic Poly(propylene) and Atactic Polystyrene[J]. Macromolecular Materials and Engineering.2001.286:744-751.
    [170]A. T. Morita. D. J. Carastan. N. R. Demarquette. Influence of drop volume on surface tension evaluated using the pendant drop method[J]. Colloid and Polymer Science,2002, 280:857-864.
    [171]A. Xue, C. Tzoganakis, P. Chen. Measurement of Interfacial Tension in PS/LDPE Melts Saturated With Supercritical CO2[J]. Polymer Engineering & Science,2004,44:18-27.
    [172]B. Song, J. Springer. Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing[J]. Journal of Colloid and Interface Science, 1996,184:77-91.
    [173]Cleveland. CRC handbook of chemistry and physics[M]. Boca RatonCRC Press.1981.
    [174]陈文婷.超临界CO2环境中聚合物的界面张力[D].华东理工大学硕士论文,2011.
    [175]H. Park, C. B. Park, C. Tzoganakis, et al. Surface tension measurement of polystyrene melts in supercritical carbon dioxide[J]. Industrial & Engineering Chemistry Research. 2006,45:1650-1658.
    [176]M. Blander, J. L. Katz. Bubble nucleation in liquids[J]. AIChE Journal 1975,21(5): 833-848.
    [177]J. S. Colton. N. P. Suh. Nucleation of microcellular foam:Theory and practice[J]. Polymer Engineering & Science,1987.27(7):500-503.
    [178]K. Taki. Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process[J]. Chemical Engineering Science.2008.63(14):3643-3653.
    [179]金军华.双泡孔结构泡沫塑料制备过程的泡孔成核与生长模拟[D].上海:华东理工大学,2012.
    [180]Z. H. Guo, A. C. Burley, K. W. Koelling, I. Kusaka, L. J. Lee, D. L. Tomasko. CO2 bubble nucleation in polystyrene:experimental and modeling studies[J]. Journal of Applied Polymer Science,2012.125(3):2170-2186.
    [181]Y. Kim, C. B. Park. P. Chen. R. B. Thompson. Towards maximal cell density predictions for polymeric foams[J]. Polymer.2011.52(24):5622-5629.
    [182]J. H. Han, C. D. Han. Bubble nucleation in polymeric liquids. Ⅱ. Theoretical considerations[J]. Journal of Polymer Science,1990,28:743-761.
    [183]J. G. Lee, R. W. Flumerfelt. A Refined Approach to Bubble Nucleation and Polymer Foaming Process:Dissolved Gas and Cluster Size Effects[J]. Journal of Colloid and Interface Science.1996.184:335-348.
    [184]M. A. Shafi,K. Joshi. R. W. Flumerfelt. Bubble size distributions in freely expanded polymer foams[J]. Chemical Engineering Science,1997,52:635-644.
    [185]K. Joshi, J. G. Lee. M. Shafi. R. W. Flumerfelt. Prediction of cellular structure in free expansion of viscoelastic media[J]. Journal of Applied Polymer Science.1998.67: 1353-1368.
    [186]M. Shimoda, I. Tsujimura, M. Tanigaki, M. Ohshima. Polymeric Foaming Simulation for Extrusion Processes[J]. Journal of Cellular Plastics,2001,37:517-536.
    [187]K. J. Lee, D. Y. Moon, O. O. Park, Y. S. Kang. Diffusion of ethylene glycol accompanied by reactions in poly(ethylene terephthalate) melts[J]. Journal of Polymer Science:Part B:Polymer Physics,1992,30:707-716.
    [188]A. L. C. Burke, G. Maier, J. M. DeSimone. Synthesis of polyesters in supercritical carbon dioxide[J]. Polymeric Materials Science and Engineering,1996,74:248-249.
    [189]M. F. Kemmere, T. Meyer. Supercritical Carbon Dioxide in Polymer Reaction Engineering. WILEY-VCH Verlag GmbH & Co 2005, pp.9.
    [190]J. A. Hyatt. Liquid and supercritical carbon dioxide as organic solvents[J]. The Journal of Organic Chemistry,1984,49:5097-5101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700