用户名: 密码: 验证码:
非线性聚合物的“活性”/可控合成及其自组装行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星形(杂臂)聚合物由于其独特的三维结构和性质,近年来备受高分子科学家的关注。相比于同分子量的线性聚合物,星形(杂臂)聚合物表现出几个明显的特点,如紧凑的结构,低的熔融黏度等。传统的星形(杂臂)聚合物的合成主要采用活性阴离子聚合。但是该法操作条件较为苛刻。最近,“活性”/可控自由基聚合的发展极大地方便了精细结构的星形(杂臂)聚合物的合成,如原子转移自由基聚合(ATRP),稳定自由基聚合(SFRP),可逆加成-断裂链转移(RAFT)聚合,单电子转移活性自由基活性聚合(SET-LRP)。一般来讲,单一的一种“活性”/可控自由基聚合技术很难合成星形(杂臂)聚合物。星形(杂臂)聚合物可以采用结合多种“活性”/可控自由基聚合手段,或者结合其它的活性聚合,以及结合“Click Chemistry”来进行设计合成。两亲性聚合物由于在生物,胶体科学以及基因释放等领域具有极大的潜在用途,近来成为高分子研究的热点一个。两亲性共聚物自组装的聚集体形态受到许多因素的影响:如化学结构,聚合物的分子量,链段的序列,链段的相对含量,以及溶剂的性质等。最近的研究发现共聚物的拓扑结构对共聚物自组装聚集体的性质也有很大的影响。
     本论文主要探索了星形(杂臂)聚合物的合成以及他们在自组装方面的一些性质。研究的内容主要包含以下几个方面:
     (1)成功合成了一种新型的三官能团RAFT试剂,1,3,5-苄基三硫代碳酸酯均三嗪(TTA)。研究了以TTA为RAFT试剂,热引发条件下苯乙烯单体的RAFT本体聚合。聚合结果呈现典型的“活性“/可控特征。通过紫外光谱和荧光激发谱图监控了聚合物的水解过程,结果表明聚合物臂数的理论值与实验值基本吻合。以三臂的PS_3为大分子RAFT试剂,N-异丙基丙烯酰胺(NIPAAM)为第二单体,通过RAFT扩链,得到结构规整的两亲性星形共聚物(PS-b-PNIPAAM)_3。通过GPC,1H NMR对共聚物的结构进行了表征。两亲性星形共聚物(PS-b-PNIPAAM)_3在选择性溶剂(DMF/CH_3OH)进行了组装,通过HPPS, TEM对胶束的粒径进行了分析。实验结果表明,组装体(胶束)的尺寸随着亲水链PNIPAAM的相对摩尔含量增加而增大。在水溶液里聚合物的LCST随着疏水链PS的含量的增加而降低。
     (2)成功合成了新型的三官能团引发剂,1-(乙氧基-O-2,2,6,6-四甲基哌啶-1-氧自由基)-3,5二(溴甲基)-2,4,6-三甲基苯(TEMPO-2Br)。使用该引发剂通过三步法设计合成了目标聚合物PS(PNIPAAM-b-P4VP)_2。首次结合SFRP和ATRP成功合成结构和分子量都可控的星形杂臂聚合物(PS(PNIPAAM)_2),然后再通过ATRP的扩链反应合成目标聚合物。即以PS(PNIPAAM)_2为大分子ATRP引发剂,4-乙烯吡啶(4VP)为单体,成功合成了精致的星形杂臂两亲性共聚物PS(PNIPAAM-b-P4VP)_2。同时对两亲性杂臂聚合物PS(PNIPAAM)_2和PS(PNIPAAM-b-P4VP)_2在水溶液里的自组装行为的进行了研究。当4.7 < pH < 3.0时,组装体主要是球形的胶束;但是当1.0 < pH < 3.0时,出现了棒状胶束和球形胶束的聚集体;当pH < 1.0时,球形胶束基本完全消失,仅仅看到一些纳米棒。聚合物PS(PNIPAAM)_2的LCST只有31 oC,而PS(PNIPAAM-b-P4VP)_2的LCST为35 oC。
     (3)结合SET-LRP和RAFT法成功合成了结构规整的pH刺激响应的两亲性星形杂臂聚合物(PAA)_2(PVAc)_2。第一步利用新合成的四官能团的Iniferter试剂,双溴代的黄原酸酯(Xanthate2-Br2),作为SET-LRP的引发剂,以丙酮为溶剂,在Cu(0)的催化下室温聚合丙烯酸叔丁酯(t-BA)得到两臂的聚丙烯酸叔丁酯(PtBA)_2。聚合行为呈现“活性”/可控的特征。聚合物的分子量随单体转化率线性增长。第二步利用(PtBA)_2作为大分子RAFT试剂,RAFT聚合醋酸乙烯酯(VAc)得到A2B2型星形杂臂聚合物(PtBA)_2(PVAc)_2。最后,通过三氟乙酸选择性水解得到目标的两亲性星形杂臂聚合物(PAA)_2(PVAc)_2。通过GPC, 1H NMR和FT-IR对得到的聚合物进行了表征。该聚合物对环境的pH值呈现出良好的刺激响应性。
     (4)结合SET-LRP和RAFT法成功合成了结构规整的两亲性杂臂聚合物(PNIPAAM)3(PVK)。首先利用新合成的新型四官能团的溴代黄原酸酯(Xanthate-Br3)为SET-LRP引发剂,Cu(0)/PMDETA为催化剂,在室温下进行异丙基丙烯酰胺(NIPAAM)的单电子转移活性自由基聚合,得到星形聚异丙基丙烯酰胺(PNIPAAM)3。然后利用(PNIPAAM)3为大分子RAFT试剂,RAFT聚合N-乙烯基咔唑(NVC)单体,得到目标星形杂臂聚合物。通过GPC,1H NMR图谱对聚合物的结构进行了表征。通过DLS,荧光和紫外光谱对聚合物的光学性能进行了研究。结果发现聚合物(PNIPAAM)3(PVK)在水溶液里进行组装后,胶束的尺寸随温度的升高而增加,荧光光谱发现胶束的荧光强度随温度的升高而增大,并且具有可逆性。
     (5)结合SET-LRP和RAFT法成功合成了全亲水性的星形杂臂聚合物(PNIPAAM)_2(PNVP-b-PAA)_2和(PNIPAAM-b-PAA)_2(PNVP)_2。GPC, 1H NMR对聚合物的结构进行了表征。聚合物(PNIPAAM)_2(PNVP-b-PAA)_2在水溶液里可以根据温度,pH值的变化组装成四种不同结构的胶束。而且通过DLS和照片明显看到胶束的之间可以相互转变。
     (6)成功合成了多官能团的偶合试剂,2,4,6-三(间乙炔苯胺)-1,3,5-三嗪(TPTTA)。首先通过ATRP法合成线性聚苯乙烯(PS-Cl)和聚甲基丙烯酸-N,N-二甲氨基乙酯(PDMAEMA-Br)。聚合物通过和叠氮化钠发生亲核取代反应,成功制备了叠氮取代的聚合物PS-N_3和PDMAEMA-N_3。最后利用TPTTA和叠氮封端的线性聚合物(PS-N_3和PDMAEMA-N_3)通过“Click Chemistry”反应制备PS_3和PS(PDMAEMA)_2星形聚合物。1H NMR, FT-IR, UV和GPC详细分析了聚合物的结构。透射电镜TEM证实两亲性星形杂臂聚合物PS(PDMAEMA)_2在水溶液里可以组装成稳定的球形胶束。
     (7)通过SET-RAFT首次成功实现了炔类单体,甲基丙烯酸炔乙酯的“活性”/可控聚合。聚合动力学显示聚合反应为一级反应,而且聚合物的分子量随单体的转化率的增加而线性增长。聚合物的分子量分布指数在可控的范围之内。相比于其它的“活性”/可控自由基聚合方法(ATRP, RAFT和SET-LRP),SET-RAFT聚合甲基丙烯酸炔乙酯的控制性得到了很大程度的提高,主要是由于聚合体系里存在RAFT试剂和原位产生的Cu(II),导致副反应(链终止,链转移反应)的概率降低。同时,结合SET-RAFT聚合和“Click Chemistry”在Cu(0)/PMDETA的催化下,一锅一步法合成了侧链功能化聚合物。
Star (miktoarm) polymers have being gained great attention over the past decades due to their unique three-dimensional shape and properties. Compared with linear polymers, star polymers manifest many advantages, such as lower solution, melt viscosities and so on, due to their compact structures. Traditional strategy for the synthesis of star (miktoarm) block copolymer relies on the well-known anionic polymerization method, however, which required relatively harsh experimental conditions. The recent advances in controlled/“living”free radical polymerization (LFRP), such as, atom transfer radical polymerization (ATRP), stead Free radical polymerization (SFRP), reversible addition-fragmentation chain transfer (RAFT) polymerization, and single-electron transfer mediated living radical polymerization (SET-LRP), facilitated the synthesis of star (miktoarm) block copolymers with predetermined chemical compositions. However, it is also difficult to prepare star (miktoarm) block copolymers by only one LFRP method in some cases. Most recently, the combinations of two or several CRP methods, or combinations of them with other polymerization methods, such as ring opening polymerization (ROP), living anionic polymerization and“Click chemistry”, have been successfully employed to synthesize the star (miktoarm) block copolymers.
     Amphiphilic copolymers have being attracted many interests because of a wide range of potential applications in biology, colloidal science, drug and gene delivery. The aggregated morphology of the self-assembly formed by the amphiphilic copolymers is affected by many factors, such as the chemical structure and molecular weight of the copolymers, the block sequence, the relative lengths of the hydrophobic and hydrophilic blocks, and the nature of solvents. Recent research has suggested that precise nature of the block copolymer chain architectures (linear or nonlinear) also plays an important role in self-assembly behaviors of the block copolymers.
     Our work in this thesis can be summarized as the following:
     (1) The novel trifunctional reversible addition-fragmentation chain transfer (RAFT) agent, tris(1-phenylethyl) 1,3,5-triazine-2,4,6-triyl trithiocarbonate (TTA), was synthesized and used to prepare the three-armed polystyrene (PS_3) via RAFT polymerization of styrene (St) in bulk with thermal initiation. The polymerization kinetic plot was first order and the molecular weights of polymers increased linearly with the monomer conversions, while keeping narrow molecular weight distributions (Mw/Mn≤1.23). The number of arms of PS_3 was analyzed by gel permeation chromatography (GPC), ultraviolet visible (UV-vis) and fluorescence spectra. Furthermore, the three-armed amphiphilic thermosensitive block copolymer, poly(styrene-b-N-isopropylacrylamide)_3 (PS-b-PNIPAAM)_3, with controlled molecular weight and well-defined structure was also successfully prepared via RAFT chain extension method using the obtained three-armed PS as the macro-RAFT agent and N-isopropylacrylamide as the second monomer. The copolymers obtained were characterized by GPC and 1H nuclear magnetic resonance (NMR) spectra. The self-assembly behaviors of the three-armed amphiphilic block copolymers (PS-b-PNIPAAM)_3 in mixed solution (DMF/CH3OH) were also investigated by high performance particle sizes (HPPS) and transmission electron microscopy (TEM). Interestingly, the lower critical solution temperature (LCST) of aqueous solutions of the three-armed amphiphilic block copolymers (PS-b-PNIPAAM)_3 decreased with the increase of relative length of PS in the block copolymers.
     (2) The novel trifunctional initiator, 1-(4-methyleneoxy-2,2,6,6-tetramethylpiperidinoxyl)-3,5-bi(bromomethyl)-2,4,6-trimethylbenzene (TEMPO-2Br), was sucessfully synthesized and used to prepare the miktoarm star amphiphilic poly(styrene)-(poly(N-isopropylacrylamide))_2 (PS(PNIPAAM)_2) via combination of atom transfer radical polymerization (ATRP) and nitroxide-mediated radical polymerization (NMRP) techniques. Furthermore, the star amphiphilic block copolymer, poly(styrene)-(poly(N-isopropylacrylamide-b-4-vinylpyridine))_2 (PS(PNIPAAM-b-P4VP)_2), was also prepared using PS(PNIPAAM)_2 as the macroinitiator and 4-vinylpyridine as the second monomer by ATRP method. The obtained polymers were well-defined with narrow molecular weight distributions (Mw/Mn≤1.29). Meanwhile, the self-assembly behaviors of the miktoarm amphiphilic block copolymers, PS(PNIPAAM)_2 and PS(PNIPAAM-b-P4VP)_2, were also investigated. Interestingly, the aggregate morphology changed from sphere-shape micelles (4.7 < pH < 3.0) to a mixture of spheres and rods (1.0 < pH < 3.0), and rod-shape nanorods formed when pH value was below 1.0. The LCST of PS(PNIPAAM)_2 (pH = 7) was about 31 oC and the LCST of PS(PNIPAAM-b-P4VP)_2 was about 35 oC (pH = 3).
     (3) The pH-responsive amphiphilic A2B2 miktoarm star block copolymer, poly(acrylic acid)_2-poly(vinyl acetate)_2 ((PAA)_2(PVAc)_2), with controlled molecular weight and well-defined structure was successfully synthesized via combination of single-electron transfer mediated living radical polymerization (SET-LRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization methods. Firstly, the precursor two-armed poly(t-butyl acrylate) (PtBA)_2 functionalized with two xanthate groups was prepared by SET-LRP of t-butyl acrylate in acetone at 25 oC using the novel tetrafunctional bromoxanthate (Xanthate2-Br2) as an Iniferter (initiator-transfer agent-terminator) agent. The polymerization behavior showed typical LRP natures by the first-order polymerization kinetics and the linear dependence of molecular weight of the polymer on the monomer conversion. Secondly, the A2B2 miktoarm star block copolymer (PtBA)_2(PVAc)_2 was prepared by RAFT polymerization of VAc using (PtBA-N3)_2(xanthate)_2 obtained as the macro-RAFT agent. Finally, the pH-sensitive A2B2 amphiphilic miktoarm star block copolymer poly(acrylic acid)_2-poly(vinyl acetate)_2 ((PAA)_2(PVAc)_2) was obtained by selectively cleavage of t-butyl esters of (PtBA)_2(PVAc)_2. All the miktoarm star block copolymers were characterized by GPC, 1H NMR and FT-IR spectra. The self-assembly behaviors of the amphiphilic A2B2 miktoarm block copolymers (PAA)_2(PVAc)_2 were also investigated by transmission electron microscopy (TEM).
     (4) A novel amphiphilic A3B miktoarm star copolymer, poly(N-isopropylacrylamide)_3-poly(N-vinylcarbazole) ((PNIPAAM)_3(PVK)), was successfully synthesized by a combination of single-electron transfer living radical polymerization (SET-LRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. Firstly, the well-defined three-armed poly(N-isopropylacrylamide) (PNIPAAM)_3 was prepared via SET-LRP of N-isopropylacrylamide in acetone at 25 oC using a tetrafunctional bromoxanthate iniferter (Xanthate-Br3) as the initiator and Cu(0)/PMDETA as a catalyst system. Secondly, the target amphiphilic A3B miktoarm star copolymer ((PNIPAAM)_3(PVK)) was prepared via RAFT polymerization of N-vinylcarbazole (NVC) employing (PNIPAAM)_3 as the macro-RAFT agent. The architecture of the amphiphilic A3B miktoarm star copolymers were characterized by GPC, 1H NMR spectra. Furthermore, the fluorescence intensity of micelle increased with the temperature and had a good temperature reversibility, which was investigated by dynamic light scattering (DLS), fluorescent and UV-vis spectra.
     (5) The well-defined miktoarm star terpolymer, poly(N-isopropylacrylamide)_2-poly(N-vinylpyrrolidone-b-acrylic acid)_2 and (poly(N-isopropylacrylamide-b- acrylic acid)_2-poly(N-vinylpyrrolidone)_2, were successfully prepared via a combination of single-electron transfer mediated living radical polymerization (SET-LRP) and RAFT polymerization techniques. All the miktoarm star block copolymers were characterized by GPC, 1H NMR. Interesting, this novel double hydrophilic miktoarm star terpolymer containing pH-responsive PAA and thermo-responsive PNIPAAM segments can self-assemble into four types of micellar aggregates by adjusting solution pH and temperature, the characteristic assembled structures were observed by photo and dynamic light scattering (DLS)。
     (6) Homo/miktoarm star polymers were successfully synthesized via combination of the“arm-first”and“coupling-onto”strategies. Firstly, the multifunctional coupling agent (core), 2, 4, 6-tris(3-ethynylphenyl)-1,3,5-triazine-2,4,6-triamine (TPTTA), was synthesized. Secondly, the linear polystyrene-Cl (PS-Cl) and poly(2-(dimethylamino)ethyl methacrylate)-Br (PDMAEMA-Br) were prepared by atom transfer radical polymerization (ATRP) method. Then, the linear PS-Cl and PDMAEMA-Br chains were modified by a nucleophilic substitution reaction with sodium azide. Finally, homo/miktoarm star polymers PS_3 and PS(PDMAEMA)_2 were designed by click reaction between the core (TPTTA) and the arm precursor (PS-N3 or PDMAEMA-N3). The structures of the PS_3, PS(PDMAEMA)_2 and the precursors were all characterized by 1H NMR, FT-IR, UV and GPC analysis. Moreover, the self-assembly behaviors of the miktoarm amphiphilic copolymer PS(PDMAEMA)_2 was also investigated by transmission electron microscopy (TEM).
     (7) A clickable alkyne monomer, progargyl methacrylate (PgMA), was successfully polymerized in a well-controlled manner via ambient temperature single electron transfer initiation and propagation through the radical addition fragmentation chain transfer (SET-RAFT) method. The living nature of the polymerization was confirmed by the first-order kinetic plots, the linear relationships between molecular weights and the monomer conversions while keeping relatively narrow molecular weight distributions (Mw/Mn≤1.55), and the successful chain-extension with methyl methacrylate (MMA). The better controllability of SET-RAFT than other CRP methods is attributed to the less competitive termination in view of the presence of the chain transfer agent (CTA) as well as the Cu(II) that is generated in situ. Moreover, a one-pot/one-step technique combining SET-RAFT and“click chemistry”methods has been successfully employed to prepare the side-chain functionalized polymers.
引文
1. Szwarc, M.; Levy, M.; Milkovich, R. Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers. J. Am. Chem. Soc., 1956, 78, 2656-2657.
    2. Hsieh, H., L.; Qurirk, R., P.; Ed., Anionic Polymerization, Principles and Practical Applications, Marcel Dekker, Inc., New York, 1996, Chapter 2.
    3. Szwark MC. Living Polymers and Electron Transfer Processes. [M]. New York: Wiely-interscience, 1968.
    4. Miyamoto, M.; Sawamoto, M.; Higashimura, T. Living Polymerization of Isobutyl Vinyl Ether with Hydrogen Iodide/Iodine Initiating System. Macromolecules, 1984, 17, 265-268.
    5. Faust, R.; Kennedy, J. P. Living Carbocationic Polymerization and Demonstration of the Living Polymerization of Isobutylene. Polym.Bull., 1986, 15, 317-323.
    6. Aida, T.; Inoue, S.“Immortal”Polymerization: Polymerization of Epoxide andβ-lactone with Aluminum Porpyrin in the Presence of compound. Macromolecules, 1981, 14, 1162-1166.
    7. Fayt, R.; Forte, R.; Teyssie, P. New Initiator System for the Living Anionic Polymerization of Tert-alkryl Acrylates. Mcaromolecules, 1987, 20, 1442-1444.
    8. Reetz, M. T. New Methods for the Anionic Polymerization ofα-Activated Olefins. Angew. Chem., 1988, 27, 1026-1030.
    9. Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-Catalyzed Living Radical Polymerization. Chem. Rev., 2001, 101, 3689-3745.
    10. Szwarc, M. Living Polymerization: Rationale for Uniform Terminology. J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 1710-1752.
    11. Georges, M. K.; Veregin, P. R. N.; Kazmaier, P. M.; Hamer, G. K. Narrow Molecular Weight Resins by a Free-Radical Polymerization Process. Macromolecules, 1993, 26, 2987-2988.
    12. Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C. J. Development of A Universal Alkoxyamine for“Living”Free Radical Polymerizations. J. Am. Chem. Soc., 1999, 121, 3904-3920.
    13. Benoit, D.; Grimaldi, S.; Robin, S.; Finet, J.P.; Tordo, P.; Gnanou, Y. Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and n-Butyl Acrylate in the Presence of An Acyclicβ-Phosphonylated Nitroxide. J. Am. Chem. Soc., 2000, 122, 5929-5939.
    14. Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H., Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) Using Dithiocarbamates as Chain Transfer Agents. Macromolecules, 1999, 32, 6977-6980.
    15. Goto, A.; Sato, K.; Fukuda, T.; Moad, G.; Rizzardo, E.; Thang, S.H. Mechanism and Kinetics of RAFT (Reversible Addition-Fragmentation Chain Transfer)-Based Controlled Radical Polymerization of Styrene. Polym. Prepr., 1999, 40, 397-398.
    16. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine) Ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating system: Possibility of Living Radical Polymerization. Macromolecules, 1995, 28, 1721-1723.
    17. Wang, J. S.; Matyjaszewski, K. Controlled/Living Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Mental Complexs. J. Am. Chem. Soc., 1995, 117, 5614-5615.
    18. Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjemdahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast Synthesis of Ultrahight Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacryates, and Vinyl, Chloride Mediated by SET at 25 oC. J. Am. Chem. Soc., 2006, 128, 14156-14165.
    19. Werrington, T. E.; Tobolsky, A. V. Organic Disulfides as Initiators of Polymerization: Tetramethylthiuram Disulfide. J. Am. Chem. Soc., 1955, 77, 4510-4512.
    20. (a) Otsu, T.; Yoshida, M.; Tazaki, T. A Model for Living RadicalPolymerization. Makromol. Chem. Rapid Commun., 1982, 3, 133-140. (b) Otsu, T.; Yoshida, M. Role of Initiator-transfer Agent-terminator (iniferter) in Radical Polymerizations: Polymer Design by Organic Disulfides as Iniferters. Makromol. Chem. Rapid Commun., 1982, 3, 127-132.
    21. Matyjaszewski, K. A Commentary on“Role of Initiator-Transfer Agent-Terminator (Iniferter) in Radical Polymerizations: Polymer Design by Organic Disulfides as Iniferters by T. Otsu, M. Yoshida (Macromol. Rapid Commun. 1982, 3, 127-132. Macromol. Rapid. Commun., 2005, 26, 135-142.
    22. Turner, S. R.; Blevins, R. W. Photoinitiated block copolymer formation using dithiocarbamate free radical chemistry. Macromolecules, 1990, 23, 1856-1859.
    23. Moad, G.; Rizzardo, E.; Solomon, D. H. Selectivity of the Reaction of Free Radicals with Styrene. Macromolecules, 1982, 15, 909-914.
    24. Solomom, D. H.; Rizzardo, E.; Cacili, P. Free Radical Polymerization and the Produced Polymers. US4581429, 1985.
    25. Li, J. A.; Zhu, X. L.; Zhu, J.; Cheng, Z. P. Microwave-Assisted Nitroxide-Mediated Radical Polymerization of Styrene. Radiat. Phys. Chem., 2006, 75, 253-258.
    26. Li, J. A.; Zhu, X. L.; Zhu, J.; Cheng, Z. P. Microwave-Assisted Niitroxide-Mediated Miniemulsion Polymerization of Styrene. Radiat. Phys. Chem., 2007, 76, 23-26.
    27. Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C. J. Development of a Universal Alkoxyamine for“Living”Free Radical Polymerizations. J. Am. Chem. Soc., 1999, 121, 3904-3920.
    28. Benoit, D.; Grimaldi, S.; Robin, S.; Finet, J. P.; Tordo, P.; Gnanou, Y. Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and N-Butyl Acrylate in the Presence of an Acyclicβ-Phosphonylated Nitroxide. J. Am. Chem. Soc., 2000, 122, 5929-5939.
    29. Percec, V.; Narboiu, B.“Living”Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI(bpy)nCl. Macromolecules, 1995, 28, 7970-7972.
    30 Paik, H. j.; Teodorescu, M.; Xia, J. H.; Matyjaszewski, K. BlockCopolymerizations of Vinyl Acetate by Combination of Conventional and Atom Transfer Radical Polymerization. Macromolecules, 1999, 32, 7023-7031.
    31. Sarbu, T.; Lin,K. Y.; Spanswick, J.; Gil, R. R.; Siegwart, D. J.; Matyjaszewski, K. Synthesis of Hydroxy-Telechelic Poly(methylacrylate)and Polystyrene by Atom Transfer Radical Coupling. Macromolecules, 2004, 37, 9694-9700.
    32. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine) Ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules, 1995, 28, 1721-1723.
    33. Ando, T.; Kamigaito, M.; Sawamoto, M. Design of Initiators for Living Radical Polymerization of Methyl Methacrylate Mediated by Ruthenium (II) Complex. Tetrahedron, 1997, 53, 15445-15457.
    34. Matyjaszewski, K.; Wang, J. L.; Grimaud, T.; Shipp, D. A. Controlled/“Living”Atom Transfer Radical Polymerization of Methyl Methacrylate Using Various Initiation Systems. Macromolecules, 1998, 31, 1527-1534.
    35. Matyjaszewski, K.; Shipp, D. A.; Wang, J.-L.; Grimaud, T.; Patten, T. E. Utilizing Halide Exchange to Improve Control of Atom Transfer Radical Polymerization. Macromolecules, 1998, 31, 6836-6840.
    36. Neumann, A.; Keul, H.; Hocker, H. Atom Transfer Radical Polymerization (ATRP) of Styrene and Methyl Methacrylate withα,α-Dichlorotoluene as Initiator; a Kinetic Study. Macromol. Chem. Phys., 2000, 201, 980-984.
    37. Wang, J. L.; Grimaud, T.; Matyjaszewski, K. Kinetic Study of the Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules, 1997, 30, 6507-6512.
    38. Moineau, G.; Minet, M.; Dubois, P.; Teyssie, P.; Senninger, T.; Jerome, R. Controlled Radical Polymerization of (Meth) Acrylates by ATRP with NiBr2(PPh3)2 as Catalyst. Macromolecules, 1999, 32, 27-35.
    39. Takahashi, H.; Ando, T.; Kamigaito, M.; Sawamoto, M. Half-Metallocene-Type Ruthenium Complexes as Active Catalysts for Living Radical Polymerization of Methyl Methacrylate and Styrene. Macromolecules, 1999, 32, 3820-3823.
    40. Haddleton, D. M.; Waterson, C.; Derrick, P. J. Monohydroxy Terminally Functionalised Poly(methyl methacrylate) from Atom Transfer Radical Polymerization. Chem. Commun., 1997, 683-684.
    41. Zhang, X.; Matyjaszewski, K. Synthesis of Functional Polystyrenes by Atom Transfer Radical Polymerization Using Protected and Unprotected Carboxylic Acid Initiators. Macromolecules, 1999, 32, 7349-7353.
    42. Granel, C.; Dubois, Ph.; Jerome, R.; Teyssie, Ph. Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(II) Complex and Different Activated Alkyl Halides. Macromolecules, 1996, 29, 8576-8582.
    43. Nishikawa, T.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization in Water and Alcohols: Suspension Polymerization of Methyl Methacrylate with RuCl2(PPh3)3 Complex. Macromolecules, 1999, 32, 2204-2209.
    44. Uegaki, H.; Kamigato, M.; Sawamoto, M. Living Radical Polymerization of Methyl Methacrylate with a Zerovalent Nickel Complex, Ni(PPh3)4. J. Polym. Sci., Part A: Polym. Chem., 1999, 37, 3003-3009.
    45. Ando, T.; Kato, M.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex: Formation of Polymers with Controlled Molecular Weights and Very Narrow Distributions. Macromolecules, 1996, 29, 1070-1072.
    46. Nishikawa, T.; Ando, T.; Kamigaito, M.; Sawamoto, M. Evidence for Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex: Effects of Protic and Radical Compounds and Reinitiation from the Recovered Polymers. Macromolecules, 1997, 30, 2244-2248.
    47. Matyjaszewski, K.; Wei, M.; Xia, J.; McDermott, N. E. Controlled/“Living”Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes. Macromolecules, 1997, 30, 8161-8164.
    48. Matyjaszewski, K.; Jo, S. M.; Paik, H-j.; Gaynor, S. G. Synthesis of Well-Defined Polyacrylonitrile by Atom Transfer Radical Polymerization. Macromolecules, 1997, 30, 6398-6400.
    49. Percec, V.; Narboiu, B.“Living”Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI(bpy)nCl. Macromolecules, 1995, 28, 7970-7972.
    50. Grigoras, C.; Percec, V. Arenesulfonyl bromides: The Second Universal class of Functional Initiators for the Metal-catalyzed Living Radical Polymerization of Methacrylates, Acrylates, and Styrenes. J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 319-330.
    51. Percec, V.; Grigoras, C. Arenesulfonyl Iodides: The Third Universal Class of Functional Initiators for the Metal-Catalyzed Living Radical Polymerization of Methacrylates and Styrenes. J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 3920-3931.
    52. Percec, V.; Grigoras, C. N-chloro Amides, Lactams, Carbamates, and Imides. New Classes of Initiators for the Metal-Catalyzed Living Radical Polymerization of Methacrylates. J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 5283-5299.
    53. Jiang, J. G.; Zhang, K. D.; Zhou, H. Atom Transfer Radical Polymerization Initiated by N-Bromosuccinimide. J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 5811-5816.
    54. Kwak, Y.; Matyjaszewski, K. Effect of Initiator and Ligand Structures on ATRP of Styrene and Methyl Methacrylate Initiated by Alkyl Dithiocarbamate. Macromolecules, 2008, 41, 6627.
    55. Zhang, W.; Zhu, X. L.; Zhu, J.; Chen, J. Y. Atom Transfer Radical Polymerization of Styrene Using a Novel Initiator Ethyl 2-N, N-(Diethylamino)dithiocarbamoyl-Butyrate. J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 32-41.
    56. Zhang, W.; Zhou, N. C.; Zhu, J.; Sun, B and Zhu, X. L. Synthesis of Well-defined Naphthalene and Photo-labile Group Labeled Polystyrene via ATRP. J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 510-518.
    57. Zhang, Z. B.; Zhang, W.; Zhang, W.; Zhu, X. L.; Cheng, Z. P.; Zhu, J. Living/Controlled Free Radical Polymerization of MMA in the Presence of Cobalt (II) 2-ethylheanoate: A Switch from RAFT to ATRP Mechanism. J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 5722-5730.
    58. Kwak, Y.; Nicolay, R.; Matyjaszewski, K. Concurrent ATRP/RAFT of Styrene and Methyl Methacrylate with Dithioesters Catalyzed by Copper(I) Complexes.Macromolecules, 2008, 41, 6602-6604.
    59. Nicolay, R.; Kwak, Y.; Matyjaszewski, K. Concurrent ATRP/RAFT of Styrene and Methyl Methacrylate with Dithioesters Catalyzed by Copper(I) Complexes. Macromolecules, 2008, 41, 4585-4596.
    60. Nicolay, R.; Kwak, Y.; Matyjaszewski, K. A Green Route to Well-Defined High-Molecular-Weight (Co)polymers Using ARGET ATRP with Alkyl Pseudohalides and Copper Catalysis. Angew. Chem. Int. Ed., 2009, 48, 1-5.
    61. Brar A. S., Kaur, S. Tetramethylguanidino-Tris(2-aminoethyl)amine: A Novel Ligand for Copper-Based Atom Transfer Radical Polymerization J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 5906-5922.
    62. Mittal, A.; Sivaram, A. A Novel Tridentate Nitrogen Donor as Ligand in Copper Catalyzed ATRP of Methyl Methacrylate J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 4996-5008.
    63. Ding, S. J.; Shen, Y. Q.; Radose, M. A New Tetradentate Ligand for Atom Transfer Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 3553-3562.
    64. Lee, D.W.; Seo, F. Y.; Cho, S. I.; Yi, C. S. Atom Transfer Radical Polymerization of Methyl Methacrylate by Copper(I)-pyridine-2-carboximidate Catalysts. J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 2747-2755.
    65. Stoffelbach, F.; Poli, R.; Richard, P. Half-Sandwich Molybdenum(III) Compounds Containing Diazadiene Ligands and Their Use in the Controlled Radical Polymerization of Styrene. J . Organomet. Chem., 2002, 663, 269-276.
    66. Brandts, J. A. M.; Van Geijn, P.; Van Faassen, E. E. Controlled Radical Polymerization of Styrene in the Presence of Lithium Molybdate(V) Complexes and Benzylic Halides. J. Organomet. Chem., 1999, 584, 246-253.
    67. Le Grognec, E.; Claverie, R.; Poli, R. Radical Polymerization of Styrene Controlled by Half-Sandwich Mo(III)/Mo(IV) Couples: All Basic Mechanisms are Possible. J. Am. Chem. Soc., 2001, 123, 9513-9524.
    68. Watanabe, Y.; Ando, T.; Kamigaito, M. Ru(Cp)Cl(PPh3): A Versatile Catalyst for Living Radical Polymerization of Methacrylates, Acrylates, and Styrene.Macromolecules, 2001, 34, 4370-4374.
    69. Ando, T.; Kamigaito, M.; Sawamoto, M. Metal Alkoxides as Additives for Ruthenium(II)-catalyzed Living Radical Polymerization. Macromolecules, 2000, 33, 6732-6737.
    70. Tutusaus, O.; Delfosse, S.; Simal, F.; et al. Half-Sandwich Ruthenium Complexes for the Controlled Radical Polymerisation of Vinyl Monomers. Inorg. Chem. Comm., 2002, 5, 941-945.
    71. Kameda, N. Living Radical Polymerization of Methyl Methacrylate with A Rhodium(III) Complex-organic Halide System in Dimethyl Sulfoxide. Polymer, 2006, 38, 516-522.
    72. Ando, T.; Kamigaito, M; Sawamoto, M. Iron(II) Chloride Complex for Living Radical Polymerization of Methyl Methacrylate. Macromolecules, 1997, 30, 4507-4510.
    73. Xia, J. H.; Paik, H. J; Matyjaszewski, K. Polymerization of vinyl Acetate Promoted by Iron Complexes. Macromolecules, 1999, 32, 8310-8314.
    74. Wang, G..; Zhu, X. L.; Cheng, Z. P.; Zhang, Z. B. Reverse Atom transfer radical Polymerization of Methyl Methacrylate with FeCl3/Pyromellitic Acid. Eur. Polym. J., 2003, 39, 2161-2165.
    75. Kotani, Y.; Kamigaito, M.; Sawamoto, M. Re(V)-Mediated Living Radical Polymerization of Styrene: ReO2I(PPh3)/R-I Initiating Systems. Macromolecules, 1999, 32, 2420-2424.
    76. Uegaki, H.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of Methyl Methacrylate with A Zerovalent Nickel Complex, Ni(PPh3). J. Polym. Sci., Part A: Polym. Chem., 1999, 37, 3003-3009.
    77. Lecomte, P.; Drapier, I.; Dubois, P.; et al. Controlled Radical Polymerization of Methyl Methacrylate in the Presence of Palladium Acetate, Triphenylphosphine, and Carbon Tetrachloride. Macromolecules, 1997, 30, 7631-7633.
    78. Haddleton, D. M.; Jasieczek, C. B.; Hannon, M. J.; Shooter, A. J. Atom Transfer Radical Polymerization of Methyl Methacrylate Initiated by Alkyl Bromide and 2-Pyridinecarbaldehyde Imine Copper(I) Complexes. Macromolecules, 1997, 30, 2190-2193.
    79. Haddleton, D. M.; Crossman, M. C.; Dana, B. H.; Duncalf, D. J.; Heming, A. M.; Kukulj, D.; Shooter, A. J. Atom Transfer Polymerization of Methyl Methacrylate Mediated by Alkylpyridylmethanimine Type Ligands, Copper(I) Bromide, and Alkyl Halides in Hydrocarbon Solution. Macromolecules, 1999, 32, 2110-2119.
    80. Xia, J.; Matyjaszewski, K. Controlled/“Living”Radical Polymerization. Atom Transfer Radical Polymerization using Multidentate Amine Ligands. Macromolecules, 1997, 30, 7697-7700.
    81. Teodorescu, M.; Matyjaszewski, K. Atom Transfer Radical Polymerization of (Meth)acrylamides. Macromolecules, 1999, 32, 4826-4831.
    82. Xia, J.; Matyjaszewski, K. Controlled/“Living”Radical Polymerization. Atom Transfer Radical Polymerization Catalyzed by Copper(I) and Picolylamine Complexes. Macromolecules, 1999, 32, 2434-2437.
    83. Xia, J.; Gaynor, S. G.; Matyjaszewski, K. Controlled/“Living”Radical Polymerization. Atom Transfer Radical Polymerization of Acrylates at Ambient Temperature. Macromolecules, 1998, 31, 5958-5959.
    84. Queffelec, J.; Gaynor, S. G.; Matyjaszewski, K. Optimization of Atom Transfer Radical Polymerization Using Cu(I)/Tris(2-(dimethylamino)ethyl)amine as a Catalyst. Macromolecules, 2000, 33, 8629-8639.
    85. Wang, J. S.; Matyjaszewski, K.“Living”/Controlled Radical Polylmerization. Transition-Metal-Catalyzed Atom Tansfer Radical Polymerization in the Presenee of a Conventional Radical Initiator. Macromolecules, l995, 28, 7572-7573.
    86. Xia, J. H.; Matyjaszewski, K. Controlled/“Living”Radical Polymerization. Homogeneous Reverse Atom Transfer Radical Polymerization using AIBN as the Initiator. Macromolecules, 1997, 30, 7692-7696.
    87. Jakubowski, W.; Matyjaszewski, K. Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 4139-4146.
    88. Jakubowski, W; Matyjaszewski, K. Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization of (Meth)acrylates and Related Block Copolymers. Angew. Chem., Int. Ed., 2006, 45, 4482-4486.
    89. Min, K.; Jakubowski, W.; Matyjaszewski, K. AGET ATRP in the Presence ofAir in Miniemulsion and in Bulk. Macromol. Rapid. Commun., 2006, 27, 594-598.
    90. Stoffelbach, F.; Griffete, N.; Buiab, C.; Charleux, B. Use of a Simple Surface-active Initiator in Controlled/Living Free-Radical Miniemulsion Polymerization under AGET and ARGET ATRP Conditions. Chem. Commun., 2008, 4807-4809.
    91. Zhang, L. F.; Cheng, Z. P.; Tang, F.; Li, Q.; Zhu, X. L. Iron(III)-Mediated ATRP of Methyl Methacrylate Using Activators Generated by Electron Transfer. Macromol. Chem. Phys., 2008, 209, 1705-1713.
    92. Luo, R.; Sen, A. Electron-Transfer-Induced Iron-Based Atom Transfer Radical Polymerization of Styrene Derivatives and Copolymerization of Styrene and Methyl Methacrylate. Macromolecules, 2008, 41, 4514-4518
    93. Zhang, L. F.; Cheng, Z. P.; Li, Q. H.; Zhu, X. L. AGET ATRP of Methyl Methacrylate Catalyzed by FeCl3/Iminodiacetic Acid in the Presence of Air. Polymer, 2008, 48, 3054-3059.
    94. Jakubowski, W.; Min, K.; Matyjaszewski, K. Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene. Macromolecules, 2006, 39, 39-45.
    95. Chong, Y. K.; Krstina, J.; Le, T. P. T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S. H. Thiocarbonylthio Compounds [S=C(Ph)S-R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules, 2003, 36, 2256-2272
    96. Moad, G.; Rizzard, E.; Tang, S. H. Toward Livng Radical Polymerization. Acc. Chem. Res., 2008, 41, 1133-1142.
    97. (a) Nilsson, C.; Simpson, N.; Malkoch, M.; Johansson, M.; Malmstrom, E. Synthesis and Thiol-ene Photopolymerization of Allyl-Ether Functionalized Dendrimers. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 1339-1348; (b) Dondoni, A. The Emergence of Thiol-Ene Coupling as a Click Process for Materials and Bioorganic Chemistry. Angew. Chem. Int. Ed., 2008, 47, 8995-8997
    98. Gress, A.; Lkel, A-V.; Schlaad, H. Thio-Click Modification of Poly[2-(3-butenyl)-2-oxazoline]. Macromolecules, 2007, 40, 7928-7933.
    99. Chan, J. W.; Yu, B.; Hoyle, C. E.; Lowe, A. B. Convergent Synthesis of 3-Arm Star Polymers from RAFT-Prepared Poly(N,N-diethylacrylamide) via a Thiol-Ene Click Reaction. Chem. Commun., 2008, 4959-4961.
    100. Pounder, R. J.; Stanford, M. J.; Brooks, P.; Richards, S. P.; Dove, A. P. Metal Free Thiol-Maleimide‘Click’Rreaction as a Mild Functionalisation Strategy for Degradable Polymers. Chem. Commun., 2008, 5158-5160.
    101. Stanford, M. J.; Dove, A. P. One-Pot Synthesis ofα,ω-Chain End Functional, Stereoregular, Star-Shaped Poly(lactide). Macromolecules, 2009, 42, 141-147.
    102. Chen, F.; Cheng, Z. P.; Zhu, J.; Zhang, W.; Zhu, X. L. Synthesis of Poly(vinyl acetate) with Fluorescence via a Combination of RAFT/MADIX and Click Chemistry. Eur. Polym. J, 2008, 44, 1789-1795.
    103. Gondi, S. R.; Vogt, A. P.; Sumerlin, B. S. Versatile Pathway to Functional Telechelics via RAFT Polymerization and Click Chemistry. Macromolecules, 2007, 40, 474-481.
    104. Quémener, D.; Davis, T. P.; Barner-Kowollik, C. Stenzel, M. H. RAFT and Click chemistry: A Versatile Approach to Well-Defined Block Copolymers. Chem. Commun., 2006, 48, 5051-5053.
    105. Zhu, J.; Zhu, X. L.; Kang, E. T.; Neoh, K. G. Design and Synthesis of Star Polymers with Hetero-arms by the Combination of Controlled Radical Polymerization and Click Chemiistry. Polymer, 2007, 48, 69992-6999.
    106. Boyer, C.; Liu, J.; Wong, L.; Tippett, M.; Bulmus, V.; Davis, T. P. Stability and Utility of Pyridyl Disulfide Functionality in RAFT and Conventional Radical Polymerizations. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 7207-7224.
    107. Heredia, K. L.; Nguyen, T. H.; Chang, C. W.; Bulmus, V.; Davis, T. P.; Maynard, H. D. Reversible siRNA-Polymer Conjugates by RAFT Polymerization. Chem. Commun., 2008, 3245-3247.
    108. Inglis, A. J.; Sinwell, S.; Stenzel, M. H.; Barner-Kowollik, C. Angew. Chem. 2009, 121, 2447-2450.
    109. Inglis, A. J.; Sinwell, S.; Stenzel, M. H.; Barner-Kowollik, C. Ultrafast Click Conjugation of Macromolecular Building Blocks at Ambient Temperature. Angew.Chem. Int. Ed, 2009, 48, 2411-2414.
    110. Ghosh, S.; Basu, S.; Thayumanavan, S. Simultaneous and Reversible Functionalization of Copolymers for Biological Applications. Macromolecules, 2006, 39, 5595-5597.
    111. Li, R. C.; Hwang, J.; Maynard. H. D. Reactive block copolymer scaffolds. Chem. Commun., 2007, 3631-3633.
    112. Yang, S. K.; Weck, M. Modular Covalent Multifunctionalization of Copolymers. Macromolecules, 2008, 41, 346-351.
    113. Fleischmann, S.; Rosen, B. M.; Percec, V. SET-LRP of Acrylates in Air. J. Polym. Sci. Part A: Polym. Chem., 2010, 48, 1190-1196.
    114. Guliashvili, T.; Percec, V. A Comparative Computational Study of the Homolytic and Heterolytic Bond Dissociation Energies Involved in the Activation Step of ATRP and SET-LRP of Vinyl Monomers. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 1607-1618.
    115. Guliashvili, T.; Percec, V. Synthesis of Perfectly Bifunctional Polyacrylates by Single-Electron-Transfer Living Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 4684-4695.
    116. Rosen, B. M.; Percec, V. A Density Functional Theory Computational Study of the Role of Ligand on the Stability of CuI and CuII Species Associated with ATRP and SET-LRP. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 4950-4964.
    117. Monteiro, M. J.; Guliashvili, T.; Percec, V. Kinetic Simulation of Single Electron Transfer-Living Radical Polymerization of Methyl Acrylate at 25 oC. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 1835-1847.
    118. Lligadas, G.; Percec, V. Alkyl Chloride Initiators for SET-LRP of Methyl Acrylate. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 4917-4926.
    119. Lligadas, G.; Ladislaw, J. S.; Lligadas, G. Percec, V. Functionally Terminated Poly(methyl acrylate) by SET-LRP Initiated with CHBr3 and CHI3. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 278-288.
    120. Rosen, B. M.; Percec, V. Implications of Monomer and Initiator Structure on the Dissociative Electron-Transfer Step of SET-LRP. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 5663-5697.
    121. Nguyen, N. H.; Rosen, B. M.; Percec, V. SET-LRP of N,N-dimethylacrylamide and of N-isopropylacrylamide at 25°C in protic and in dipolar aprotic solvents. J. Polym. Sci. Part A: Polym. Chem., 2010, 48, 1752-1763.
    122. Bell, C. A.; Whittaker, M. R.; Gahan, L. R.; Monteiro, M. J. Outer-Sphere Electron Transfer Metal-Catalyzed Polymerization of Styrene Using a Macrobicyclic Ligand. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 146-154.
    123. Wright, P. M.; Mantovani, G.; Haddleton, D. M. Polymerization of Methyl Acrylate Mediated by Copper(0)/Me6-TREN in Hydrophobic Media Enhanced by Phenols; Single Electron Transfer-Living Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 7376-7385.
    124. Lligadas, G.; Percec, V. SET-LRP of Acrylates in the Presence of Radical Inhibitors. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 3174-3181.
    125. Whittaker, M. R.; Urbani, C. N.; Monteiro, M. J. Synthesis of Linear and 4-Arm Star Block Copolymers of Poly(methyl acrylate-b-solketal acrylate) by SET-LRP at 25 oC. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 6346-6357.
    126. Lligadas, G.; Percec, V. Ultrafast SET-LRP of Methyl Acrylate at 25 oC in Alcohols. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 2745-2754.
    127. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed., 2001, 40, 2004-2021.
    128. Demko, Z. P.; Sharpless, K. B. A Click Chemistry Approach to Tetrazoles by Huisgen 1,3-Dipolar Cycloaddition: Synthesis of 5-Sulfonyl Tetrazoles from Azides and Sulfonyl Cyanides. Angew. Chem. Int. Ed. 2002, 41, 12, 2110-2113.
    129. Huisgen, R. 1,3-Dipolar Cycloadditions Past and Future. Angew. Chem. Int. Ed. 1963, 2, 565-598.
    130. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective“Ligation”of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 14, 2596-2599.
    131. Torn?e, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem., 2002, 67, 3057-3064.
    132. Gao, H. F.; Louche, G.; Sumerlin, B. S.; Jahed, N.; Golas, P.; Matyjaszewski, K. Gradient Polymer Elution Chromatographic Analysis ofα,ω-Dihydroxypolystyrene Synthesized via ATRP and Click Chemistry. Macromolecules, 2005, 38, 8979-8982.
    133. Dirks, A. J. T.; van Berkel, S. S.; Hatzakis, N. S.; Opsteen, J. A.; van Delft, F.; Cornelissen, L. J. J. L. M.; Rowan, A. E.; Van Hest, J. C. M.; Rutjes, F. P. J. T.; Nolte, R. J. M. Preparation of Biohybrid Amphiphiles via the Copper Catalysed Huisgen [3+2] Dipolar Cycloaddition Reaction. Chem. Commun., 2005, 4172-4174.
    134. Gao, H. F.; Matyjaszewski, K. Synthesis of Star Polymers by a Combination of ATRP and the“Click”Coupling Method. Macromolecules, 2006, 39, 4960-4965.
    135. Laurent, B. A.; Grayson, S. M. An Efficient Route to Well-Defined Macrocyclic Polymers via“Click”Cyclization. J. Am. Chem. Soc., 2006, 128, 4238-4239.
    136. Ossipov, D. A.; Hilborn, J. Poly(vinyl alcohol)-Based Hydrogels Formed by“Click Chemistry”. Macromolecules, 2006, 39, 1709-1718.
    137. Diaz, D. D.; Punna, S.; Holzer, P.; McPherson, A. K.; Sharpless, K. B.; Fokin, V. V.; Finn, M. G. Click Chemistry in Materials Synthesis. Adhesive Polymers from Copper-Catalyzed Azide-Alkyne Cycloaddition. J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 4392-4403.
    138. Englert, B. C.; Bakbak, S.; Bunz, U. H. F. Click Chemistry as a Powerful Tool for the Construction of Functional Poly(p-phenyleneethynylene)s: Comparison of Pre- and Postfunctionalization Schemes. Macromolecules, 2005, 38, 5868-5877.
    139. Parrish, B.; Emrick, T. Soluble Camptothecin Derivatives Prepared by Click Cycloaddition Chemistry on Functional Aliphatic Polyesters. Bioconjugate. Chem., 2007, 18, 263-267
    140. Beil, J. B.; Zimmerman, S. C. Synthesis of Nanosized“Cored”Star Polymers. Macromolecules, 2004, 37, 778-787.
    141. Tsoukatos, T. Pispas, S.; Hadjichristidis. N. Star-Branched Polystyrenes byNitroxide Living Free-Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem., 2001, 39, 320-325.
    142. Miura, Y.; Yoshida. Y. J. Syntheses of Functional Alkoxyamines and Application to Syntheses of Well-Defined Star Polymers. Macromol. Chem. Phys., 2002, 203, 1022-1352.
    143. Mayadunne, R. T. A.; Jeffery, J.; Moad, G.; Rizzardo E. Living Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers. Macromolecules, 2003, 36, 1505-1513.
    144. Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawer, C. J.; Scheel, A.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B. Fokin, V. V. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes. Angew. Chem. Int. Ed., 2004, 43, 3928-3932.
    145. Killops, K.L.; Campos, L. M.; Hawker, C. J. Robust, Efficient, and Orthogonal Synthesis of Dendrimers via Thiol-ene“Click”Chemistry. J. Am. Chem. Soc., 2008, 130, 5062-5064.
    146. Helms, B.; Mynar, J. L.; Hawker, C. J.; Fréchet, J. M. J. Dendronized Linear Polymers via“Click Chemistry”. J. Am. Chem. Soc., 2004, 126, 15020-15021.
    147. Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P. Structurally Diverse Dendritic Libraries: A Highly Efficient Functionalization Approach Using Click Chemistry. Macromolecules, 2005, 38, 3663-3678.
    148. Wu, Peng; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Fokin, V. V.; Sharpless, K. B.; Hawker, C. J. Multivalent, Bifunctional Dendrimers Prepared by Click Chemistry. Chem. Commun., 2005, 5775-5777.
    149. Wu, Peng; Feldman, A. K.; Nugent. A. K.; Hawker, C. J.; Scheel, A.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes. Angew. Chem. Int. Ed., 2004, 43, 3928-3932.
    150. Slater, M.; Snauko, M.; Svec, F.; Fréchet, J. M. J.“Click Chemistry”in the Preparation of Porous Polymer-Based Particulate Stationary Phases forμ-HPLC Separation of Peptides and Proteins. Anal. Chem., 2006, 78, 4969-4975.
    151. Joralemon, M. J.; O’Reilly, R. K.; Matson, J. B.; Nugent, A. K.; Hawker, C. J.; Wooley, K. L. Dendrimers Clicked Together Divergently. Macromolecules, 2005, 38, 5436-5443.
    152. Malkoch, M.; Thibault, R. J.; Drockenmuller, E.; Messerschmidt, M.; Viot, B.; Russell, T. P.; Hawker, C. J. Orthogonal Approaches to the Simultaneous and Cascade Functionalization of Macromolecules Using Click Chemistry. J. Am. Chem. Soc., 2005, 127, 14942-14949.
    153. Tsarevsky, N. V.; Bernaerts, K. V.; Dufour, B.; Matyjaszewski, K. Well-Defined (Co)polymers with 5-Vinyltetrazole Units via Combination of Atom Transfer Radical (Co)polymerization of Acrylonitrile and“Click Chemistry”-Type Postpolymerization Modification. Macromolecules, 2004, 37, 9308-9313.
    154. Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. Highly Efficient“Click”Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. Macromolecules, 2005, 38, 7540-7545.
    155. Tsarevsky, N. V.; Bencherif, S. A.; Matyjaszewski, K. Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions. Macromolecules, 2007, 40, 4439-4445.
    156. Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Step-Growth“Click”Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 3558-3561.
    157. Lutz, J-F. 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science. Angew. Chem. Int. Ed., 2007, 46, 1018-1025.
    158. Dirks, A. J.; van Berkel, S. S.; Hatzakis, N. S.; Opsten, J. A.; van Delft F. L.; Cornellissen, J. J. L. M.; Rowan, A. E.; Van Hest, J. C. M.; Rutjes, F. P. J. T.; Nolte, R. J. M. Preparation of Biohybrid Amphiphiles via the Copper Catalysed Huisgen [3 + 2] Dipolar Cycloaddition Reaction. Chem. Commun., 2005, 4172-4174.
    159. Lutz, J.-F.; BQrner, H. G.; Weichenhan, K. Combining Atom Transfer Radical Polymerization and Click Chemistry: A Versatile Method for the Preparation of End-Functional Polymers. Macromol. Rapid. Commun., 2005, 26, 514-518.
    160. Opsteen, J. A.; van Hest, J. C. M. Modular Synthesis of Block Copolymers via Cycloaddition of Terminal Azide and Alkyne Functionalized Polymers. Chem. Commun., 2005, 57-59.
    161. Laurent, B. A.; Grayson, S. M. An Efficient Route to Well-Defined Macrocyclic Polymers via“Click”Cyclization. J. Am. Chem. Soc., 2006, 128, 4238-4239.
    162. Altintas, O.; Yankul, B.; Hizal, G.; Tunca, U. A3-Type Star Polymers via Click Chemistry. J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 6458-6465.
    163. Gungor, E.; Bilir, C.; Durmaz, H.; Hizal, G.; Tunca, U. Star polymers with POSS via Azide-Alkyne Click Reaction. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 5947-5953.
    164. Gao, H. F.; Matyjaszewski, K. Synthesis of Star Polymers by a Combination of ATRP and the Click coupling method. Macromolecules, 2006, 39, 4960-4965.
    165. Gao, H. F.; Min, K.; Matyjaszewski, K. Synthesis of 3-Arm Star Block Copolymers by Combintion of Core-First and Coupling-onto method Using ATRP and Click Reaction. Macromol. Chem. Phys., 2007, 208, 1370-1378.
    166. Dag, A.; Durmaz, H.; Hizal, G.; Tunca, U. Preparation of 3-Arm Star Polymers (A3) via Diels-Aider Click Reaction. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 302-313.
    167. Durmaz, H.; Karatas, F.; Tunca, U.; Hizal, G. Preparation of ABC miktoarm Star Terpolymer Containing Poly(ethylene glycol), Polystyrene, and Poly(tert-butylacrylate) Arms by Combining Diels-Alder Reaction, Atom Transfer Radical, and Stable Free Radical Polymerization Routes. J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 499-509.
    168. Durmaz, H.; Karatas, F.; Tunca, U.; Hizal, G. Heteroarm H-Shaped Terpolymers through the Combination of the Diels-Alder Reaction and Controlled/living Radical Polymerization Techniques. J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 3947-3957.
    169. Altintas, O.; Yankul, B.; Hizal, G.; Tunca, U. One-pot Preparation of 3-Miktoarm Star Terpolymers via Click [3 + 2] Reaction. J. Polym. Sci., Part A: Polym.Chem., 2007, 45, 3588-3598.
    170. Gungor, E.; Cote, G.; Erdogan, T.; Durmaz, H.; Demirel, A. L.; Hizal, G.; Tunca, U. Heteroarm H-Shaped Terpolymers Through Click Reaction. J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 1055-1065.
    171. Aliatas, O.; Hizal, G.; Tunca, U. ABCD 4-Miktoarm Star Quarterpolymers Using Click [3 + 2] Reaction Strategy. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 1218-1228.
    172. Durmaz, H.; Dag, A.; Hizal, A.; Hizal, G.; Tunca, U. One-Pot Synthesis of Star-Block Copolymers Using Double Click Reaction. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 7091-7100.
    173. Gungor, E.; Durmaz, H.; Hizal, G.; Tunca, U. H-Shaped (ABCDE Type) Quintopolymer via Click Reaction [3 + 2] Strategy. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 4459-4468.
    174. Altintas, O.; Demirel, A. L.; Hizal, G.; Tunca, U. Dendrimer-Like Miktoarm Star Terpolymers: A3(B-C)3 via Click reaction Strategy. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 5916-5928.
    175. Gozgen, A.; Dag, A.; Durmaz, H.; Sirkecloglu, O.; Hizal, G.; Tunca, U. ROMP-NMR-ATRP Combination for Preparation of 3-Miktoarm Star Terpolymer via Click Chemistry. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 497-504.
    176. Liu, H.; Xu, J.; Jiang, J. L.; Yin, J.; Narain, R.; Cai, Y. L. ; Liu, S. Y. Syntheses and Micellar Properties of Well-Defined Amphiphilic AB2 and A2B Y-Shaped Miktoarm Star Copolymers ofε-Caprolactone and 2-(Dimethylamino)ethyl Methacrylate. J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 1446-1462.
    177. Xu, J.; Ge, Z. S.; Zhu, Z. Y.; Luo, S. Z.; Liu, H. W.; Liu, S. Y. Synthesis and Micellization Properties Double Hydrophiphilic A2BA2 and A4BA4 Non-linear Block copolymers. Macromolecules, 2006, 39, 8178-8185.
    178. Zhang, Y. F. ; Liu, H. ; Dong, H. F. ; Li, C. H.; Liu, S. Y. Micelles Possessing Mixed Cores and Thermoresponsive Shells Fabricated from Well-Defined Amphiphilic ABC Miktoarm Star Terpolymers. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 1636-1650.
    179. Li, C. H. ; Ge, Z. S. ; Liu, H. W.; Liu, S. Y. Synthesis of Amphiphilic and Thermoresponsive ABC Miktoarm Star Terpolymer via a Combination of Consecutive Click Reactions and Atom Transfer Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 4001-4013.
    180. Zhang, Y. F.; Li, C.H.; Liu, S. Y. One-Pot Synthesis of ABC Miktoarm Star Terpolymers by Coupling ATRP, ROP and Click Chemistry Techniques. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 3066-3077.
    181. Liu, H.; Li, C. H.; Liu, H. W.; Liu, S. Y. pH-Responsive Supramolecular Self-Assembly of Well-Defined Zwitterionnic ABC Miktoarm Star Terpolymers. Langmuir, 2009, 25, 4724-4734.
    182. Zhang, Y. F.; Liu, H.; Hu, J. M.; Li, C. H.; Liu, S. Y. Synthesis and Aggregation Behavior of Multi-Responsive Double Hydrophiphilic ABC Miktoarm Star Terpolymer. Macromol. Rapid. Commun., 2009, 30, 941-947.
    183. Ge, Z. S.; Cai, Y. L.; Yin, J.; Zhu, Z. Y.; Rao, J. Y.; Liu, S. Y. Synthesis and‘Schizophrenic’Micellization of Double Hydrophilic AB4 Miktoarm Star and AB Diblock Copolymers: Structure and Kinetics of Micellization. Langmuir, 2007, 23, 1114-1122.
    184. Rao, J. Y.; Zhang, Y. F.; Zhang, J. Y.; Liu, S. Y. Facile Preparation of Well-Defined AB2 Y-Shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry. Biomacromolecules, 2008, 9, 2586-2593.
    185. Ge, Z. S.; Xu, J.; Hu, J. M.; Zhang, Y. F.; Liu, S. Y. Synthesis and Supramolecular Self-Assembly of Stimuli-Responsive Water-Soluble Janus-type Heteroarm Star Copolymers. Soft. Matter., 2009, 5, 3932-3939.
    186. Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical Molecular Brushes: Synthesis, Characterization, and Properties. Prog. Polym. Sci., 2008, 33, 759-785.
    187. Neugebaubaer, D.; Zhang, Y.; Pakula, T.; Matyjaszewski, K. PDMS-PEO Densely Grafted Copolymers. Macromolecules, 2005, 38, 8687-8693.
    188. Sumerlin, B. S.; Neugebauer, D.; Matyjaszewski, K. Initiation Efficiency inthe Synthesis of Molecular Brushes by Grafting from via Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 702-708.
    189. Sumerlin, B. S.; Tsarevsky, N.V.; Louche, G.; Lee, R.; Matyjaszewski, K. Highly Efficient“click”Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. Macromolecules, 2005, 38, 7540-7545.
    190. Hua, D. B.; Bai, W.; Xiao, J. P.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. A Strategy for Syntheis of Azide Polymers via Controlled/Living Free Radical Copolymerization of Allyl Azide under 60Coγ-Ray Irradiation. Chem. Mater., 2005, 17, 4574-4576.
    191. Hua, D. B.; Cheng, K.; Bai, W.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. a Strategy for Developing Novel Structural Polyurethanes and Functional Materials. Controlled/living Free-Radical Polymerization of Acryloyl Azide under 60Coγ-Ray Irradiation. Macromolecules, 2005, 38, 3051-3053.
    192. Zheng, H. T.; Hua, D. B.; Bai, R. K.; Hu, K. L.; An, L. J.; Pan, C. Y. Controlled/Living Free-Radical Copolymerization of 4-(Azidecarbonyl) Phenyl Methacrylate with Methyl Acrylate under 60Coγ- Ray Irradiation. J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 2609-2616.
    193. Li, G.; Zheng, H. T.; Bai, R. K. a Facile Strategy for the Preparation of Azide Polymers via Room Temperature RAFT Polymerization by Redox Initiation. Macromol. Rapid. Commun., 2009, 30, 442-447.
    194. Li, Y.; Yang, J. W.; Benicewicz, B. C. Well-Controlled Polymerization of 2-Azidoethyl Methacrylate at Near Room Temperature and Click Functionalization. J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 4300-4308.
    195. Session, L. B.; Miinea, L. A.; Ericson, K. D.; Glueck, D. S.; Grubbs, R. B. Alkyne-Functional Homopolymers and Block Copolymers Through Nitroxide-Mediated Free Radical Polymerization of 4-(phenylethynyl)styrene. Macromolecules, 2005, 38, 2116-2121.
    196. Quemener, D. ; Hellaye, M. L.; Bissett, C.; Davis, T. P.; Barner-kowollik, C.; Stenzal, M. H. Graft Block Copolymers of Propargyl Methacrylate and Vinyl Acetate via a Combination of RAFT/MADIX and Click Chemistry: Reaction Analysis. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 155-173.
    197. Aimi, J.; McCullough, L. A.; Matyjaszewski, K. Synthesis of Poly(vinyacetylene) Block Copolymers by Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 9522-9524.
    198. Krieg, A.; Becer, R.; Hoogenboom, R.; Schubert, U. S. Tailor Made Side-Chain Functionalized Macromolecules by Combination of Controlled Radical Polymerization and Click Chemistry. Macromol. Symp., 2009, 275-276, 73-81.
    199. Geng, J.; Mantovani, G.; Tao, L.; Nicolas, J.; Chen, G. J.; Wallis, R.; Mitchell, D. A.; Johnson, R. G. B. Evans, S. D.; Haddleton, D. M. Site-Directed Conjugation of“Clicked”Glycopolymers To From GlyCoprotein Mimics: Binding to Mammalian Lectin and Induction of Immunological Function. J. Am. Chem. Soc., 2007, 129, 15157-15163.
    200. Ladmiral, V.; Mantovani, G.; Clarkson, G. J.; Cauet, S.; Irwin, J. L.; Haddleton, D. M. Synthesis of Neoglycopolymers by a Combination of“Click Chemistry”and Living Radical Polymerization. J. Am. Chem. Soc., 2006, 128, 4823-4830.
    201. Malkoch, M.; Thibault, R. J.; Drockenmuller, E.; Messerschmidt, M.; Voit, B.; Russell, T. P.; Hawker, C. J. Orthogonal Approaches to the Simultaneous and Cascade Functionalization of Macromolecules Using Click Chemistry. J. Am. Chem. Soc., 2005, 127, 14942-14949.
    202. Sieczkowska, B.; Millaruelo, M.; Messerschmidt, M.; Voit, B. New Photolabile Functional Polymers for Patterning onto Gold Obtained by Click Chemistry. Macromolecules, 2007, 40, 2361-2370.
    203. Gao. H. F.; Matyjaszewski, K. Synthesis of Molecular Brushes by“Grafting onto”Method: Combination of ATRP and Click Reaction. J. Am. Chem. Soc., 2007, 129, 6633-6639.
    204. Tsarevsky, N. V.; Bencherif, S. A.; Matyjaszewski, K. Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions. Macromolecules, 2007, 40, 4439-4445.
    205. Wang, G. W.; Luo, X. L.; Huang, J. L. Synthesis of ABCD 4-Miktoarm Star-Shaped Quarterpolymers by Combination of the‘‘Click’’Chemistry with MultiplePolymerization Mechanism. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 2154-2166.
    206. Luo, X. L.; Wang, G. W.; Pang, X. C.; Huang, J. L. Synthesis of a Novel Kind of Amphiphilic Graft Copolymer with Miktoarm Star-Shaped Side Chains. Macromolecules, 2008, 41, 2315-2317.
    207. Parrish, B.; Emrick, T. Soluble Camptothecin Derivatives Prepared by Click Cycloaddition Chemistry on Functional Aliphatic Polyesters. Bioconjugate Chem., 2007, 18, 263-267.
    208. Parrish, B.; Breitenkamp, R. B.; Emrick, T. PEG- and Peptide-Grafted Aliphatic Polyesters by Click Chemistry. J. Am. Chem. Soc., 2005, 127, 7404-7410.
    209. Luxenhofer, R.; Jordan, R. Click Chemistry with Poly(2-oxazoline)s. Macromolecules, 2006, 39, 3509-3516.
    210. Fijten, M. W.; Haensch, C.; Van Lankvelt, B. M.; Hoogenboom, R.; Schubert, U. S. Clickable Poly(2-Oxazoline)a as Versatile Building Blocks. Macromol. Chem. Phys., 2008, 209, 1887-1895.
    211. Geng, J.; Lindqvist, J.; Mantovani, G.; Haddleton, D. M. Simultaneous Copper(I)-Catalyzed azide-Alkne Cycloaddition (CuAAC) and Living Radical Polmerization. Angew. Chem. Int. Ed., 2008, 47, 4180-4183.
    212. Damiron, D.; Deaorme, M.; Ostaci, R-V.; Akhrass, S.; Hamaide, T.; Drockenmuller, E. Functionalized Random Copolymers from Versatile One-Pot Click Chemitry/ATRP Tandems Approaches. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 3803-3813.
    213. Xu, W. J.; Zhu, X. L.; Chen, Z. P.; Chen, G. J.; Zhu, J. Polymeriztion of Styrene with Tetramethylthiuram Dissulfide as an Initiator in the Presence of 2,2,6,6-Tetramethyl-1-piperidinyloxy. J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 543-551.
    214. Zhang, Z. B.; Zhang, W.; Zhu, X. L.; Cheng, Z. P.; Zhu, J.“Living”/Controlled Free Radical Polymerization of MMA in the Presence of Cobalt(II)
    2-Ethylhexanoate: A Switch from RAFT to ATRP Mechanism. J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 5722-5730.
    215. Zhang, Z. B.; Wang, W. X.; Xia, D. D.; Zhu, J.; Zhang, W.; Zhu, X. L. Single-Electron Transfer Living Radical Polymerization (SET-LRP) of Methyl Methacrylate (MMA) with a Typical RAFT Agent as an Initiator. Macromolecules, 2009, 42, 7360-7366.
    216. Zhang, W.; Zhu, X. L.; Zhu, J.; Chen. J. Y. Atom Transfer Radical Polymerization of Styrene Using a Novel Initiator Ethyl 2-N, N-(Diethylamino)dithiocarbamoyl-Butyrate. J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 32-41.
    217. Tunca, U.; Erdogan, T.; Hizal, G.. Synthesis and Characterization of Well-Defined ABC-Type Triblock Copolymers via Atom Transfer Radical Polymerization and Stable Free-Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 202-2032.
    218. Celik, C.; Hizal, G..; Tunca, U. Synthesis of Miktoarm Star and Miktoarm Star Block Copolymers via a Combination of Atom Transfer Radical olymerization and Stable Free-Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem., 2003, 41, 2542-2548.
    219. Erdogan, T.; Gungor, E.; Durmaz, H.; Hizal, G.; Tunca. U. Photoresponsive Poly(methyl methacrylate)2-(Polystyrene)2 Miktoarm Star Copolymer Containing an Azobenzene Moiety at the Core. J. Polym. Sci., Part A: Polym., Chem., 2006, 44, 1396-1403.
    220. Ranganathan, K.; Deng, R.; Kainthan, R. K.; Wu, Chi.; Brooks, D. E.; Kizhakkedathu, J. N. Synthesis of Thermoresponsive Mixed Arm Star Polymers by Combination of RAFT and ATRP from a Multifunctional Core and Its Self-Assembly in Water. Macromolecules, 2008, 41, 4226-4234.
    221. Liu, C.; Zhang, Y.; Huang, J. L. Well-Defined Star Polymers with Mixed-Arms by Sequential Polymerization of Atom Transfer Radical Polymerization and Reverse Addition-Fragmentation Chain Transfer on a Hyperbranched Polyglycerol Core. Macromolecules, 2008, 41, 325-331.
    222. Wang, S. M.; Cheng, Z. P.; Zhu, J.; Zhang, Z. B.; Zhu, X. L. Synthesis of Amphiphilic and Thermosensitive Graft Copolymers with Fluorescence P(St-co-(p-CMS))-g-PNIPAAM by Combination of NMP and RAFT Methods. J. Polym.Sci., Part A: Polym., Chem., 2007, 45, 5318-5328.
    223. Stridsberg, K. M.; Ryner, M.; Albertsson, A-C. Controlled Ring-Opening Polymerization: Polymers with Designed Macromolecular Architecture. Adv Polym. Sci., 2002, 157, 41-65.
    224. Tunca, U.; Ozyurek, Z.; Erdogan, T.; Hizal, G. Novel Miktofunctional Initiator for the Preparation of an ABC-Type Miktoarm Star Polymer via a Combination of Controlled Polymerization Techniques. J. Polym. Sci., Part A: Polym. Chem., 2003, 41, 4228-4236.
    225. Erdogan, T.; Ozyurek, Z.; Hizal, G.; Tunca. U. Facile Synthesis of AB2-Type Miktoarm Star Polymers through the Combination of Atom Transfer Radical Polymerization and Ring-Opening Polymerization. J. Polym. Sci., Part A: Polym. Chem., 2003, 41, 2313-2320.
    226. Luo, X. L.; Wang, G. W.; Huang, J. Preparation of H-Shaped ABCAB Terpolymers by Atom Transfer Radical Coupling. J. Polym. Sci., Part A: Polym. Chem., 2008, 47, 58-69.
    227. Wang, G. W.; Huang, J. L. Synthesis and Characterization of Well-Defined ABC 3-Miktoarm Star-Shaped Terpolymers Based on Poly(styrene), Poly(ethylene oxide), and Poly(ε-caprolactone) by Combination of the‘‘Living’’Anionic Polymerization with the Ring-Opening Polymerization. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 1136-1150.
    228. Wang, G. W.; Huang, J. L. Preparation of Star-Shaped ABC Copolymers of Polystyrene-Poly(ethylene oxide)-Polyglycidol Using Ethoxyethyl Glycidyl Ether as the Cap Molecule. Macromol. Rapid.Commun. 2007, 28, 298-304
    229. Zhang, L.; Eisenberg, A. Multiple Morphologies and Characteristics of Crew-Cut Micell-Like Aggregates of Polystyrene-b-Poly(acrylates acid) Diblock Copolymers in Solution. Science, 1995, 268, 1728.
    230. Lim, S. P.; Luo, L.; Maysinger, D.; Eisenberg, A. Incorporation and Release of Hydropholic Probes in Biocompatible Polycaprolactone-block-Poly(ethylene oxide) Micelles: Implications for Drug Delivey. Langmuir, 2002, 18, 9996-10004.
    231. Wang, G.; Henselwood, F.; Liu, G. Water-Soluble Poly(2-cinnamoylethylmethacrylate)-block-Poly(acrylate acid) Nanospheres as Traps for Perylene. Langmuir, 1998, 14, 1554-1559.
    232. Wang, H.; Wang, H. H.; Volker, S. U.; Littrell, K. C.; Thiyagarajan, P.; Yu, L. Syntheses of Amphiphilic Diblock Copolymers Cotaining a Conjugated Block and Their Self-Assembling Properties. J. Am. Chem. Soc., 2000, 122, 6855-6861.
    233. Bronstein, L. M.; Chernyshov, D. M.; Karlinsey, R.; Zwanziger, J. W.; Matveeva, V. G.; Sulman, E. M.; Demidenko, G. N.; Hentze, H-P.; Antonietti, M. Mesoporous Alumina and Aluminosilica with Pd and Pt Nanoparticles: Structure and Catalytic Properties. Chem. Mater., 2003, 15, 2623-2631.
    234. Glass, R.; Moeller, M.; Spatz, J. P. Bock Copolymer Micelle Nanoliyhography. Nanotechnology, 2003, 14, 1153-1160.
    235. Halperin, A.; Tirrell, M.; Lodge, T. P. Tethered Chains in Polymer Microstructures. Adv. Polym. Sci., 1992, 100, 31-71.
    236. Yu, K.; Zhang, L.; Eisenberg, A. Novel Morphologies of Crew-Cut Aggregates of Amphiphilic Diblock Copolymers in Dilute Solution. Langmuir, 1996, 12, 5980-5984.
    237. Hui, T.; Chen, D.; Jiang, M. A One-Pot Approach to the Highly Efficient Preparation of Core-Stabilized Polymeric Micelles with Shell Formed by Two in Compatible Polymers. Macromolecules, 2005, 38, 5834-5837.
    238. Discher, D. E.; Eisenberg, A. Materials Science: Soft surfaces: Polymer Vescles. Science, 2002, 297, 967.
    239. Jungmann, N.; Schmidt, M.; Maskos, M.; Weis, J.; Ebenhoch, J. Synthesis of Amphiphilic Poly(organosiloxane) Nanospheres with Different Core-Shell Architectures. Macromolecules, 2002, 35, 6851-6857.
    240. Allen, C.; Eisenberg, A.; Maysinger, D. Copolymer Drug Carriers: Conjugates, Micelles and Microsperes. S. T. P. Pharma. Sci., 1999, 9, 139-151.
    241. Cameron, N. S.; Corbierre, M. K.; Eisenberg, A. Steacie Award Lecture Asymmol/Letric Amphiphilic Block Copolymers In Solution: A Morgological Wonderland. Can. J. Chem., 1999, 77, 1311-1326.
    242. Lazzari, M.; López-Quintela, M. A. Block Copolymers as a Tool forNanomaterial Fabrication. Advanced. Materials, 2003, 15, 1583-1594.
    243. Li G. T.; Fudickar, W.; Skupin M.; Klyszcz, A.; Draeger, C.; Lauer, M.; Fuhrhop, J-H. Rigid Lipid Membranes and Nanometer Clefts: Motifs for the Creation of Molecular Landscapes. Angew. Chem. Int. Ed., 2002, 41, 1828-1852.
    244. Zhang, L.; Eisenberg, A. Formation of Crew-Cut Aggregates of Various Morphologies from Amphiphilic Block Copolymers in Solution. Polym. Adv. Technol., 1998, 9, 677-699.
    245. Shen, H.; Eisenberg, A.; Block Length Dependence of Morphological Phase Diagrams of the Ternary Systerm of PS-b-PAA/Dioxane/H2O. Macromolecules, 2000, 33, 2561-2572.
    246. Yu, Y.; Eisenberg, A. Morphological Effect of Solvent on Crew-cut Aggregtes of Amphiphilic Diblock Copolymer. Macromolecules, 1998, 31, 1144-1154.
    247. Zhang, L.; Yu, K.; Eisenberg, A.; On-induced Morphological Changes in“crew-cut”Aggregates of Amphiphilic Block Copolymer. Science, 1996, 273, 1777.
    248. Zhang, L.; Eisenberg, A.; Morphological Effect of Added Ions on Crew-cut Aggregates of Polystyrene-b-Poly(acrylate acid) Block Copolymers in Solution. Macromolecules, 1996, 29, 8805-8815.
    249. Shen, H.; Zhang, L.; Eisenberg, A. Muitiple pH-induced Morphological Changes in Aggregates of Polystyrene-b-Poly(4-vinylpyridine) in DMF/H2O Mixtures. J. Am. Chem. Soc., 1999, 121, 2728-2740.
    250. Zhang, L.; Eisenberg, A. Phase Separation Behavior and Crew-cut Micelle Formation of Polystyrene-b-Poly(acrylate acid) Copolymers in Solution. Macromolecules, 1997, 30, 1001-1011.
    251. Zhang, L.; Eisenberg, A. Crew-cut Aggregates from Self-assembly of Blends of Polystyrene-b-Poly(acrylate acid) Block Copolymers and Homopolystyrene in Solution. J. Polym. Sci. B.: Polym. Phys., 1999, 37, 1469-1484.
    252. Desbaumes, L.; Eisenberg, A. Single-Solvent Preparation of Crew-cut Aggregate of Various Morphologies from an Amphiphilic Diblock Copolmer. Langmuir, 1999, 15, 36-38.
    253. Hu, D. J.; Cheng, Z. P.; Zhu, J.; Zhu, X. L. Brush-Type AmphiphilicPolystyrene-g-Poly(2-(dimethylamino)ethyl methacrylate)) Copolymers from ATRP and Their Self-Assembly in Selective Solvents. Polymer, 2005, 46, 7563-7571.
    254. Yuan, J.; Li ,Y.; Li, X.; Cheng, S.; Jiang, L.; Feng, L.; Fan, Z.; The“crew-cut”Aggregates of Polystyrene-b-Poly(ethylene oxide)-b-Polystyrene Triblock Copolymers in Aqueous Media. Eur. Poly. J., 2003, 39, 767-776.
    255. Ding, J.; Liu, G. Water-Soluble Hollow Nanospheres as Potential Drug Carriers. J. Phys. Chem. B. 1998, 102, 6107-6113.
    256. Schild, H. G. Poly(N-isopropylacrylamide): Experiment, Theory, and Application. Prog. Polym. Sci., 1992, 17, 163-249.
    257. Kim, S.; Healy, K. E. Synthesis and Characterization of Injectable Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels with Proteolytically Degradable Cross-Links. Biomacromolecules, 2003, 4, 1214-1223.
    258. Vernon, B.; Gutowska, A.; Kim, S. W.; Bae, Y. H.; Macromol. Symp., 1996, 109, 155-167.
    259. Taylor, L. D.; Cerankowski, L. D. J. Polym. Sci.,Polym. Chem. Ed., 1975, 13, 2551-2569.
    260. Stile, R. A.; Burghardt, W. R.; Healy, K. E.; Synthesis and Characterization of Injectable Poly(N-isopropylacrylamide)-Based Hydrogels that Support Tissue Formation in Vitro. Macromolecules, 1999, 32, 7370-7379.
    261. Shibayama, M.; Tanaka, T. Volume Phase Transition and Related Phonmena of Polymer Gels. Adv. Polym. Sci., 1993, 109, 1-62.
    262. Chen, G.; Hoffman, A. S. Graft Copolymers That Exhibit Temperature-induced Phase Transition over a Wide Rang of pH. Nature, 1996, 373, 49.
    263. Aoyagi, T.; Ebara, M.; Sakai, K.; Sakurai, Y.; Okano, T.; Novel Bifunctional Polymer with Reactivity and Temperature Sensitivity. J. Biomater. Sci., Polym Ed., 2000, 11, 101-110.
    264. Weaver, J. V. M.; Bannister, I.; Robinson, K. L.; Bories-Azeau, X.; Armes, S. P.; Smallridge, M.; McKenna, P. Stimulus-Responsive Water-Sobuble Polymers Based on 2-Hydroxyethyl Methacrylate. Macromolecules, 2004, 37, 2395-2403.
    265. Xia, Y.; Yin, X. C.; Burke, N. A. D. Stover, H. D. H. Thermal Response ofNarrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 5937-5943.
    266. Plummer, R.; Hill, D. J. T.; Whittaker, A. K. Solution Properties Star and Linear Poly(N-isopropylacrylamide). Macromolecules, 2006, 39, 8379-8388.
    267. Liu, S. Y.; Armes, S. P. Polymeric Surfactants for the New Millennium: A pH-Responsive, Zwitterionic, Schizophrenic Diblock Copolymer. Angew. Chem. Int. Ed., 2002, 41, 1413-1416.
    268. Liu, F.; Eisenberg, A. Preparation and pH Triggered Inversion of Vesicles from Poly(acrylate acid)-block-Polystyrene-Block-Poly(4-vinyl pyridine). J. Am. Chem. Soc., 2003, 125, 15059-15064.
    269. Kamichi, M.; Kurihara, M.; Still, J. K. Synthesis of Block Polymers for Desalination Membranes. Preparation of Block Copolymers of 2-vinylpyridine and Methacrylic Acid or Acrylic Acid. Macromolecules, 1972, 6, 161-167.
    270. Kabanov, A. V.; Kabanov, V. A. Interpolyelectrolyte and Block Ionomer Complexes for Gene Delivery: Physicochemical Aspects. Adv. Drug. Deliv. Rev., 1998, 30, 49-60.
    271. Colfen, H.; Antonietti, M. Crystal Design of Calcium Carbonate Mircroparticles using Duoble-Hydrophiphilic Block Copolymer. Langmuir, 1998, 14, 582-589.
    272. Xu, J.; Liu, S. Y. Polymeric Nanocarriers Possessing Thermoresponsive Coronas. Soft. Matter., 2008, 4, 1745-1749.
    273. Ge, Z. S.; Liu, S. Y. Supramolecular Self-Assemnly of Nonlinear Amphiphilic and Hydrophilic Block Copolymers in Aqueous Solution. Macromol. Rapid. Commun., 2009, 30, 1523-1532.
    274. Sioula, S. Hadjichristidia, N.; Thmos, E. L. Novel 2-Dimensionally Periodic Non-Contant Mean Curvature Morphologies of 3-Miktoarm Star Terpolymers of Styrene, Isoprene, and Methyl Methacrylate. Macromolecules, 1998, 31, 5272-5277.
    275. Huckstadt, H.; Gopfert, A.; Abetz, V. Synthesis and Morphology of ABC Heteroarm Star Terpolymers of Polystyrene, Polybutadiene and Poly(2-vinylpyridine). Macromol. Chem. Phys., 2000, 201, 296-307.
    276. Bey. F. L.; Gido, S. P.; Velis, G.; Hadjichristidia, N.; Tan, N. B. Morphological Behavior of A5B Miktoarm Star Block Copolymer. Macromolecules, 1999, 32, 6604-6607.
    277. Stenzel-Rosenbaum, M.; Davis, T. P.; Chen, V.; Fane, A. G. Star-Polymer Synthesis via Radical Reversible Addition-Fragmentation Chain-Transfer Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2001, 39, 2777-2783.
    278. Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. Multiarm Organic Compounds for Use as Reversible Chain-Transfer Agents in Living Radical Polymerizations. Tetrahedron. Lett., 2002, 43, 6811-6814.
    279. Stenzel, M. H.; Davis, T. P. Star Polymer Synthesis using Trithiocarbonate Functionalβ-cyclodextrin Cores (Reversible Addition-Fragmentation Chain-Transfer Polymerization). J. Polym. Sci. Part A: Polym. Chem., 2002, 40, 4498-4512.
    280. Zheng, Q.; Pan, C. Y. Synthesis and Characterization of Dendrimer-Star Polymer Using Dithiobenzoate-Terminated Poly(propylene imine) Dendrimer via Reversible Addition-Fragmentation Transfer Polymerization. Macromolecules, 2005, 38, 6841-6848.
    281. Zhou, G. C.; He, J. B.; Harruna, I. I. Self-Assembly of Amphiphilic Tris(2,2’-bipyridine)Ruthenium-Cored Star-Shaped Polymers. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 4204-4210.
    282. Jesberger, M.; Barner, L.; Stenzel, M. H.; Malmstr?m, E.; Davis, T. P.; Barner-Kowollik, C. J. Polym. Sci. Part A: Polym. Chem., 2003, 41, 3847-3861.
    283. Feng, X. S.; Pan, C. Y. Synthesis of Amphiphilic Miktoarm ABC Star Copolymers by RAFT Mechanism using Maleic Anhydride as Linking Agent. Macromolecules, 2002, 35, 4888-4893.
    284. Heskins, M.; Guillet, J. E. Solution properties of poly (N-isopropylacrylamide). J. Macromol. Sci. Chem., 1968, A2, 1441-1455.
    285. Zhang G. Z.; Wu, C. Reentrant Coil-to-Globule-to-Coil Transition of a Single Linear Homopolymer Chain in a Water/Methanol Mixture. Phys. Rev. Lett., 2001, 86, 822-825.
    286. Plummer, R.; Hill, D. J. T.; Whittaker, A. K. Solution Properties of Star andLinear Poly(N-isopropylacrylamide). Macromolecules, 2006, 39, 8379-8388.
    287. Zheng, G. H., Pan, C. Y. Preparation of Star Polymers Based on Polystyrene or Poly(styrene-b-N-isopropyl acrylamide) and Divinylbenzene via Reversible Addition-Fragmentation Chain Transfer Polymerization. Polymer, 2005, 46, 2802-2810.
    288. Boschmann, D.; Vana, P. Z-RAFT Star Polymerizations of Acrylates: Star Coupling via Intermolecular Chain Transfer to Polymer. Macromolecules, 2007, 40, 2683-2693.
    289. Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, A.; Thang. S. H. Living Polymers by the Use of Trithiocarbonates as Reversible Addition Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps. Macromolecules, 2000, 33, 243-245.
    290. Roshan, T.; Mayadunne, A.; Jeffery, J.; Moad, G., Rizzardo, E. Living Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers. Macromolecules, 2003, 36, 1505-1513.
    291. Wang, Z. M.; He, J.; Tao, Y. F.; Yang, L.; Jiang, H. J.; Yang, Y. L. Controlled Chain Branching by RAFT-Based Radical Polymerization. Macromolecules, 2003, 36, 7446-7452.
    292. Favier, A.; Ladaviere, C.; Charreyre, M. T.; Pichot, C. MALDI-TOF MS Investigation of the RAFT Polymerization of a Water-Soluble Acrylamide Derivative. Macromolecules, 2004, 37, 2026-2034.
    293. Bae, Y. H.; Okano, T.; Kim, S. W.“On-Off”Thermocontrol of Solute Transport. Temperature Dependence of Swelling of N-Isopropylacrylamide Networks Modified with Hydrophobic Components in Water. Pharm. Res., 1991, 8, 531-537.
    294. Szczubiaka, K.; Loska, R.; Nowakowska, M. Temperature-Induced Aggregation of the Copolymers of N-isopropylacrylamide and Sodium 2-Acrylamido-2-Methyl-1-Propanesulphonate in Aqueous Solutions. J. Polym. Sci. Part A: Polym. Chem., 2001, 43, 2784-2792.
    295. Chee, C. k.; Rimmer, S.; Soutar, L.; Swanson, L. Synthesis and Conformational Behaviour of Luminescently Labelled Poly[styrene-graft-(N-isopropyl acrylamide)] Copolymers. Polym. Int., 2006, 55, 740-748.
    296. Glaied, O.; Delaite, C.; Dumas, P. Synthesis of A2B Star Block Copolymers from a Heterotrifunctional Initiator. J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 1796-1806.
    297. Heise, A.; Trollsas, M.; Magbitang, T.; Hedrick, J. L.; Frank, C. W.; Miller, R. D. Star Polymers with Alternating Arms from Miktofunctional Multi-initiators using Consecutive Atom Transfer Radical Polymerization and Ring-Opening Polymerization. Macromolecules, 2001, 34, 2798-2804.
    298. Teng, J.; Zubarev, E. R. Synthesis and Self-Assembly of a Heteroarm Star Amphiphile with Alternating Arms and a Well-Defined Core. J. Am. Chem. Soc., 2003, 125, 11840-11841.
    299. Xu, J.; Zubarev, E. R. Supramolecular Assemblies of Starlike and V-Shaped PB-PEO Amphiphiles. Angew. Chem. Int. Ed., 2004, 43, 5491-5496.
    300. Yu, X. F.; Shi, T. F.; Zhang, G.; An, L. J. Synthesis of Asymmetric H-shaped Block Copolymer by the Combination of Atom Transfer Radical Polymerization and Living Anionic Polymerization. Polymer, 2006, 47, 1538-1546.
    301. Miura, Y.; Narumi, A.; Matsuya, S.; Satoh, T.; Duan, Q.; Kaga, H.; Kakuchi, T. Synthesis of Well-defined AB20-Type Star Polymers with Cyclodextrin-Core by Combination of NMP and ATRP. J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 4271-4279.
    302. Hoogenboom, R.; Moore, B. C.; Schubert, U. S. Synthesis of Star-Shaped Poly(ε-caprolactone) via“Click”Chemistry and Supramolecular Click Chemistry. Chem. Commun., 2006, 4010-4012.
    303. Yin, H. Q.; Kang, S-W.; Bae, Y. H. Polymersome Formation from AB2 Type 3-Miktoarm Star Copolymers. Macromolecules, 2009, 42, 7456-7464.
    304. Vora, A.; Singh, K.; Webster, D. C. A New Approach to 3-Miktoarm Star Polymers Using a Combination of Reversible Addition-Fragmentation Chain Transfer (RAFT) and Ring Opening Polymerization (ROP) via‘‘Click’’Chemistry. Polymer, 2009, 50, 2768-2774.
    305. Glaled, O.; Delaite, C.; Dumas, P. Synthesis of PS(PEO)3 Star Block Copolymers From a Heterotetrafunctional Initiator. J. Polym. Sci., Part A: Polym.Chem., 2007, 45, 4179-4183.
    306. Kasko, A. M. and Pugh, C. Solution Behavior of Topological Isomers of Poly[11-(4-cyanophenyl-4-phenoxy)undecyl acrylate]s Prepared by Atom Transfer and Conventional Radical Polymerizations. Macromolecules, 2004, 37, 4993-5001.
    307. Arot?aréna, M.; Heise, B.; Ishaya, S.; Laschewsky, A. Switching the Inside and the Outside of Aggregates of Water-Soluble Block Copolymers with Double Thermoresponsivity. J. Am. Chem. Soc., 2002, 124, 3787-3793.
    308. Ge, Z. S.; Xie, D.; Chen, D. Y.; Jiang, X. Z.; Zhang, Y. F.; Liu, H. W.; Liu, S. Y. Stimuli-Responsive Double Hydrophilic Block Copolymer Micelles with Switchable Catalytic Activity. Macromolecules, 2007, 40, 3538-3546.
    309. Cheng, C.; Wei, H.; Shi, B. X.; Cheng, H.; Li, C.; Gu, Z. W.; Cheng, Si, X.; Zhang, X. Z.; Zhuo, R. X. Biotinylated Thermoresponsive Micelle Self-Assembled from Double-Hydrophilic Block Copolymer for Drug Delivery and Tumor Target. Biomaterials, 2008, 29, 497-505.
    310. Mountrichas, G.; Pispas, S. Synthesis and pH-Responsive Self-Assembly of New Double Hydrophilic Block Copolymers. Macromolecules, 2006, 39, 4767-4774.
    311. Ge, Z. S.; Luo, S. Z. Liu, S. Y. Syntheses and Self-Assembly of Poly(benzyl ether)-b-Poly(N-isopropylacrylamide) Dendritic-Linear Diblock Copolymers. J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 1357-1371.
    312. Wang, H.; An, Y. L. Huang, N.; Ma, R. J.; Shi. L. Q. Investigation of the Cononsolvency Effect on Micellization Behavior of Polystyrene-b-Poly(N-isopropylacrylamide). J. Colloid. Interface. Sci., 2008, 317, 637-642.
    313. Wang, Y.; Wei, G. W.; Zhang, W. Q.; Jiang, X. W.; Zheng, P. W.; Shi, L. Q.; Dong, A. J. Responsive Catalysis of Thermoresponsive Micelle-Supported Gold Nanoparticles. J. Mol. Catal. A., 2007, 266, 233-238.
    314. Zhang, J. X.; Qiu, L. Y.; Wu, X. L.; Jin, Y.; Zhu, K. J. Temperature-Triggered Nanosphere Formation Through Self-Assembly of Amphiphilic Polyphosphazene. Macromol. Chem. Phys., 2006, 207, 1289-1296.
    315. Zeng, J. G.; Shi, K. Y.; Zhang, Y. Y.; Sun, X. H.; Deng, L.; Guo, X. Z.; Du, Z.J.; Zhang, B. L. Synthesis of Poly(N-isopropylacrylamide)-b-poly(2-vinylpyridine) Block Copolymers via RAFT Polymerization and Micellization Behavior in Aqueous Solution. J. Colloid. Interface. Sci., 2008, 322, 654-659.
    316. Zhang, M. F.; Dobriyal, P.; Chen, J. T.; Russell, T. P.; Olmo, J.; Merry, A. Wetting Transition in Cylindrical Alumina Nanopores with Polymer Melts. Nano. Lett., 2006, 6, 1075-1079.
    317. Xiang, H. Q.; Shin, K.; Kim, T.; Moon, S. I.; McCarthy, T. J.; Russell, T. P. Block Copolymers under Cylindrical Confinement. Macromolecules, 2004, 37, 5660-5664.
    318. Shin, K.; Xiang, H. Q.; Moon, S. I.; Kim, T.; McCarthy, T. J.; Russell, T. P. Curving and Frustrating Flatland. Science, 2004, 306, 76.
    319. Sun, Y. M.; Steinhart, M.; Zschech, D.; Adhikari, R.; Michler, G. H.; Gosele, U. Diameter-Dependence of the Morphology of PS-b-PMMA Nanorods Confined Within Ordered Porous Alumina Templates. Macromol. Rapid. Commun., 2005, 26, 369-375.
    320. Rodriguez, A. T.; Chen, M.; Chen, Z.; Brinker, C. J.; Fan, H. Y. Nanoporous Carbon Nanotubes Synthesized through Confined Hydrogen-Bonding Self-Assembly. J. Am. Chem. Soc., 2006, 128, 9276-9277.
    321. Stewart, S.; Liu, G. J. Block Copolymer Nanotubes. Angew. Chem. Int. Ed., 2000, 39, 340-344.
    322. Hamley, I. W. Nanoshells and Nanotubes from Block Copolymers. Soft. Matter., 2005, 1, 36-43.
    323. Raez, J.; Manners, I.; Winnik, M. A. Nanotubes from the Self-Assembly of Asymmetric Crystalline-Coil Poly(ferrocenylsilane?siloxane) Block Copolymers. J. Am. Chem. Soc., 2002, 124, 10381-10395.
    324. Ruotsalainen, T.; Turku, J.; Heikkila, P.; Ruoko- lainen, J.; Nykanen, A.; Laitinen, T.; Torkkeli, M.; Serimaa, R.; ten Brinke, G.; Harlin, A.; Ikkala, O. Towards Internal Structure of Electrosun, Fibers by Hierarchical Self-Assembly of Polymeric Comb-Shaped Supramolecules. Adv. Mater., 2005, 17, 1048-1052.
    325. Sidorov, S. N.; Bronstein, L. M.; Kabachii, Y. A.; Valetsky, P. M.; Soo, P. L.;Maysinger, D. Eisenbeng, A. Influence of Metalation on the Morphologies of Poly(ethylene oxide)-block-poly(4-vinylpyridine) Block Copolymer Micelles. Langmuir, 2004, 20, 3543-3550.
    326. Xu, Y. L.; Shi, L. Q.; Ma, R, J.; Zhang, W, Q.; An, Y. L.; Zhu, X. X. Synthesis and Micellization of Thermo- and pH-Responsive Block Copolymer of Poly(N-isopropylacrylamide)-block-Poly(4-vinylpyridine). Polymer, 2007, 48, 1711-1717.
    327. Pei, Y.; Chen, J.; Yang, L. M, Shi, L. L.; Tao, Q.; Hui, B. J.; Li, J. J. The Effect of pH on the LCST of Poly(N-isopropylacrylamide) and Poly(N-isopropylacrylamide-co-acrylic acid). J. Biomate. Sci. Polymer Edn., 2004, 15, 585-594.
    328. Liu, C.; Hillmyer, M. A.; Lodge, T. P. Multicompartment Micelles from pH-Responsive Miktoarm Star Block Terpolymers. Langmuir, 2009, 25, 13718-13725.
    329. Luo, X. L.; Wang, G. W.; Pang, X. C.; Huang, J. L. Synthesis of a Novel Kind of Amphiphilic Graft Copolymer with Miktoarm Star-Shaped Side Chains. Macromolecules, 2008, 41, 2315-2317.
    330. Miura, Y.; Dote, H.; kubonishi, H.; Fukuda, K.; Saka, T. Syntheses and Characterization of 16-Arm Star and Star Diblock Copolymer and AB8 9-Miktoarm Star Copolymer via NMRP and ROP from Dendritic Multifunctional Macroinitiators. J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 1159-1169.
    331. Cai, Y. L.; Armes, S. P. Synthesis of Well-Defined Y-Shaped Zwitterionic Block Copolymers via Atom-Transfer Radical Polymerization. Macromolecules, 2005, 38, 271-279.
    332. Cai, Y. L.;Tang, Y. Q.; Armes, S. P. Direct Synthesis and Stimulus-Responsive Micellization of Y-Shaped Hydrophilic Block Copolymers Macromolecules, 2004, 37, 9728-9737.
    333. He, T.; Li, D. J.; Sheng, X.; Zhao, B. Synthesis of ABC 3-Miktoarm Star Terpolymers from a Trifunctional Initiator by Combining Ring-Opening Polymerization, Atom Transfer Radical Polymerization and Nitroxide-Mediated Radical Polymerization. Macromolecules, 2004, 37, 3128-3135.
    334. Guo, Y. M.; Xu, J.; Pan, C. Y. Block and Star Block Copolymers by Mechanism Transformation. IV. Synthesis of S-(PSt)2(PDOP)2 Miktoarm Star Copolymers by Combination of ATRP and CROP. J. Polym. Sci., Part A: Polym. Chem., 2001, 39, 437-445.
    335. Percec, V.; Sienkowska, M. J. Synthesis of the Four-Arm Star-Block Copolymer [PVC-b-PBA-CH(CH3)-CO-O-CH2]4C by SET-DTLRP Initiated from a Tetrafunctional Initiator. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 628-634.
    336. Percec, V.; Sienkowska, M. J. Synthesis ofα,ω-Di(iodo)PVC and of Four-Arm Star PVC with Identical Active Chain Ends by SET-DTLRP of VC Initiated with Bifunctional and Tetrafunctional Initiators. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 635-652.
    337. Iovu, M. C.; Matyjaszewski, K. Controlled/living Radical Polymerization of Vinyl Acetate by Degenerative Transfer with Alkyl Iodides. Macromolecules, 2003, 36, 9346-9354.
    338. Debuigne, A.; Caille, J. R.; Jér?me, R. Highly Efficient Cobalt-Mediated Radical Polymerization of Vinyl Acetate. Angew. Chem. Int. Ed., 2005, 44, 1101-1104.
    339. Debuigne, A.; Caille, J. R.; Detrembleur, C.; Jér?me, R. Effective Cobalt Mediation of the Radical Polymerization of Vinyl Acetate in Suspension. Angew. Chem. Int. Ed., 2005, 44, 3439-3442.
    340. Bryaskova, R.; Detrembleur, C.; Debuigne, A.; Jér?me R. Cobalt-Mediated Radical Polymerization (CMRP) of Vinyl Acetate Initiated by Redox Systems: Toward the Scale-Up of CMRP. Macromolecules, 2006, 39, 8263-8268.
    341. Hurtgen, M.; Debuigne, A.; Jér?me, R.; Debuigne, C. Solving the Problem of Bis(acetylacetonato) Cobalt(II)-Mediated Radical Polymerization (CMRP) of Acrylic Esters. Macromolecules, 2010, 43, 886-894.
    342. Debuigne, A.; Warnant, J.; Jér?me, R.; Voets, L.; Kerzer, A. D.; Cohen Stuart, M. A. Detrmbleur, C. Synthesis of Novel Well-Defined Poly(vinyl acetate)-b-poly(acrylonitrile) and Derivatized Water-Soluble Poly(vinyl alcohol)-b-poly(acrylic acid) Block Copolymers by Cobalt-Mediated Radical Polymerization. Macromolecules, 2008, 41, 2353-2360.
    343. Destarac, M.; Charmot, D.; Franck, X.; Zard, S. Z. Dithiocarbamates as Universal Reversible Addition-Fragmentation Chain Transfer Agents. Macromol. Rapid. Commun., 2000, 21, 1035-1039.
    344. Stenzel, M. H. ; Cummins, L.; Roberts, G. E.; Davis, T. P.; Vana, P.; Barner-Kowollik, C. Xanthate Mediated Living Polymerization of Vinyl Acetate: A Systematic Variation in MADIX/RAFT Agent Structure. Macromol. Chem. Phys., 2003, 204, 1160-1168.
    345. Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. Poly(vinyl alcohol) Star Polymers Prepared via MADIX/RAFT Polymerisation. Chem. Commun., 2004, 13, 1546-1547.
    346. Bernard, J.; Favier, A.; Zhang, L.; Nilasaroya, A.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Poly(vinyl ester) Star Polymers via Xanthate-Mediated Living Radical Polymerization: From Poly(vinyl alcohol) to Glycopolymer Stars. Macromolecules,2005, 38, 5475-5484.
    347. Benaglia, M.; Chiefari, J.; Chong, Y. K.; Moad, G.; Rizzardo, E.; Thang. S. H. Poly(vinyl alcohol) Star Polymers Prepared via MADIX/RAFT Polymerisation. J. Am. Chem. Soc., 2009, 131, 6914-6915.
    348. Nicolay, R.; Kwak, Y. W.; Matyjaszewski, K. Synthesis of Poly(vinyl acetate) Block Copolymers by Successive RAFT and ATRP with a Bromoxanthate Iniferter. Chem. Commun., 2008, 5336-5338.
    349. Tong, Y. Y.; Dong, Y. Q.; Du, F. S.; Li, Z. C. Synthesis of Well-Defined Poly(vinyl acetate)-b-Polystyrene by Combination of ATRP and RAFT Polymerization. Macromolecules, 2008, 41, 7339-7346.
    350. Zhang, Z. B. ; Wang, W. X.; Xia, H. D.; Zhu, J.; Zhang, W.; Zhu, X. L. Single-Electron Transfer Living Radical Polymerization (SET-LRP) of Methyl Methacrylate (MMA) with a Typical RAFT Agent as an Initiator. Macromolecules, 2009, 42, 7360-7366.
    351. Kong, H,; Gao, C.; Yan, D. Y. Constructing Amphiphilic Polymer Brushes on the Convex Surfaces of Multi-walled Carbon Nanotubes by in situ Atom Transfer Radical Polymerization. J. Mater. Chem., 2004, 14, 1401-1405.
    352. Li, Y. G.; Zhang, Y. Q.; Yang, D.; Li, Y. J.; Hu, J. H.; Feng, C.; Zhai, S. J.; Liu, G. L.; Huang, X. Y. PAA-g-PPO Amphiphilic Graft Copolymer: Synthesis and Diverse Micellar Morphologies. Macromolecules, 2010, 43, 262-270.
    353. Yang, J. W.; Li, L.; Wang, C. C. Synthesis of a Water Soluble, Nonosubstituted C60 Polymeric Derivative and Its Photoconductive Properties. Macromolecules, 2003, 36, 6060-6065.
    354. Ganachaud, F.; Monteiro, M. J.; Gilbert, R. G.; Dourges, M-A.; Thang, S. H.; Rizzardo, E. Molecular Weight Characterization of Poly(N-isopropylacrylamide) Prepared by Living Free-Radical Polymerization. Macromolecules, 2000, 33, 6738-6745.
    355. Mccormick, C. L.; Sumerlin, B. S.; Lokitz, B. S.; Stempka, J. E. RAFT-Synthesized Diblock and Triblock Copolymers: Thermally-Induced Supramolecular Assembly in Aqueous Media. Soft. Matter., 2008, 4, 1760-1773.
    356. Schilli, C.; Lanzend?rfer, M. G.; Müller, A. H. E. Benzyl and Cumyl Dithiocarbamates as Chain Transfer Agents in the RAFT Polymerization of N-Isopropylacrylamide. In Situ FT-NIR and MALDI?TOF MS Investigation. Macromolecules, 2002, 35, 6819-6827.
    357. Convertine, A. J.; Ayres, N.; Scales, C. W.; Lowe, A. B.; McCormick, C. L. Multilayer Biomimetics: Facile, Controlled, Room-Temperature RAFT polymerization of N-isopropylacrylamide. Biomacromolecules, 2004, 5, 1177-1180.
    358. Yin, X. C.; Hoffman, A. S.; Stayton, P. S. Poly(N-isopropylacrylamide-co-propylacrylic acid) Copolymers That Respond Sharply to Temperature and pH. Biomacromolecules, 2006, 7 1381-1385.
    359. Ray, B.; Isobe, Y.; Morioka, K.; Habaue, S.; Okamoto, Y.; Kamigaito, M.; Sawamoto, M. Synthesis of Isotactic Poly(N-isopropylacrylamide) by RAFT Polymerization in the Presence of Lewis Acid. Macromolecules, 2003, 36, 543-545.
    360. Ray, B.; Isobe, Y.; Matsumoto, K.; Habaue, S.; Okamoto, Y.; Kamigaito, M.; Sawamoto, M. RAFT Polymerization of N-Isopropylacrylamide in the Absence and Presence of Y(OTf)3: Simultaneous Control of Molecular Weight and Tacticity. Macromolecules, 2004, 37, 1702-1710.
    361. Liu, Q. F.; Zhang, P.; Qing, A. X.; Lan, Y. X.; Lu, M. G. Poly(N-isopropylacrylamide) Hydrogels with Improved Shrinking Kinetics by RAFT Polymerization. Polymer, 2006, 47, 2330-2336.
    362. Zhu, J. J.; Zhang, X. Z.; Cheng, H.; Li, Y. Y.; Cheng, S. C.; Zhuo, R. X. Synthesis and Characterization of Well-Defined, Amphiphilic Poly(N-isopropylacrylamide)-b-[2-hydroxyethyl methacrylate-poly(ε-caprolactone)]n Graft Copolymers by RAFT Polymerization and Macromonomer Method. J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 5354-5364.
    363. Masci, G.; Giacomelli, L.; Crescenzi, V. Atom Transfer Radical Polymerization of N-Isopropylacrylamide. Macromol. Rapid. Commun., 2004, 25, 559-564.
    364. Xia, Y.; Yin, X.; Burke, N. A. D. St?ver, H. D. H. Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 5937-5943.
    365. Feng, C.; Shen, Z.; Yang, D.; Li, Y. G.; Hu, J. H.; Liu, G. L.; Hung, X. Y. Synthesis of Well-Defined Amphiphilic Graft Copolymer Bearing Poly(2-acryloyloxyethyl ferrocenecarboxylate) Side Chains via Successive SET-LRP and ATRP. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 4346-4357.
    366. Tang, X. D.; Liang, X. C.; Yang, Q.; Fan, X. H.; Shen, Z. H.; Zhou, Q. F. B2-Type Amphiphilic Block Copolymers Composed of Poly(ethylene glycol) and Poly(N-isopropylacrylamide) via Single-Electron Transfer Living Radical Polymerization: Synthesis and Characterization. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 4420-4427.
    367. Li, L. Y.; He, W. D.; Li, J.; Shou, C. H.; Sun, X. L.; Zhang, B. Y. Synthesis of Twin-Tail Tadpole-Shaped Hydrophilic Copolymers and Their Thermo-Responsive Behavior. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 7066-7077.
    368. Feng, C.; Li, Y. J.; Yang, D.; Li, Y. G.; Hu, J. H.; Zhai, S. J.; Liu, G. L.; Huang, X. Y. Synthesis of Well-Defined PNIPAAM-b-(PEA-g-P2VP) Double Hydrophilic Graft Copolymer via Sequential SET-LRP and ATRP and Its“Schizophrenic”Micellization Behavior in Aqueous Media. J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 15-23.
    369. Feng, C.; Shen, Z.; Li, Y. J.; Gu, L; Zhang, Y. Q.; Liu, G. L.; Huang, X. Y. PNIPAAM-b-(PEA-b-PDMAEA) Double-Hydrophilic Graft Copolymer: Synthesis and Its Application for Preparation of Gold Nanoparticles in Aqueous Media. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 1811-1824.
    370. Mori, H.; Ookuma, H.; Nakano, S.; Endo, T. Xanthate-Mediated Controlled Radical Polymerization of N-Vinylcarbazole. Macromol. Chem. Phys., 2006, 207, 1005-1017.
    371. Mori, H.; Nakano, S.; Endo, T. Controlled Synthesis of Poly(N-ethyl-3-vinylcarbazole) and Block Copolymers via RAFT Polymerization. Macromolecules, 2005, 38, 8192-8201.
    372. Mori, H.; Ookuma, H.; Endo, T. Poly(N-vinylcarbazole) Star Polymers and Amphiphilic Star Block Copolymers by Xanthate-Mediated Controlled Radical Polymerization. Macromolecules, 2008, 41, 6925-6934.
    373. Mori, H.; Ookuma, H.; Endo, T. Synthesis of Star Polymers Based on Xanthate-Mediated Controlled Radical Polymerization of N-Vinylcarbazole. Macromol. Symp., 2007, 249-250.
    374. Zhu, J.; Zhu, X. L.; Chang, Z. P.; Zhang, Z. B. Copolymerization of N-Vinylcarbazole and Vinyl Acetate via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Macromol. Symp., 2008, 261, 46-53.
    375. Suchao-in, N.; Chirachanchai, S.; Perrier, S. pH- and Thermo-Multi-Responsive Fluorescent Micelles from Block Copolymers via Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization. Polymer, 2009, 50, 4151-4158.
    376. Shiraishim, Y.; Miyamoto, R.; Hirai, T. A Hemicyanine-Conjugated Copolymer as a Highly Sensitive Fluorescent Thermometer. Langmuir, 2008, 24, 4273-4279.
    378. Wang, D. P.; Miyamoto, R.; Shiraishim, Y.; Hirai, T. BODIPY-Conjugated Thermoresponsive Copolymer as a Fluorescent Thermometer Based on Polymer Microviscosity. Langmuir, 2009, 25, 13176-13182.
    379. Nagai, A.; Kokado, K.; Miyake, J.; Cyujo, Y. Thermoresponsive FluorescentWater-Soluble Copolymers Containing BODIPY Dye: Inhibition of H-Aggregation of the BODIPY Units in Their Copolymers by LCST. J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 627-634.
    380. Chang, Y.; Chen, W. Y.; Yandi, W.; Shih, Y-J.; Chu, W. L.; Liu, Y. L.; Chu, C. W.; Ruaan, R-C.; Higuchi, A. Dual-Thermoresponsive Phase Behavior of Blood Compatible Zwitterionic Copolymers Containing Nonionic Poly(N-isopropyl acrylamide). Biomacromolecules, 2009, 10, 2092-2100.
    381. Colfen, H. Double-Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers. Macromol. Rapid. Commun., 2001, 22, 219-252
    382. Schilli, C. M. ; Zhang, M. F.; Eizzardo, E.; Thang, S. H.; Chong, Y. K.; Edwards, K.; Karlaaon, G.; Muller, A. H. E. A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules, 2004, 37, 7861-7866.
    383. Cheng, C.; Wei, H.; Shi, B-X.; Cheng, H.; Li, C.; Gu, Z. W.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. Biotinylated Thermoresponsive Micelle Self-Assembled from Double-Hydrophilic Block Copolymer for Drug Delivery and Tumor Target. Biomaterials, 2008, 29, 497-505.
    384. Liu, J. H.; Sondjaja, H. R.; Tam K. C.α-Cyclodextrin-Induced Self-Assembly of a Double-Hydrophilic Block Copolymer in Aqueous Solution. Langmuir, 2007, 23, 5106-5109
    385. KwonOH, J.; Dong, H. C.; Zhang, R.; Matyjaszewski, K.; Schlaad, H. Preparation of Nanoparticles of Double-Hydrophilic PEO-PHEMA Block Copolymers by AGET ATRP in Inverse Miniemulsion. J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 4764-4772.
    386. Rao, J. Y.; Luo, Z. F.; Ge, Z. S.; Liu, H.; Liu, S. Y.“Schizophrenic”Micellization Associated with Coil-to-Helix Transitions Based on Polypeptide Hybrid Double Hydrophilic Rod-Coil Diblock Copolymer. Biomacromolecules, 2007, 8, 3871-3878.
    387. Li, J. G.; Wang, T.; Wu, D. L.; Zhang, X. Q.; Yan, J. T.; Du, S.; Guo, Y. F.; Wang, J. T.; Zhang, A. Stimuli-Responsive Zwitterionic Block Copolypeptides: Poly(N-isopropylacrylamide)-block-poly(lysine-co-glutamic acid). Biomacromolecules, 2008, 9, 2670-2676.
    388. Zhang, X. Q.; Li, J. G.; Li, W.; Zhang, A. Synthesis and Characterization of Thermo- and pH-Responsive Double-Hydrophilic Diblock Copolypeptides. Biomacromolecules, 2007, 8, 3557-3567.
    389. Andre, X.; Zhang, M. F.; Muller, A. H. E. Thermo- and pH-Responsive Micelles of Poly(acrylic acid)-block-Poly(N,N-diethylacrylamide). Macromol. Rapid. Commun., 2005, 26, 558-563.
    390. Zeng, J. G.; Shi, K. Y.; Zhang, Y. Y.; Sun, X. H.; Zhang, B. L. Construction and Micellization of a Noncovalent Double Hydrophilic Block Copolymer. Chem. Commun., 2008, 3753-3755.
    391. Li, C. H.; Ge, Z. S.; Fang, J.; Liu, S. Y. Synthesis and Self-Assembly of Coil Rod Double Hydrophilic Diblock Copolymer with Dually Responsive Asymmetric Centipede-Shaped Polymer Brush as the Rod Segment. Macromolecules, 2009, 42, 2916-2924
    392. Ge, Z. S.; Zhou, Y. M.; Xu, J.; Liu, H. W.; Chen, D. Y. Liu, S. Y. High-Efficiency Preparation of Macrocyclic Diblock Copolymers via Selective Click Reaction in Micellar Media. J. Am. Chem. Soc., 2009, 131, 1628-1629.
    393. Liu, H.; Jiang, X. Z.; Fan, J.; Wang, G. H.; Liu, S. Y. Aldehyde Surface-Functionalized Shell Cross-Linked Micelles with pH-Tunable Core Swellability and Their Bioconjugation with Lysozyme. Macromolecules, 2007, 40, 9074-9083
    394. Dimitrov, I.; Trzebick, B.; Muller, A. H. E.; Dworak, A.; Tsvetanov, C. B. Thermosensitive Water-Soluble Copolymers with Doubly Responsive Reversibly Interacting Entities . Prog. Polym. Sci., 2007, 32, 1275-1343.
    395. Rodriguez-Hernandez, J.; Checot, F.; Gnanou, Y.; Lecommandoux, S. Toward‘smart’Nano-Objects by Self-Assembly of Block Copolymers in Solution. Prog, Polym. Sci., 2005, 30, 691-724.
    396. Gohy, J. F. Block Copolymer Micelles. Adv. Polym. Sci., 2005, 190, 65-136.
    397. Riess, G. Micellization of Block Copolymers. Prog. Polym. Sci., 2003, 28, 1107-1170.
    398. Gil, E. S. Hudson, S. A. Stimuli-Reponsive Polymers and Their Bioconjugates. Prog. Polym. Sci., 2004, 29, 1173-1222.
    399. Wang, D.; Yin, J. ; Zhu, Z. Y.; Ge, Z. S.; Liu, H. W.; Armes, S. P.; Liu, S. Y. Micelle Formation and Inversion Kinetics of a Schizophrenic Diblock copolymer. Macromolecules, 2006, 39, 7378-7385.
    400. Zhu, Z. Y. ; Xu, J. ; Zhou, Y. M. ; Jiang, X. Z. ; Armes, S. P. ; Liu, S. Y. Effect of Salt on the Micellization Kinetics of pH-Responsive ABC Triblock Copolymers. Macromolecules, 2007, 40, 6393-6400.
    401. D’souza, A. J. M.; Schowen, R. L.; Topp, E. M. Polyvinylpyrrolidone-Drug Conjugate: Synthesis and Release Mechanism. J. Controlled. Release., 2003, 94, 91-100.
    402. Kamada, H.; Tsutsumi, Y.; Yamamoto, Y.; Kihira, T.; Kaneda, Y.; Mu, Y.; Kodaira, H.; Tsunoda, S. I.; Nakagawa, S.; Mayumi, T. Antitumor Activity of Tumor Necrosis Factor-αConjugated with Polyvinylpyrrolidone on Solid Tumors in Mice. Cancer. Res., 2000, 60, 6416-6420.
    403. Moneghini, M.; Voinovich, D.; Princivalle, F.; Magarotto, L. Formulation and Evaluation of Vinylpyrrolidone/Vinylacetate Copolymer Microspheres with Carbamazepine. Pharm. Dev. Technol., 2000, 5, 347-353.
    404. McDowall, L.; Chen, G. J.; Stenzel, M. H. Synthesis of Seven-Arm Poly(vinyl pyrrolidone) Star Polymers with Lysozyme Core Prepared by MADIX/RAFT Polymerization. Macromol. Rapid. Commun., 2008, 29, 1666-1671
    405. Hussain, H.; Tan, B. H.; Gudipati, C. S.; Liu, Y.; HE, C. B.; Davis, T. P. Synthesis and Self-Assembly of Poly(styrene)-b-Poly (N-vinylpyrrolidone) Amphiphilic Diblock Copolymers Made via a Combined ATRP and MADIX Approach. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 5604-5615.
    406. Pound, G.; Aguesse, F.; McLeary, J. B.; M. Lange, R. F.; Klumperman, B. Xanthate-Mediated Copolymerization of Vinyl Monomers for Amphiphilic and Double-Hydrophilic Block Copolymers with Poly(ethylene glycol). Macromolecules,2007, 40, 8861-8871.
    407. Wang, J. S.; Greszta, D.; Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): a New Approach Towards Well-Defined (co) Polymers. Polym. Mater. Sci. Eng., 1995, 73, 416-417.
    408. Ueda, J.; Matsuyama, M.; Kamigaito, M.; Sawamoto, M. Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methyl Methacrylate: Di- and Trifunctional Dichloroacetates for Synthesis of Multiarmed Polymers. Macromolecules, 1998, 31, 557-562.
    409. Matyjaszewski, K.; Miller, P. J.; Fossum, E.; Nakagawa, Y. Synthesis of Block, Graft and Star Polymers from Inorganic Macroinitiators. Appl. Organomet. Chem., 1998, 12, 667-673.
    410. Matyjaszewski, K. The Synthesis of Functional Star Copolymers as an Illustration of the Importance of Controlling Polymer Structures in the Design of New Materials. Polym. Int., 2003, 52, 1559-1565.
    411. Shi, Y.; Fu, Z. F.; Li, B.; Zhang, L. Q.; Cai, X. P.; Zhang, D. S. Synthesis of AB2 Miktoarm Star-Shaped Copolymers by Combining Stable Free Radical Polymerization and Atom Transfer Radical Polymerization. Eur. Polym. J., 2007, 43, 2612-2619.
    412. Whittaker, M. R.; Urbani, C. N.; Monteiro, M. J. Synthesis of 3-Miktoarm Stars and 1st Generation Mikto Dendritic Copolymers by“Living”Radical Polymerization and“Click”Chemistry. J. Am. Chem. Soc., 2006, 128, 11360-11361.
    413. Baek, K. Y.; Kamigaito, M.; Sawamoto, M. Star-Shaped Polymers by Metal-Catalyzed Living Radical Polymerization. Design of Ru(II)-Based Systems and Divinyl Linking Agents. Macromolecules, 2001, 34, 215-221.
    414. Baek, K. Y.; Kamigaito, M.; Sawamoto, M. Core-Functionalized Star Polymers by Transition Metal-Catalyzed Living Radical Polymerization. Selective Interaction with Protic Guests via Core Functionalities. Macromolecules, 2002, 35, 1493-1498.
    415. Gao, H.; Matyjaszewski, K. Structural Control in ATRP Synthesis of Star Polymers using the Arm-first Method. Macromolecules, 2006, 39, 3154-3160.
    416. Durmaz, H.; Dag, A.; Altintas, O.; Erdogan, T.; Hizal, G.; Tunca, U. One-pot Synthesis of ABC Type Triblock Copolymers via in situ Click [3 + 2] and Diels-Alder [4 + 2] Reactions. Macromolecules, 2007, 40, 191-198.
    417. Zhu, J.; Zhu, X. L.; Kang, E. T.; Neoh, K. G. Design and Synthesis of Star Polymers with Hetero-Arms by the Combination of Controlled Radical Polymerizations and Click chemistry. Polymer, 2007, 48, 6992-6999.
    418. Mao, B. W.; Gan, L. H.; Gan, Y, Y.; Tam, K. C.; Tan, O. K. Controlled One-Pot Synthesis of pH-Sensitive Self-Assembled Diblock Copolymers and Their Aggregation Behavior. Polymer, 2005, 46, 10045-10055.
    419. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Cui, J. Self-Assembly of Large Multimolecular Micelles from Hyperbranched Star Copolymers. Macromol. Rapid. Commun., 2007, 28, 591-596.
    420. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Chen, Y. Synthesis and Supramolecular Self-Assembly of Thermosensitive Amphiphilic Star Copolymers Based on a Hyperbranched Polyether Core. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 668-681.
    421. Narrainen, P. A.; Pascual, S.; Haddleton, D. M. Amphiphilic Diblock, Triblock, and Star Block Copolymers by Living Radical Polymerization: Synthesis and Aggregation Behavior. J. Polym. Sci. Part A: Polym. Chem., 2001, 40, 439-450.
    422. Mespouille, L.; Vachaudez, M.; Suriano, F.; Gerbaux, P.; Coulembier, O.; Degee, P.; Flammang, R.; Dubois, P. Amphiphilic and Adaptative Block Copolymers via Versatile Combination of‘‘Click’’Chemistry and ATRP. Macromol. Rapid. Commun., 2007, 28, 2151-2158.
    423. Chen, M.; Ghiggino, K. P.; Mau, A. W. H.; Rizzardo, E.; Sasse, W. H. F.; Thang, S. H.; Wilson, G. J. Synthesis of Functionalized RAFT Agents for Light Harvesting Macromolecules. Macromolecules, 2004, 37, 5479-5481.
    424. Patrickios, C. S.; Forder, C.; Armes, S. P.; Billingham, N. C. Synthesis and Characterization of Amphiphilic Diblock Copolymers of Methyl Tri(ethylene glycol) Vinyl Ether and Isobutyl Vinyl Ether. J. Polym. Sci. Part A: Polym. Chem., 1996, 34, 1529-1541.
    425. Zhao, Q.; Ni, P. H. Synthesis of Well-Defined and Near Narrow-Distribution Diblock Copolymers Comprising PMMA and PDMAEMA via Oxyanion-Initiated polymerization. Polymer, 2005, 46, 3141-3148.
    426. Jin, L.; Deng, Y. H.; Hu, J. H.; Wang, C. C. Preparation and Characterization of Core-Shell Polymer Particles with Protonizable Shells Prepared by Oxyanionic Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 6081-6088.
    427. Jin, L.; Liu, P.; Hu, J. H.; Wang, C. C. Synthesis of Well-Defined Comb-like Amphiphilic Copolymers with Protonizable Units in the Pendent Chains: Poly(2-(dimethylamino)ethyl methacrylate) Grafted Poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) Copolymers and Their Association Behavior in Aqueous Solution. Polym. Int., 2004, 53, 142-148.
    428. Lee, S. B.; Russell, A. J. Matyjaszewski, K. ATRP Synthesis of Amphiphilic Random, Gradient, and Block Copolymers of 2-(dimethylamino)ethyl Methacrylate and n-Butyl Methacrylate in Aqueous Media. Biomacromolecules, 2003, 4, 1386-1393.
    429. Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition“Click”chemistry. Macromol. Rapid. Commun., 2008, 29, 1052-1072.
    430. Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Synthesis of Photocleavable Linear Macromonomers by ATRP and Star Macromonomers by a Tandem ATRP-Click Reaction:Precursors to Photodegradable Model Networks Macromolecules, 2007, 40, 3589-3598.
    431. Droumaguet, B. L.; Velonia, K. Click Chemistry: A Powerful Tool to Create Polymer-Based Macromolecular Chimeras. Macromol. Rapid. Commun., 2008, 29, 1073-1087.
    432. Zhang, L. ; Chen X. G. ; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. C. Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides. J. Am. Chem. Soc., 2005, 127, 15998-15999.
    433. Bergbreiter, D. E.; Hamilton, P. N.; Koshti, N. M. Self-Separating Homogeneous Copper(I) Catalysts. J. Am. Chem. Soc., 2007, 129, 10666-10667.
    434. Perez-Balderas, F.; Ortega-Munoz, M.; Morales-Sanfrutos, J; Hernandez-Mateo, F.; calvo-Flores, F. G.; Calvo-Asin, J. A.; Isac-Garcia, J.; Santoyo-Gonzalez, F. Multivalent Neoglycoconjugates by Regiospecific Cycloaddition of Alkynes and Azide Using Organic-soluble Copper Catalysts. Org. Lett., 2003, 5, 1951-1954.
    435. Bouillon, C.; Meyer, A.; Vidal, S.; Jochum, A. ; Chevolot, Y. ; Cloarec, J-P.; Praly, J-P.; Vasseeur, J-J.; Morvan, F. Microwave Assisted“Click”Chemistry for the Synthesis of Multiple Labeled-Carbohydrate Oligonucleotides on Solid Support. J. Org. Chem., 2007, 71, 4700-4702.
    436. Goals, P. L.; Matyjaszewski, K. ChemInform Abstract: Click Chemistry and ATRP: A Beneficial Union for the Preparation of Functional Materials. QSAR. Comb. Sci., 2007, 26, 1116-1134.
    437. Lutz, J. F.; Boerner, H. G.; Weichenhan, K. Combining ATRP and“Click’’Chemistry: a Promising Platform toward Functional Biocompatible Polymers and Polymer Bioconjugates. Macromolecules, 2006, 39, 6376-6383.
    438. Opsteen, J. A.; van Hest, J. C. M. Modular Synthesis of ABC Type Block Copolymers by‘‘Click’’Chemistry. J. Polym. Sci.: Part A: Polym. Chem., 2007, 45, 2913-2924.
    439. Opsteen, J. A.; Brinkhuis, R. P.; Teeuwen, R. L. M. D.; Lowik, W. P. M.; van Hest, J. C. M.“Clickable”polymersomes. Chem. Commun., 2007, 3136-3138.
    440. Dirks, A. T. J.; Cornelissen, J. J. L. M.; van, Delft, . F. L.; van, Hest, J. C. M.; Nolte, R. J. M.; Rowan, A. E.; Rutjes, F. P. J. T. From (bio)Molecules to Biohybrid Materials with the Click Chemistry Approach. QSAR, Comb. Sci., 2007, 26, 1200-1210.
    441. Malkoch, M.; Vestberg, R.; Gupta, N.; Mespouille, L.; Dubois, P.; Mason, A. F. J.; Hedrick, L.; Liao, Q.; Frank, C.W.; Kingsbury, K.; Hawker, C. J. Synthesis of Well-Defined Hydrogel Networks using Click Chemistry. Chem. Commun., 2006 2774-2776.
    442. Mantovani, G.; Ladmiral, V.; Tao, L.; Haddleton, D. M. One-pot Tandem Living Radical Polymerisation–Huisgens Cycloaddition Process (‘‘click’’) Catalysed by N-alkyl-2-pyridylmethanimine/Cu(I)Br Complexes. Chem. Commun., 2005, 2089-2091.
    443. Mantovani, G.; Lecolley, F.; Tao, L.; Haddleton, D. M.; Clerx, J.; Cornelissen, J. J. L. M.; Velonia, K. Design and Synthesis of N-Maleimido-Functionalized Hydrophilic Polymers via Copper-Mediated Living Radical Polymerization: A Suitable Alternative to PEGylation Chemistry. J. Am. Chem. Soc. 2005, 127, 2966-2973.
    444. Chen, G. J.; Tao, L.; Mantovani, G.; Ladmiral, V.; Burt, D. P.; Macpherson, J. V.; Haddleton, D. M. Synthesis of Azide/Alkyne-Terminal Polymers and Application for Surface Functionalisation through a [2 + 3] Huisgen Cycloaddition Process,“Click Chemistry”. Soft. Matter., 2007, 3, 732-739.
    445. Tenhaeff, W. E.; Gleason, K. K. Initiated and Oxidative Chemical Vapor Deposition of Polymeric Thin Films: ICVD and oCVD. Adv. Funct. Mater., 2008, 18, 979-992.
    446. Subramanian, S. H.; Babu, R. P.; Dhamodharan, R. Ambient Temperature Polymerization of Styrene by Single Electron Transfer Initiation, Followed by Reversible Addition Fragmentation Chain Transfer Control. Macromolecules, 2008, 41, 262-265.
    447. Chen, G. J.; Zhu, X. L.; Zhu, J.; Cheng, Z. P. Plasma-Initiated Controlled/Living Radical Polymerization of Methyl Methacrylate in the Presence of 2-Cyanoprop-2-yl 1-dithionaphthalate (CPDN). Macromol. Rapid. Commun., 2004, 25,
    818-824. 448. Wang, W. X.; Zhang, Z. B.; Zhu, J.; Zhou, N. C.; Zhu, X. L. Single-Electron Transfer Living Radical Polymerization (SET-LRP) of Methyl Methacrylate (MMA) in Fluoroalcohol: Dual Control over Molecular Weight and Tacticity. J. Polym. Sci.: Part A: Polym. Chem., 2009, 47, 6316-6327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700