用户名: 密码: 验证码:
直驱式电液伺服位置及压力控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接驱动容积控制电液伺服系统(DDVC)是交流伺服电动机技术在液压领域中的成功应用。这种新型的伺服系统具有电动机易控制和液压大出力的双重特点,且没有节流、溢流损失,其能量的利用率较高,在频响要求不高的场合,可以替代传统的阀控式电液伺服系统,达到高效节能的目的。
     大量的相关文献表明:美日等国对直驱系统的研究已经比较成熟,已将其应用到多个相关领域,取得了一定的经济效益。但系统的动态特性不好使其应用场合受到很大的制约,但目前对直驱式系统的研究多着眼于该系统在实际工程中的应用,缺乏系统性能改进方面的研究,而且研究者对直驱式压力控制系统的研究也较少,这直接限制了直驱式系统在工程领域中的推广,因此继续深入开展对直驱式位置及压力控制系统的研究,具有重要的学术价值及广阔的应用前景。
     通过对传统电液伺服系统与直驱式电液伺服系统的比较分析,阐述了直驱式电液伺服系统的工作原理、组成及特点。对系统的各个部分进行了详细分析之后建立了直驱式位置控制及压力控制系统的数学模型,并对二者的开环频率特性以及稳定性进行了分析。
     针对直驱式位置控制系统存在起步及转向阶段的大时滞、运行过程中的正反向不对称性等特点,本文在对比分析传统PID控制与模糊控制的基础上,设计出了模糊PID控制器,并进行了相关的仿真分析,仿真结果显示出该控制器具有良好的控制性能。
     在数学模型基础上进行了压力控制系统的仿真分析,结果表明具有良好的输出力控制性能。另外为了分析系统中相关元件对系统性能的影响,本文进行了系统元件匹配方面的仿真分析,为直驱系统的设计以及改进提供了理论依据。
     制定了直驱式容积控制电液伺服系统的实验研究方案,搭建了位置控制以及压力控制实验台,并分别设计了二者的控制系统,进行了直驱式位置控制以及压力控制实验,实验结果验证了理论分析的正确性。另外,在分析不同排量液压泵对系统性能影响的基础上结合直驱式系统运行时液压泵的转速情况,提出了直驱式系统设计时液压泵的选用原则。
Direct Drive Volume Control Servo System (DDVC) which combines AC servo motor technology and frequency conversion technology is a successful application in hydraulic. This new type of servo system is both easy to control, combines the characteristics of large hydraulic output, but also because there is no overflow throttling losses, the higher their energy efficiency, in certain situations, can replace the conventional valve control servo system, reaches high efficiency energy-saving purposes.
     A large number of relevant literature shows that: United States and Japan study on the direct-drive system is relatively mature, and the system has been applied to a number of related areas, made great economic benefits. However, the dynamic characteristics of the system is not very good so that applications are very well constrained, also, the current direct-drive system and its application more focused on the position control system, pressure control system is relatively less, it is also directly limited its application in related fields, thus carrying out the research on direct-drive system, improving its performance, is significant for its practical value and expanding its scope of application.
     Through the comparative analysis of Conventional electro-hydraulic servo system and direct drive servo system, this paper described the working principle of the direct-drive system, composition,strengths and weaknesses. Various parts of the system were established after detailed analysis of the direct drive position control and pressure control system model, and both open-loop frequency characteristics and stability were analyzed.
     For Direct Drive Volume Control System there is a big start and the steering phase delay, the operation process of positive and negative asymmetry and the long run to the hydraulic oil when the nonlinear characteristics, this paper designed the fuzzy PID controller based on the analysis between the traditional PID control and fuzzy control , and conducted the related simulation. Simulation results showed that the controller had good control performance.
     In the mathematical model based on the pressure control system simulation analysis show the output power with good control performance. Furthermore, in order to analyze system-related components of the system performance, this paper carried out the simulation about element matching aspects of the system ,which provides a theoretical basis for direct-drive system design and improve.
     This paper developed a research program, built position control and pressure control test-bed, designed the control systems, and carried on the experiment of direct drive position control and pressure control, the experimental results showed that the theoretical analysis is correct. Based on the analysis of the influence which caused by the pump to the system, and combined with the speed of the pump when DDVC system works, the principle to choose the pump in design of DDVC was derived.
引文
1刘一江,李新平.电液伺服系统的开发研究.实验技术与管理. 2009;(02): 12~14
    2冯德富.电液伺服技术在制动器试验台的应用.现代零部件. 2009;(5): 8~10
    3刘琳,周振辉.电液伺服技术的智能控制及其仿真研究.仪器仪表用户. 2009; (01): 23~26
    4姜继海,苏文海,张洪波,刘庆和.直驱式容积控制电液伺服系统及其在船舶舵机上的应用.中国造船. 2004;(4): 43~46
    5付永领,徐步力,那波.一种新型无伺服阀电液伺服执行器.机床与液压. 2002;(7): 44~45
    6 Sampson Eric, Habibi Saeid, Burton Richard, Chinniah Yuvin. Effect of controller in reducing steady-state error due to flow and force disturbances in the electrohydraulic actuator system. International Journal of Fluid Power, v 5, n 2, p 57-66, August 2004
    7 Jahns Thomas M, Van Nocker, Richard C. IEEE Transactions on Aerospace and Electronic Systems, v 26, n 3, p 534-542, May
    8朱仁学.大型构件压力试验机电液伺服力控制系统建模与仿真.液压气动与密封. 1998;(06): 16~19
    9苏文海.电液混合动力机构及其位置控制系统的试验研究.哈尔滨工业大学硕士学位论文. 2003: 12~16
    10田原.无阀电液伺服系统理论分析及实验研究.哈尔滨工业大学硕士论文. 2002: 6~10
    11姜继海,苏文海,刘庆和.直驱式容积控制电液伺服系统.军民两用技术与产品. 2003;(09): 28~30
    12王洪杰,季天晶,毛新涛,刘全忠.直驱式液压位置控制系统的建模与仿真分析.机床与液压. 2005;(05): 65~67
    13姜继海,涂婉丽,曹健,田胜利,景光辉.火箭舵机用直驱式容积控制电液伺服系统的研究.流体传动与控制. 2005;(01): 13~15
    14周加龙,赵明扬.直驱式容积控制电液伺服系统设计研究.科技创新导报. 2008;(10): 82~84
    15 De Lucena, Samuel E, Suzuki, Edson Y. Electro-hydraulic actuator tester for fly-by-wire aircrafts. IEEE. Instrumentation and Measurement Technology.IMTC,p158-160,2007
    16 Habibi, Saeid. Design of a new high-performance ElectroHydraulic Actuator. IEEE/ASME Transactions on Mechatronics, n 2, p 158-164, Jun
    17 Habibi, Saeid, Goldenberg, Andrew. Design of a new high performance ElectroHydraulic Actuator.IEEE/ASME. International Conference on Advanced Intelligent Mechatronics, AIM, p 227-232, 1999
    18 Jun-ichi Itoh, Naofumi Nomura, Hiroshi Ohsawa. A Comparison between V/f Control and Position-Sensorless Vector Control for the Permanent Magnet Synchronous Motor. 2002 IEEE. VOL. 22, NO. 1,p163-165, APRIL 2001
    19 Narukawa, Kyoko, Zhang, Feifei, Ito. A new concept of diesel engine fuel injection system with DDVC hydraulic actuator. 2008 International Conference on Control, Automation and Systems, ICCAS 2008, p 284-289
    20 Pearson, C.Mark, Reinbold, Eric W. Investigation into the use of high pressure nitrogen breakdown treatments prior to hydraulic fracturing. Proceedings-SPE Annual Western Regional Meeting, p 713-718, 1996
    21 Perter Dahmann, Closed loop and position control of a hydraulic manipulator in brick works with a frequency controlled internal gear pump in motor/pump operation 3rd international fluid power conference Aachen, Germany,p265-267,2002
    22张一丁,徐兵,杨华勇,丁惠公.变转速泵空液压缸实验仿真分析.液压与气动. 2003;(01): 26~28
    23李军,付永领,王占林.新型机载一体化电液作动器的系统设计与仿真.系统仿真学报. 2004;(06): 16~18
    24付永领,李军,罗昀.机载一体化电动作动器的新发展及其关键技术.中国航空学会控制与应用第十届学术年会暨自控分会成立20周年大会论文集,沈阳-大连. 2001;(08): 329-336
    25齐海涛,付永领.基于AMESim的电动静液作动器的仿真分析.机床与液压. Mar. 2007. Vol.35 No.3,24~26
    26祁晓野,付永领,王占林.功率电传机载作动系统方案分析.北京航空航天大学学报. 1999; 25(4): 426-430
    27曹美忠,权龙.变转速泵控系统应用于低周疲劳材料试验机的研究.太原理工大学学报. Vo1.37.No.1.Jan.2006: 7~9
    28王洪杰,王福生,王丽智.基于模糊PID控制的直驱式电液伺服系统的研究.机床与液压. Vo1.35.No.5.May 2007: 108~110
    29陈智军,蔡增伸,施文康.基于模糊自适应PID的材料试验机控制系统.计算机测量与控制. 2005.13(11): 1226~1229
    30武晓峰.连续回转电液伺服马达性能的研究.哈尔滨工业大学硕士学位论文. 2009: 10~15
    31易杰.模糊自适应PID控制器的设计及应用研究.制造自动化. 2009(09): 141~143
    32常虹.给水泵汽轮机直驱式电液伺服油动机的研究.哈尔滨工业大学硕士学位论文. 2009: 8~14
    33卢天日.直驱式电液伺服主动质量驱动系统的研究.哈尔滨工业大学硕士学位论文. 2009: 12~18
    34刘显贵.液压油非线性特性仿真研究.机床与液压. 2008(9): 257~259
    35权龙,李凤兰.注塑机电液控制系统节能原理及最新技术.机床与液压. 1999. No15.6~8
    36王洪杰,季天晶,毛新涛,刘全忠.压力脉动及泄漏特性对直驱式电液位置系统的影响.哈尔滨工业大学学报. Vol.37. No.11. Nov.2005: 1567~1569
    37姜继海,涂婉丽,曹健.直驱式容积控制电液伺服系统动态性能研究.液压与气动. 2005(8): 29~31
    38季天晶,毛新涛,卞先龙.直驱式电液位置系统PID控制的研究.青岛大学学报(工程技术版). 2004(12): 48~51
    39刘恩均,王占林,孙卫华.一种新型EHA及其仿真分析.液压气动与密封. 2005(1): 14~16
    40姜继海,邹小舟,田源道,许明理.磁滞非线性对直驱式电液伺服阀性能的影响.液压气动与密封. 2007(2): 22~24
    41王广怀,李萌,刘庆和.直驱式六自由度运动平台的单通道系统研究.液压与气动. 2007(5): 40~43
    42 Tom Sadeghi, Arthur Lyons. Fault Tolerant EHA Architectures. IEEE AES Systems Magazine, March 1992: 32~42
    43 Kazushi SANADA, Ai HAGINIWA1. A noble fuel injection using DDVC for marine diesel engines and. SICE Annual Conference 2008.August 20-22, 2008: 3003~3007
    44卢红影,姜继海,王頔.基于模糊自适应PID控制策略的液压变压器驱动直线负载系统研究.机床与液压. 2009, 37(1):58~61
    45陶永华.新型PID控制及其应用.机械工业出版社, 1998:101~134
    46 Lorito, Fabrizio. Identification of a grey-box model of nonlinear current transformers for simulation purposes. Control Engineering Practice. 1998, 6(11): 1331~1339
    47 Niels Rode Kristensen, Henrik Manrik Madsen: Parameter Estimation InStochastic Grey-box Models. Automatic, 2004, (20): 225~237
    48 Bohlin, Torsten. Case Study of Grey Box Identification. Automatica, 1994, 30(2):307~318
    49 Kazemian, H.B. Developments of fuzzy PID controllers. Expert Systems. 2005, 20(5):254~264
    50诸静.模糊控制原理与应用.机械工业出版社, 1995:4~12
    51 K. Ziaei, N. Sepehri. Modeling and Identification of Electro-hydraulic Servos. Mechatronics. 2000, (10): 761~772
    52 Lennart Ljung. System Identification Toolbox User’s Guide. Math Works Inc, 1995
    53 Javier Aracil,Francisco Gordillo.Describing function method for stability analysis of PD and PI fuzzy controllers.Fuzzy Sets and Systems 143(2004) 233-249
    54 Yong Ho Kim,Sang Chul Ahn,Wook Hyun Kwon.Computational complexity of general fuzzy logic control and its simplification for a loop controller.Fuzzy Sets and Systems. 2000:215-224
    55韩俊峰,李玉惠等.模糊控制技术.重庆大学出版社. 2005:84~87
    56薛定宇.控制系统计算机辅助设计.清华大学出版社. 2006:372~383
    57 M.M.Ardehali,M.Saboori,M.Teshnelab.Numerical simulation and analysis of fuzzy PID and PSD control methodologies as dynamic energy efficiency measures. Energy Conversion and Management. 2004(45):1981–1992
    58 Dragan D. Kukolj, Slobodan B.Kuzmanovic, Emil Levi.Design of a PID-like compound fuzzy logic controller.Engineering Applications of Artificial Intelligence. 2001 (14):785-803
    59 Gawthrop PJ, Nomikons PE. Automatic tuning of commercial PID controllers for single loop and multiloop applications. IEEE Control Sys. 1990, 10(1):34~43
    60 Misir D, Malki HA, Chen G. Design and analysis of a fuzzy proportional-integral-derivative controller. Fuzzy Sets Systems. 1996, 79(3):297~314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700