用户名: 密码: 验证码:
介孔生物填料流化床和蒙脱石吸附混凝工艺脱氮除酚效能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化废水是一种典型的难降解高酚、高氨氮工业废水,对环境污染严重,而且对人类危害较大。虽然现有的处理方法对废水中的酚、氰、BOD_5具有一定的处理效果,但COD、氨氮及色度等指标一般难以满足排放要求,是我国河流污染的重要污染源之一。本文针对焦化废水处理工艺的研究现状,提出了介孔生物填料流化床与改性蒙脱石吸附混凝的组合工艺,系统地研究了该组合工艺中的介孔生物填料和改性蒙脱石单独对模拟配水及焦化废水中有机物的去除能力及其脱氮性能,进行了组合工艺的小试和实际应用研究,为焦化废水污染问题的解决提供一个可行的方案。
     分别以高浓度苯酚配水和实际焦化废水为研究对象,对介孔生物填料流化床对废水的处理性能进行了研究。结果表明,当HRT为20h,pH在6.6~8.1的范围内,溶解氧在1.8~3.7 mg/L之间时,介孔生物填料流化床反应器可对1000~1500mg/L左右的苯酚溶液和COD为1700~4200mg/L的焦化废水进行有效的降解,苯酚去除率可达99.9%以上,COD去除率在80%左右,NH_4~+-N去除率在70%左右,而且该介孔生物填料流化床具有较强的抗冲击能力和自我恢复能力,并在反应器中发现有同步硝化反硝化作用(SND)的存在。正交试验表明对反应器处理效果影响因素的重要性依次为HRT>DO>进水COD浓度>pH值。而且通过两级介孔生物填料流化床的联用,可以明显提高进水氨氮的负荷,并获得良好的处理效果,出水COD和氨氮已接近排放标准,当保证COD/NH_4~+-N在10以上时,COD去除率可达到95%以上,NH_4~+-N去除率也可达到90%以上,TN去除率可达80%左右。
     根据生化反应不能完全对焦化废水处理达标的特点,以十六烷基三甲基溴化铵为有机改性剂,Na_2CO_3为钠化剂,分别采用普通加热法和微波辐射法制备出两种有机改性蒙脱石和钠化改性蒙脱石,并以苯酚和氯化铵模拟废水为目标,对其吸附性能进行了研究。结果表明,微波有机改性蒙脱石在投量为20 g/L,吸附时间为30 min,pH不大于10的条件下,对苯酚的吸附去除效果最好,去除率可达80.7%;而钠化改性蒙脱石在投量为10 g/L,吸附时间为30 min,pH在7~9之间的条件下,对氨氮的吸附效果最好,其去除率为60%以上。两种吸附材料的吸附过程均可用Freundlich吸附等温方程进行很好地描述。根据吸附热力学函数和动力学的分析,初步判断微波有机改性土在吸附苯酚的过程中主要以物理吸附为主,而钠化蒙脱石的吸附过程主要以化学吸附为主,两种吸附材料的吸附反应均符合二级吸附反应模型,吸附过程活化能分别为2.589和1.613 kJ/mol。将按照质量比为有机蒙脱石:钠基蒙脱石:聚合氯化铝=20:20:1混合而制成的改性蒙脱石复合吸附混凝剂用于焦化废水的深度处理可达到较好的处理效果,当投量为30g/L时,吸附混凝时间为30min时,COD、氨氮去除率和脱色率分别可达84.8%、78.2%和96%。
     论文对介孔生物填料物化的性能进行了研究,结果表明,介孔生物填料表面有大量的负电荷,主要以有机成分为主,含量约为81.6%。而且该填料对反应器中的氧传递起到了促进作用,能够提高反应器中氧总转移系数约10%左右。同时该生物填料对苯酚的吸附作用较小,这表明反应器对苯酚的去除效果中,微生物的降解起到了主要作用,而填料的吸附在其中只占很小的部分。通过对改性蒙脱石表面和结构的表征研究了其改性前后形貌和结构上的变化。结果表明,改性没有改变蒙脱石的基本构型。和原土相比,微波有机改性蒙脱石层间距增加,而比表面积减小;钠化改性蒙脱石的层间距和比表面积都降低。根据表征结果可以推测出OMt中CTA~+的排列方式主要是以紧密的单层CTA~+ M型平卧和单层吸附水分子结合的形式为主;而M-OMt中CTA~+主要以34.1°的倾斜角度呈较稀疏的形式排列,这正是微波有机改性蒙脱石获得较好吸附性能的原因。
     论文还对该组合工艺的运行效能进行了实际应用研究,结果表明,该组合工艺完全可以满足高浓度焦化废水的处理要求,其出水COD、氨氮和总酚的平均值分别为20.56,9.55和0.12 mg/L,远低于国家一级排放标准的要求。通过水质分析发现,该组合工艺对焦化废水中的难降解的杂环化合物等有良好的去除效果,出水主要以烷烃为主。而且该组合工艺运行稳定,能够耐受较大的有机负荷,具有较强的抗冲击能力。本论文为焦化废水严重污染问题的解决提供了一个可行的方案和翔实的数据支持,具有重要的理论意义和实际应用价值。
Coking wastewater is a kind of typical trouble industrial wastewater with high concentration of phenols and NH_4~+-N, which could pollute environment seriously and do harm to human health heavily. Though the effect there was on the treatment of phenol, cyanogens and BOD5 in this wastewater by the existent treatment methods, the effluent COD, NH_4~+-N and colority couldn’t meet the discharge standard, which has been one of the main pollution sources of river in our country. In this paper, according to the research situation of treatment process of coking wastewater, the combination process of biological fluid-bed packed with new mesoporous biological carriers and adsorption coagulation with modification montmorillonite was proposed. Organic compound and nitrogen removal performance of mesoporous biological carriers and modification montmorillonite were investigated in the treatment of simulated wastewater and coking wastewater, and both lab-scale and practical application studies were conducted. This combination process will be a feasible scheme to solve the problem of the coking wastewater pollution.
     High concentration phenol and coking wastewater was regarded as research object, and the organic compound and nitrogen removal performance of fluid-bed packed with mesoporous biological carriers were researched. The results showed that there were good effect on the phenol solution of 1000~1500mg/L and coking wastewater with COD of 1700~4200mg/L in this fluid-bed reactor, the removal efficiency of phenol, COD and NH_4~+-N was above 99.9%, 80% and 70%, respectively, when HRT was 20 h, pH was 6.6~8.1 and DO was 1.8~3.7 mg/L. And this fluid-bed reactor packed with mesoporous biological carriers had the stronger impact resistance and self recovery capability. And it also was found that there was phenomenon of simultaneous nitrification and denitrification (SND) in the reactor. Orthogonal experiment results indicated that the importance of influence factors on treatment effect of this fluid-bed reactor was HRT > DO >influent COD concentration > pH. Furthermore, combination of two stage fluid-bed reactor could evidently improve the loading of influent NH_4~+-N and obtain good treatment effect, effluent COD and NH_4~+-N had been close to the discharge standard. When the ratio of COD/NH_4~+-N was above 10, the removal efficiency of COD, NH_4~+-N and TN was above 95%, 90% and 80%, respectively.
     Because the effluent quality of biological fluid-bed reactor to coking wastewater couldn’t completely meet discharge standard, organic modification montmorillonite and Na-montmorillonite were prepared by common heating method and microwave irradiation using cetyltrimethyl ammonium bromide(CTAB) as organic modifier and Na2CO3 as sodium agent, and the adsorption of simulation phenol and NH4Cl wastewater on these materials was investigated. The results indicated that the adsorption effect of phenol on organic modification montmorillonite by microwave irradiation (M-OMt) was the best, the removal efficiency was 80.7%, when the dosage of this montmorillonite was 20 g/L, adsorption time was 30 min, pH was lower than 10. And the adsorption effect of NH_4~+-N on Na-montmorillonite (Mt(Na)) was the best, the removal efficiency was above 60%, when the dosage of this montmorillonite was 10 g/L, adsorption time was 30 min, pH was 7~9. The adsorption processes of the two montmorillonite materials both were in conformity with Freundlich isothermal adsorption equation. According to the analysis of adsorption thermodynamics and dynamics, it was preliminarily ascertained that the main mechanism of phenoladsorption was physical sorption for M-OMt, and the main mechanism of NH_4~+-N adsorption was chemical sorption for Mt (Na). The adsorption kinetics for two montmorillonite materials could be well described by the pseudo-second order kinetics model, and the adsorption activity energy was 2.589 and 1.613 kJ/mol, respectively. The composite adsorption coagulants prepared with M-OMt : Mt (Na) : polyaluminum chloride = 20 : 20 : 1 (mass ratio) was used to deeply treat coking wastewater, and the treatment effect was also investigation. The results showed that the removal efficiency of COD, NH_4~+-N and colority was 84.8%, 78.2% and 96%, respectively, when the dosage was 30 g/L, adsorption time was 30min.
     Physical and chemical performance of new mesoporous biological carrierswere investigated, the results showed that there were lots of negative charges on the surface of mesoporous biological carriers that was mainly composed oforganic substance with about 81.6% amount. The existence of this biological carrier in the fluid-bed reactor accelerated the process of oxygen transfer, which could improve the oxygen transfer coefficient to about 10%. And the adsorption of phenol on this biological carrier was very low, which indicated that the removal efficiency of phenol in the fluid-bed reactor mainly caused by the degradation of microorganism, not by the adsorption of biological carriers. The change of appearance and structure of montmorillonite before and after modification was also characterized. The results showed that comparison with raw montmorillonite, the interlayer spacing of M-OMt was increased and the specific surface area was decreased; the interlayer spacing and specific surface area of Mt (Na) were all decreased. And the basic raw structure of montmorillonite wasn’t changed after modification. The characteristic results also indicated that the arrangement of CTAB cations in OMt was the close M-type lateral-monolayer combined with the monolayer adsorbed water molecule, however, CTAB in M-OMt was arranged in the form of the orderly and loose inclination angle of 34.1o.
     The practical application was carried out to verify the operation efficiency of this combination process. The results indicated that this combination process could completely meet the treatment requirement of high concentration coking wastewater, the effluent of COD, NH_4~+-N and total phenol was 20.56, 9.55 and 0.12 mg/L, respectively, which was lower than the GradeΙof Wastewater Discharge Standard. According to the analysis of water quality, it was found that there were excellent removal effect of nondigradation heterocyclic compounds in coking wastewater on the combination process, and the main residual organic compounds were alkanes in the effluent of this combination process. And the treatment efficiency of the process was stable, and the combination process could tolerate the bigger organic loading and hydraulic impact. Work of this dissertation has great theoretical and practical value as it provided a feasible technology and enough data basis to solve the problem of the gasification wastewater contamination.
引文
1尹承龙.焦化废水处理存在的问题及其解决对策.工业给排水. 2000, 26(6): 35
    2耿艳楼.简捷硝化一反硝化系统处理焦化废水的研究.清华大学博士论文. 1992: 25~30
    3国家环保局《污水综合排放标准》编委会.污水综合排放标准(GB8978-1996).中国环境科学出版社, 1996:267~275
    4魏新利,李结.焦化废水处理技术的应用与研究进展.环境污染与防治. 2004, 1: 25~26
    5 L. Kai-chee. Immobilized-cell Membrane Bioreactor for High-strength Phenol Wastewater. Journal Environmental Engineering. 2000, 1:75~79
    6张清友.焦化废水的深度处理研究.郑州大学硕士学位论文. 2004:2~3
    7 M. Ahmaruzzaman, D. K. Sharma. Adsorption of Phenols from Wastewater. Journal of Colloid and Interface Science. 2005, 287:14~24.
    8刘心中,姚德,董凤芝,杨新春.粉煤灰在废水处理中的应用.化工矿物与加工. 2002, (8): 4~7,41
    9 W. G. Ztimft. The Biological Rote of Nitric Oxide in Bacteria. Arc Microbiol. 1993, 160: 253~254
    10张昌鸣,窦秀云.焦化废水中NH4+-N脱除研究.工业水处理. 1999, 19(1): 2~23
    11 L. C.Chinq, J. E.Chanq, T. C.Wen. Electrochemical Oxidation Process for the Treatment of Coke-plant Wastewater. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering & Toxic and Hazardous Substance Control. 1995, 30(4):753~771
    12刘小澜,王继徽,黄稳水等.化学沉淀法去除焦化废水中的氨氮.化工环保. 2004, (1): 46~48
    13 M. W. Zdybiewska, B. Kula. Removeal of Ammonia Nitrogen by the Precipitation Method on the Example of Some Selected Waste Water. Water Science and Technology. 1991, 24 (1): 229~234
    14郭金华,田作林,冯天伟等.新型复合混凝剂在焦化废水处理中的应用.长春理工大学学报. 2002, (4): 48~49, 60
    15刘红,周志辉,吴克明. Fenton试剂催化氧化-混凝法处理焦化废水的实验研究.环境科学与技术. 2004, (2): 71~73
    16巩志坚.利用纷顿试剂处理焦化废水.工业水处理. 1997, 7 (6): 4~6
    17杨云龙,白晓平.焦化废水的处理技术与进展.工业用水与废水. 2001, (3): 8~10
    18 St. G. Christoskova. Low-temprature Iron-modified Cobalt Oxide System Part 2: Catalytic Oxidation of Phenol in Aqueous. Applied Catalysis. 2001, (208): 243~249
    19 P. Albin, B. Michèle, G. Pierre. Catalytic Wet Air Oxidation of Kraft Bleach Plant Effluents in a Trickle-bed Reactor over a Ru/TiO2 Catalyst. Applied Catalysis. 2001, (31):275~290
    20 T. H. Syed, S. Abdelbamid. Enhancing the Stability of Mn-Ce-O Wet Oxide Catalyst using Potassium. Applied Catalysis. 2001, (34): 1~9
    21 O. Laetitia, B. J. Jacques, D. A. Daniel. Catalytic Wet Air Oxidation of Phenol and Acrylic Acid over Ru/C and Ru-CeO2/C Catalysts. Applied Catalysis B: Environmental. 2000, (25):267~275
    22 R. A.Larson,E. J.Weber. Reaction Mechanism in Environmental Organic Chemistry. USA: Lewis publishers, 1994:174~195
    23魏宏斌.光催化氧化法的影响因素和发展趋势.上海环境科学. 1995, 14(3): 7~12
    24朱春媚,陈双全,杨曦等.几种难降解有机废水的光化学处理研究.环境科学. 1997, 18(6 ): 27~30
    25王景,张志洁.应用生物强化技术处理焦化废水难降解有机物.城市环境与城市生态. 2000, 6: 26~28
    26张文艺.微电解-混凝-SBR法处理焦化废水.中国给水排水. 2003, 19:58~ 59
    27何国富,周增炎,高廷耀.投加悬浮填料强化传统活性污泥法的脱氮功能试验研究.环境工程. 2003, 21(4): 15~17
    28赵玲.焦化废水生化处理工艺的改进.工业水处理. 1999, 19(1): 44
    29 X. Littleton, Z. Ren. Treatment of Wastewater from Coke Oven and Chemical Recovery Plants by Means of Bioferric Process - an Innovative Technique. Water Science and Technology. 1992, 25(3):143~156
    30聂麦茜,张志杰,雷萍.优势短杆菌对多环芳烃的降解性能.环境科学.2001, 22 (6): 83~85
    31张胜华,吕鹏飞,尹振乾. SBR工艺设计与运行研究.河南城建高等专科学校学报. 2000, 9(1):20~22
    32 H. Q. Yu, F. Wilson, J. H. Tay, G. W. Gu. Effects of Addition of Ferric Hydroxide or Powered Activated Carbon on Sequencing Batch Reactors Treating Coke-plant Wastewater. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering & Toxic and Hazardous Substance Control. 1997, 32(5):1605~1609
    33单明军. SBR工艺处理焦化污水的影响因素.冶金能源. 2001, 20(2): 53~57
    34李春杰,耿玫,顾国维.焦化废水的一体化膜——序批式生物处理.上海环境科学. 2001, 20(1):24~27
    35汪耀斌. HSB技术的特点及其在高难度废水处理中的应用.水资源保护. 2001, (2):23~24
    36赵俊娥,冯国丽.光合细菌法处理焦化废水.西山科技. 2002, (2):17~19
    37雷萍,郭爱莲,张志杰等.投菌法在焦化废水降解中的应用研究.西北大学学报(自然科学版). 2002, 32(3): 303~305
    38 J. L. Wang, X. C. Quan, L. B. Wu, et al. Bioaugmentation as a Tool to Enhance the Removal of Refractory Compound in Coke Plant Wastewater. Process Biochemistry. 2002, 38: 777~781
    39杨平,王彬,石炎福等.生物流化床A-A-O工艺处理焦化废水中试研究.化工学报. 2002, 53(10):1087~1090
    40 P. M.Sutton, J. Hurvid, M. Hoeksema. Biological Fluidized-bed Treatment of Wastewater From Byproduct Coking Operations: Full-scale Case History. Water Environment Federation. 1999, 71(1):5~9
    41 J. T. Pfeffer. Continuous Processing of Toxic Organics in a Fluidized-bed GAC Reactor Employing Varbon Replacement. Biotechnol Bioeng. 1989, 37: 139~148
    42 W. L. Min. Biological Nitrogen Removal from Coke Plant wastewater with External Carbon Addition. Water Environ. Res.. 1998, 70(5): 1090~1095
    43吴立波,王建龙.自固定化高效菌种强化处理焦化废水研究.中国给水排水. 1999, 15(5):1~4
    44 M. Kowalska, M. Bodzek, J. Bohdziewicz. Biodegradation of Phenol andCyanides using Membranes with Immobilizes Microorganism. Process Biochemistry. 1998, 33(2):189~897
    45叶正芳,李彦蜂,李贤真等.曝气生物流化床(ABFB)处理煤气化废水的研究.中国环境科学. 2002, 22(1):32~35
    46 M. Merzouki, J. Delgenes, N. Bernet. Polyphosphate-accumulating and Denitrifying Bactrisolated from Anaerobic Anoxic and Anaerobic-aerobic Sequencing Batch reactors. Current Microbiology. 1999, 38:9~7
    47 J. Liu. Removal of Nitrogen from Coal Gasification and Coke Plant Wastewaters in A/O Submerged Biofilm-activated Sludge (SBF-AS) Hybrid System. Fuel and Energy Abstracts. 1997,38(4):268
    48 B. Michal, B. Jolanta, K. Malgorzata. Immobilized Enzyme Membranes for Phenol and Cyanide Decomposition. Journal of Membrane Science. 1996, 113(2):373~384
    49 M. Zhang, Y. Qian, X. S. Gu. Coke Plant Wastewater Treatment by Fixed Biofilm System for COD and NH4+-N removal. Water. Res.. 1998, 32(2): 519~527
    50 Y. M. Li, G. W. Gu, J. F. Zhao. Anoxic Degradation of Nitrogenous Heterocyclic Compounds by Acclimated Activated Sludge. Process Biochemistry. 2001, 37: 8~86
    51 G. Lettings. Anaerobic Digestion and Wastewater Treatment System. Antonie van Leeuwenhoek. 1995, 67: 97~103, 128
    52张龙,肖文德.厌氧氨氧化菌混培物的培养及上流式厌氧污泥床反应器运行.华东理工大学学报(自然科学版). 2005, 31(1): 99~102
    53朱玉娟,李文利.混凝土处理降低焦化废水中COD值的研究.河北化工. 1997, (3): 48~49
    54刘英聆.折点加氯法脱除焦化废水氨氮的试验研究.兰州大学硕士学位论文. 1997: 120~125
    55钱易,文一波,张辉明.焦化废水中难降解有机物去除的研究.环境科学研究. 1992, 5 (5): 1~8
    56 P. Ning, H. J. Bart, Y. Jiang. Treatment of Organic Pollutants in Coke Plant Wastewater by the Method of Ultrasonic Irradiation, Catalytic Oxidation and Activated Sludge. Separation and Purification Technology. 2005, 41: 133~ 139
    57李春华,张洪林.生物流化床处理废水的研究与应用进展.环境技术. 2002, 4(22): 28~32
    58 A. Patel, J. Zhu, G, Nakhla. Simultaneous Carbon, Nitrogen and Phosphorous Removal from Municipal Wastewater in a Circulating Fluidized Bed Bioreactor. Chemosphere, 2006, 65(7): 1103~1112
    59 D. Georgiou, A. Aivasidis. Decoloration of Textile Wastewater by Means of a Fluidized-bed Loop Reactor and Immobilized Anaerobic Bacteria. Journal of Hazardous Materials. 2006, 135(1-3):372~377
    60 E. Eggers, T. Terlouw. Biological Denitrification in a Fluidized Bed with Sand as Carrier Material. Water Research. 1979, 13(11):1077~1090
    61 N. Fernández, S. Montalvo, F. Fernández-Polanco, et al. Real Evidence about Zeolite as Microorganisms Immobilizer in Anaerobic Fluidized Bed Reactors. Process Biochemistry. 2007, 42(4):721~728
    62 O. Lahav, M. Green. Ammonium Removal using Ion Exchange and Biological Regeneration. Water Research. 1998, 32(7):2019~2028
    63 L. Yang. Investigation of Nitrification by Coimmobilized Nitrifying Bacteria and Zeolite in a Batchwise Fluidized bed. Water Science and Technology. 1997, 35(8):169~175
    64 T. van der Meer, P.H.-M. Kinnunen, A.H. Kaksonen, et al. Effect of Fluidized-bed Carrier Material on Biological Ferric Sulphate Generation. MineralsEngineering. 2007, 20(8):782~792
    65 J. Xing, R. Hickey. Response in Performance of the GAC-fluidized Bed Reactor Process for BTX Removal to Perturbation in Oxygen and Nutrient supply. International Biodeterioration & Biodegradation. 1994, 33(1):23-39
    66 T. C. Voice, D. Pak, X. D. Zhao, et al. Biological Activated Carbon in Fluidized Bed Reactors for the Treatment of Groundwater Contaminated with Volatile Aromatic Hydrocarbons. Water Research. 1992, 26(10): 1389~ 1401
    67 S. W. Maloney, N. R. Adrian, R. F. Hickey, et al. Anaerobic Treatment of Pinkwater in a Fluidized Bed Reactor Containing GAC. Journal of Hazardous Materials. 2002, 92(1):77~88
    68 J. Q. Sang, X. H. Zhang, L. Z. Li, et al. Improvement of Organics Removal by Bio-ceramic Filtration of Raw Water with Addition of Phosphorus. Water Research. 2003, 37(19):4711~4718
    69周春生,李永秋,俞毓馨等.陶粒柱反应器生物膜特性的研究.中国环境科学. 1995, 15(5):351~355
    70南秀杰,李广瑞.生物流化床处理氯苯废水的研究.辽宁化工. 2007, 36(8): 558~562
    71 S. Chen, D. Z. Sun, J. S. Chung. Treatment of Pesticide Wastewater by Moving-bed Biofilm Reactor Combined with Fenton-coagulation Pretreatment. Journal of Hazardous Materials. 2007, 144(1-2):577~584
    72 F. Kloep, I. R?ske, T. R. Neu. Performance and Microbial Structure of a Nitrifying Fluidized-bed Reactor. Water Research. 2000, 34(1):311~319
    73马国平,何玉凤,杨宝芸等.高分子填料在生物法处理废水中的应用进展.化学通报. 2007, (1): 41~46
    74孙娜,林波,李风琴.水处理填料的研究进展.江西化工. 2005, (4): 8~10
    75龙腾锐,郭劲松,方芳等.水处理酶促生物填料的生产性试验研制.重庆建筑大学学报. 2000, 22(3): 1~6
    76 A. Pruden, M. Sedran. Biodegradation of MTBE and BTEX in a Aerobic Fludized Bed Reactor. Water Science and Technology. 2003, 47: 123~128
    77 J. P. Wen. The Denitrification of Nitrate Contained Wastewater in a Gas-liquid-solid Three-phase Flow Airlift Loop Bioreactor. Biochemical Engineering Journal. 2003, 15: 153~157
    78 S. Simoel. Factor Influencing the Nitrification-efficiency of Fluidized Bed Filter with a Plastic Bead Medium. Aquacultural Engineering. 2002, 26: 41~59
    79 T. Satoshi. Dynamic Modeling and Simulation of a Three-phase Fluidized Bed Batch Process for Wastewater Treatment, Process Biochemistry, 2002, 38: 599~604
    80 T. Satoshi. Kinetic Model for Dynamic Response of Three-phase Fluidized Bed Biofilm Reactor for Wastewater Treatment. Biochemical Engineering Journal .2002, 10:31~37
    81 S. Est. Melit Effects of Temperature on Chlorophenol Biodegration Kinetics in Fluidized-bed Reactors with Different Biomass Carriers. Water Research. 1998, 32:81~90
    82 T. F. wang. Three-phase Circulating Experimental Study on Bubble Behavior in Gas-liquid-solid Fluidized Beds. Powder Technology. 2003, 137:83~90
    83周平,钱易.内循环生物流化床处理生活污水的试验研究.给水排水. 1998, 24(10): 28
    84张永明.增加内循环的生物反应器对啤酒废水处理效率的研究.环境科学学报. 2000, 20(6): 727~730
    85 B. Riebe, J. Bors, S. Dultz. Retardation Capacity of Organophilic Bentonite for Anionic Fission Products. Journal of Contaminant Hydrology. 2005, 47 (4): 255~264.
    86谢晓凤,王京刚.粘土矿物材料在水处理中的应用.国外金属矿选矿. 2002, (1): 22~24
    87凌琪,黄明.酸改性蒙脱石对煤气废水预处理的试验研究.矿物学报. 2005, 25(4): 409~413
    88 M. ?nal. Swelling and Cation Exchange Capacity Relationship for the Samples Obtained from a Bentonite by Acid Activations and Heat Treatments. Applied Clay Science. 2007, 37(1-2):74~80
    89 B. Tyagi, C. D. Chudasama, R. V. Jasra. Determination of Structural Modification in Acid Activated Montmorillonite Clay by FT-IR Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2006, 64(2):273~278
    90吴东印.膨润土的提纯和开发应用.矿产保护与应用. 2000, (3): 14~16
    91 A. Haouzi, F. Salles, M. Henry, et al. Thermodynamic Analysis of the Immersion of a Smectite Substituted with Na or Ca: Heat Effect Due to the Cation. Journal of Colloid and Interface Science. 2007, 307(2):531~542
    92 A. Czímerová, J. Bujdák, R. Dohrmann. Traditional and Novel Methods for Estimating the Layer Charge of Smectites. Applied Clay Science. 2006, 34(1-4): 2~13
    93 P. Salerno, M. B. Asenjo, S. Mendioroz. Influence of Preparation Method on Thermal Stability and Acidity of Al–PILCs. Thermochimica Acta. 2001, 379(1-2):101~109
    94孙家寿,刘羽,鲍世聪等.交联粘土矿物的吸附特性研究(II).武汉化工学院学报. 1997, 19(1):34~37
    95马炽丽,田承圣,曾凡桂.钙钠基蒙脱石铝柱撑的制备和表征.硅酸盐通报. 2006, 25(5): 21~26
    96聂锦旭,肖贤明.改性膨润土吸附剂的制备及对苯酚的吸附性能.金属矿山. 2006, 2: 75~79
    97朱利中,陈宝梁.有机膨润土在废水中的应用及其进展.环境科学进展. 1998, 6(3): 53~61
    98 M. S. Rodríguez-Cruz, M. J. Sanchez-Martin, M. Sanchez-Camazano. A Comparative Study of Adsorption of an Anionic and a Non-ionic Surfactant by Soils Based on Physicochemical and Mineralogical Properties of Soils. Chemosphere. 2005, 61:56~64
    99 R. K. Srinivasan, H. S. Fogler. Use of Inorgano-organo-clays in the Removal of Priority Pollutants from Industrial Wasterwaters: Adsorption of Benzo (a)pyrene and Chlorophenols from Aqueous Solutions. Clays and Clay Minerals. 1990, 38(3): 287~293
    100 B. Witthuhn, T. Pernyeszi, P. Klauth, et al. Sorption Study of 2,4- dichloro-phenol on Organoclays Constructed for Soil Bioremediation. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2005, 265:81~87
    101 E. T. Thostenson, T. W. Chou. Microwave Processing: Fundamentals and Applications. Composites: Part A. 1999, 30(9):1055~1071
    102 D. Clark, D. Folz, J. West. Processing Materials with Microwave enery. Materials Science and Engineering. 2000, 287(2):153-158
    103袁继祖,曹明礼,余永富.微波合成蒙脱石层间化合物处理工业废水试验研究.中国非金属矿工业导刊. 2004, (5): 71~73
    104 M. Zemanová, G. Link, S. Takayama, et al. Modification of Layer Charge in Smectites by Microwaves. Applied Clay Science. 2006, 32(3-4):271~282
    105 M. J. Martínez-Ortiz, G. Fetter, J. M. Domínguez, et al. Catalytic Hydrotreating of Heavy Vacuum Gas Oil on Al- and Ti-pillared clays Prepared by Conventional and Microwave Irradiation Methods. Microporous and Mesoporous Materials. 2003, 58(2):73~80
    106吕晓丽,张奶玲,刘景华等.膨润土酸改性技术及改性土对水体中磷吸附研究.非金属矿. 2006, 29(6): 53~55
    107 S. Gitipoar, M. T. Bowers, W. Huff, et al. The Efficiency of Modified BentoniteClays for Removal of Aromatic Organics from Oily Liquid Wastes. Spill Science&Technology Bulletin. 1997, 4 (3):155~164.
    108 F. A. Banat, B. Bashir, S.Asheh, et al. Adsorption of Phenol by Bentonite. Environmental Pollution. 2000, (107): 391~398.
    109 T. A. Wolfe. Adsorption of Organic Pollutants on Montmorillonite Treated with Amines. Water Pollut. Contr. Ted.. 1986, 58(1): 68~76
    110 M. M. Mortland. Clay Organic Complexes as Sorbent Phenol and Chloro-phenols. Clays and Clay Minerals. 1986, 34(6): 423~424
    111 S. A. Boyd. Clay Phentachorophenol Sorption by Organic-Clays. Clays and Clay Minerals, 1988, 36(8): 724~733
    112 C. Breen, R. Watson. Polycation-exchanged Clays as Sorbent for Organic pollutant: Influence of Layer Charge on Pollutant Sorption Capacity. Journal of Colloid and Interface Science. 1998, 208 (2): 422~429
    113 G. J. Churchman. Formation of Complexes between Bentonite and Different Cationic Polyelectrolytes and Their Use as Sorbent for Non-ionic and Anionic Pollutant. Apllied Clay Science. 2002, 21(3):177~189
    114 K. R. Srinivasan. The Removal of Trace Levels from Water by Sorption on Modified Clay. Enviromental Progess. 1985, 4(4): 239~245
    115顾曼华,沈晓强,沈学优等.有机膨润土吸附硝基苯的性能及其在废水处理中的应用.水处理技术. 1994, 20 (2): 236~239.
    116吴平宵,张惠芬,郭九皋等.无机-有机柱撑蒙脱石对苯酚的吸附.地球化学. 1999, 28 (1): 58~68
    117王代芝,许德厦.钠基膨润土对氨氮废水的处理.化学工业与工程技术. 2006, 27 (1): 22~27
    118聂锦旭,肖贤明,刘立凡.改性膨润土吸附废水中氨氮的试验研究.非金属矿. 2006, 29(1): 43~45
    119冀静平,祝万鹏,孙欣等.膨润土的改性及对染料废水的处理研究.中国给水排水. 1998, 14 (4): 7~9
    120杭瑚,胡博路,杨宏等.膨润土吸附-絮凝法处理水中的有机染料.环境科学. 1994, 15(1): 42~45, 49
    121叶玲.铁聚合物改性蒙脱石及其对染料的脱色性能研究.非金属矿. 2002, 25 (6): 48~50
    122孙家寿,刘羽,鲍世聪等.交联粘土矿物的吸附特性研究(II)——铝交联蒙脱石对磷酸根离子的选择吸附.武汉化工学院报. 1997, 19 (1): 34~37
    123周慈由.改性膨润土对赤潮藻种及海水中DRP, COD的去除效果.海洋学报. 1999, 21(2): 49~55
    124 O. Abollino, M. Aceto, M. Malandrino, et al. Adsorption of Heavy Metals onNa-montmorillonite Effect of pH and Organic Substances. Water Research. 2003, 37: 1619~1627
    125郭坤梅,马毅杰,韩和平.膨润土对Pb2+的吸附性能及影响吸附的主要因素.环境科学报. 2000, 20 (5): 654~656
    126李虎杰,田煦,易发成.膨润土改性技术与工业废水处理.矿产综合利用. 1998, (5): 40~43
    127胡付欣,杨性坤.改性膨润土及其在含铬废水处理中的应用研究.非金属矿. 2002, 21(1): 46~47
    128金辉,富江,郑珊杰等.膨润土对的吸附性能研究.水处理技术. 1999, 25 (4): 226~339
    129 M. Wtnnie. Sorption of Heavy-metal Canons by Al and Zr-hydroxy-intercalated and Pillared Bentonite. Clays and Clay Minerals. 1999, 47(5): 617~619
    130 L. Zhu, X. Ren, S. Yu. Use of Cetyltrimethylammonium Bromide-bentonite to Remove Organic Contaminants of Varying Polar Character from Water. Environ. Sci. Technol. 1998, 32: 3374~3378
    131 S. H. Lin, M. J. Cheng. Adsorption of Phenol and Chlorophenol on Organobentonites and Repeated Thermal Regeneratin. Waste Management. 2002, 22: 595~603
    132 F. H. Crocker, W. F. Guerin, S. A. Boyd. Bioavailability of Naphthalene Sorbed to Cationic Surfactant-modified Smectite Clay. Environ. Sci. Technol. 1995, 29: 2951 ~2958
    133 L. Yang, Z. Zhou, L. Xiao, et al. Chemical and Biological Regeneration of HDTMA-modified Montmorillonite after Sorption with Phenol. Environ. Sci. Technol. 2003, 37: 5057~5061
    134黄君礼.密封法测定COD.环境化学. 1982, 1(6):480~490
    135黄君礼,鲍治宇.紫外吸收光普法及其应用.中国科学技术出版社, 1992: 199~202
    136罗太安,刘晓东,李翠珍等.膨润土的酸活化工艺条件优化研究.矿业研究与开发. 2005, 25(4): 35~37
    137 A. E. Murray, J. T. Hollibaugh, C. Orrego. Phylogenetic Composition of Bacterioplankton from Two California Estuaries Compared by Denaturing Gradient Gel Electropho Resis of 16SrDNA Fragments. Appl. Environ.Microbiol.. 1996, 62(7):2676~2680.
    138 H. W. Zhao, D. S. Mavinic, W. K. Oldham, et al. Controlling Factors for Simultaneous Nitrification and Denitrification in a Two-stage Intermittent Aeration Process Treating Domestic Sewage. Water Research. 1999, 33 (4): 961 ~970
    139王弘宇,马放,周丹丹.同步硝化好氧反硝化生物脱氮机理分析及其研究进展.四川环境. 2004, 23(6): 62~70
    140 L. A. Robertson, E. W. J. Neil,R. A. M. Torremans. Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera Pantotropha. Appl. Environ. Microbiol.. 2003, 54 (11): 2812~ 2818
    141 J. B. M. Meiberg, P. M. Bruinenberg, W. Harder. Effect of Dissolved Oxygen Tension on the Metabolism of Methylated Amines in Hyphomicrobium X in the Absence and Presence of Nitrate: Aerobic Denitrification. J. Gen. Microbiol. 2003, 120:453~463
    142 L. A. Robertson, A. M. Torrenlans. Simultaneous Nitrifcation and Denitrification in Aerobic Chemostat Cultures of Thiosphaeera Ptultotropha. Applied and Environmental Microbiology. l988, 54(11):28l2~2818
    143 F. Zermane, M. W. Naceur, B. Cheknane, et al. Adsorption of Humic Acids by a Modified Algerian Montmorillonite in Synthesized Seawater. Desalination. 2005, (179): 375~380
    144 B. S. Krishna, D. S. R. Murty, B. S. Jai Prakash. Surfactant-modified Clay as Adsorbent for Chromate. Applied Clay Science. 2001, (20): 65~71
    145朱利中,陈宝粱,李铭霞等.双阳离子有机膨润土吸附水中有机物的特征及机理研究.环境科学学报. 1999, 19(6): 597~603
    146蒋以超,张一平编.土壤化学过程的物理化学.中国科学技术出版社, 1993: 45~51
    147张增强.重金属镉在土壤中吸持/释放及运移特征的研究.西北农业大学博士论文. 1998: 24~27
    148 Vonopen B, Kordel W, Klein W. Sorption of nonplus and polar compounds to Solis:Processes, measurement and experience with the applicability of the modined OECD-guideline.Chemosphere,1991.22:285~304.
    149 Y. S. Ho, G. McKay. Pseudo-second Order Model for Sorption Process.Process Biochemistry. 1999, 34:451~465
    150近藤精一,石川达雄,安部郁夫著.李国希译.吸附科学(原著第二版).化学工业出版社, 2006: 34, 69
    151尹秀丽,万立骏,杨正宇等.表面活性剂分子的TEM.科学通报, 2002, 47(2): 106~108
    152周公度.无机结构化学.北京:科学出版社, 1984: 118~119
    153朱建喜. HDTMA+柱撑蒙脱石层间域内有机离子的排列、演化模式及构型变化.中国科学院广州地球化学研究所博士论文. 2003: 33~43
    154王红梅,郑振辉,李倩.膨润土及改性膨润土在废水处理中的应用综述.山东化工. 2005, 34: 20~22
    155易发成,杨剑,李虎杰等.膨润土物化性能及其开发利用.中国矿业. 2005, 14(2): 35~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700