用户名: 密码: 验证码:
ATRP方法合成几种新型功能化聚合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,自由基聚合产物在高分子聚合物总产量中占很大比重(60%以上),这是由于大多数乙烯基单体适合于自由基聚合,聚合温度范围宽,许多单体容易发生共聚,体系排除氧后在水溶液中也能进行,但是传统自由基聚合反应有失控行为导致聚合物分子量、链结构、聚合物组成及末端官能度失控,有时甚至发生支化、交联等,严重影响了聚合物的性能。这样能够合成结构可控聚合物的“活性”自由基聚合引起广大科研工作者的关注。王锦山、K.Matyjaszewski等报道了以卤代烷为引发剂,氯化亚铜为催化剂,2,2'-联吡啶为络合剂引发了甲基丙烯酸甲酯的原子转移自由基聚合(ATRP)。在引发阶段,处于低氧化态的CuX和bpy络合物从R-X中夺取卤原子生成初级自由基R·及CuX2/bpy高氧化态络合物休眠种。初级自由基再引发单体生成单体自由基即活性种。活性种可继续引发单体进行活性聚合,也可以从休眠种上夺取卤原子而变成休眠种,使体系中链增长自由基稳态浓度较低,在活性种和休眠种之间建立一个快速的动态平衡。从而聚合体系显示出“活性”/可控的特征。因此可以利用ATRP方法合成具有规整结构,分子量可控的目
    
    
    标高聚物或低聚物。
    随着科技的发展,人们对高分子材料的要求越来越高,一些具有强大功能性聚合物材料例如纳米复合材料、电化学活性物质、磁性材料、无机有机杂化材料等的研究引起广大学者密切关注。应用领域涉及到医用功能高分子(医疗材料、药物缓释剂、人体器官)、导电材料、发光材料、非线性光学领域、高分子催化剂、分析用功能分离膜、吸附与分离功能树脂、相变储能领域等等。近几年来,由于ATRP研究体系越来越广泛,人们逐渐把注意力集中到应用ATRP在功能材料的开发上。与其它“活性”/可控聚合方法相比,ATRP具有更强的分子设计能力。目前已应用ATRP方法合成了一系列功能化聚合物,主要包括末端功能化聚合物、嵌段、接枝、无规、梯度、星型、超枝化、无机有机杂化材料、纳米材料等等。
    我们利用ATRP得到柔软而规整的以卤原子封端的聚丙烯酸丁酯,再与硫脲反应生成具有络合能力的大分子配体,引入铜等过渡金属离子后得到具有电化学活性的高分子金属络合物。由于这种结构规整的末端功能化ATRP聚合物中含有的鳌合官能团很少,所以这种聚合物金属络合物的金属离子含量很低,结构仍很规整。采用循环伏安等方法测试了这种高分子金属络合物的性能,并得到了最高占据轨道(HOMO)和最低空轨道(LUMO)的能量。介电常数测试也显示,少量的金属离子改变了聚合物的极化从而改变聚合物的介电性能。我们通过ATRP合成这种具有精致结构的大分子络合剂,引入过渡金属离子后得到具有电化学活性的精致聚合物金属络合物。为合成结构规整的高分子催化材料、电极材料、导电高分子黏合剂等提供了一个新方法,可在多个科研领域中得到广泛应用。
    采用两步法应用ATRP合成了丙烯酸丁酯与3-甲基丙烯酰氧基丙基三甲氧基硅烷的共聚物后与苯乙烯单体嵌段聚合得到大分子偶联剂。改变单体比例获得不同比例的两嵌段和三嵌段型大分子偶联剂。另外以具有低分散度的多溴代聚苯乙烯为接枝型大分子引发剂,引发聚合丙烯酸丁酯和3-甲基丙
    
    
    烯酰基丙基三甲氧基硅烷混合单体而制得接枝型大分子偶联剂。并且应用这几种大分子偶联剂处理二氧化硅填料,填充到IPNs基体中制备了复合材料。由于经大分子偶联剂处理的二氧化硅形成以无机物为核,高分子为壳的复杂结构。触角形的高分子可以与聚合物基体产生强烈的物理缠绕等作用,增加了无机物与基体的作用强度,并且增厚了它们之间的界面层。动态力学谱和扫描电子显微镜分析表明,经这几种大分子偶联剂处理的复合材料的性质都得到了不同程度的改善。其中以三嵌段和接枝型效果最佳,材料的阻尼值得到很大的提高,拓宽了阻尼温域,并且相容性得到改进。采用这种大分子偶联剂有两方面的优点。一方面,偶联剂中大分子链能与基体的大分子链相互扩散和缠结,使填料与基体之间形成有效的界面结合。另一方面,通过改变大分子偶联剂的分子量,结构和组成,可实现对填料和基体之间界面结构的控制和优化,从而获得所需的宽温域高阻尼性能,具有实际应用价值的新型复合材料。
    用自组装方法在无机物硅胶上修饰以含有ATRP引发剂的双分子层。利用“接枝于”技术以此引发聚合了甲基丙烯酸甲酯,甲基丙烯酸β-羟乙酯和丙烯酰胺三种单体的单一匀聚物及其嵌段聚合物。红外吸收光谱,X-射线光电子能谱,热失重及扫描电子显微镜测试表明,目标产物为厚接枝聚合物的无机有机杂化材料,在无机物硅胶为基体上接枝的聚合物达到了40%左右。并且这种无机有机杂化材料仍然保持原有的球状,可以称为球状聚合物刷修饰的硅胶无机有机杂化材料。并且球大小很均匀,体现了ATRP具有的“活性”/可控的特征,能控制聚合物的增长,使有机物层很均匀。应用氟化氢溶液完全刻蚀无机支撑物硅胶后,可以看到聚合物壳层厚度达到1um。引入过渡金属离子以后,形成以硅胶为支撑物的聚合物金属络合物无机有机杂化材料。电子自旋共振谱测试数据表明这种功能材料拥有顺磁性。以硅胶为支撑物的聚(丙烯酰胺或2-甲基丙烯酸羟乙酯)合物金?
At present, the products of radical polymerization are in the majority (about 60%) of the polymers, which indicate the essentiality of radical polymerization. This is because the most kinds of vinyl monomers can be polymerized by radical polymerization under mild conditions. Furthermore it can react in water without oxygen. On the other hand, more monomers can be copolymerized which produced more radical polymers. There are some shortcomings in the field of traditional radical polymerization, such as the polymerization possess the behavior of out controlled which arose the results of lose of molecular weights, molecular distributions, molecular structure, molecular composing and end functions. Thus, the properties of polymer from radical polymerization were impaired. Some scientists pay more attention to synthesize the polymer with well-definded structure from living polymerization. Jinshan Wang and K.Matyjaszewski etc introduced a kind of living radical polymerization (Atom Transfer Radical Polymerization ATRP), which include initiator (halogenations alkyl), catalyzer (CuCl), ligands (bpy) and monomer (MMA). At the primary phase of initiated stage, the reducing agent of catalyzer undergoes a one-electron oxidation with concomitant abstraction of a halogen atom (X) from a dormant species R-X. Thus, the living species and dormant species were formed. Living
    
    
    species may react with monomer or form dormant species for capturing halogen atom, which induced a lower concentration of living species. Because the fast reversible dynamic balances were established we could synthesize the target polymers or oligomers, which possess well-defined structure, preconcerted molecular weights and low molecular distributions.
    With the rapid development of technology, more and more polymer materials with function and intellect are required. Some kinds of functional polymer materials such as nanocomposite, electrochemical materials, paramagnetic materials and inorganic/organic hybrid materials attract more attention of scientists. Using fields of these materials involved medical polymer materials (iatric materials medicament transportation, corporal apparatus), electric materials, illuminant materials, non-linear optical field, polymer catalyzer, analytical separate film, polymer sorbents and energy storage of transforming phase. In recently, because the systems of ATRP were studied more and more, many scientists pay more attention to the functional materials using ATRP. Comparing with others “living”/controlled methods the ATRP are better at design of molecule. Now, the applicable studies systems of ATRP are few and far between. Scientists pay more attention to synthesize the functional materials using ATRP. Comparing with other methods of “living” / controlled polymerization the ATRP is good at design. Using ATRP method we also synthesize many kinds of polymers such as block, star, graft, hyper branched (multifunctional) copolymers, inorganic/organic hybrid materials and nonmaterial etc.
    1. In this thesis we synthesized a target polymers (poly butyl acrylate) ended by halogens, which own flexible and well-defined polymer chains from ATRP. In succession, the halogens of polymer chains react with thiocarbamide. The macromolecular ligand was synthesized for the thiocarbamide owns strong coordination ability with transitional metal ions such as Cu2+ and Co2+. Macromolecule metal complex were synthesized which possess stable
    
    
    electrochemical activity. Because the content of thiocarbamide is small, the content of metal ions of macromolecule metal complex are small also, which make the structure of polymer metal complex regular. The atomic emission spectroscopy tests the content of metal ions. The cyclic voltammetry tests the orbital energy of HOMO and LUMO of the polymer metal complex. The data of dielectric constant indicate that the properties were improved. This is attributed to the effect of polarization ratio of polymer, which was changed by a small quantity of cations. We synthesized macromolecular ligand wi
引文
潘祖仁等,高分子化学高教出版社.
    Szwarc M., Levy M., Milkovich R., J Am Chem Soc, 1956, 78, 2656.
    Odian G., Principles of Polymerization 2nd (M). NewYork, John Wiley & Sons Inc, 1981, 179.
    王国建,建筑材料学报,2000,3,156.
    Otsu T., Yoshida M., Makromol. Chem. Rapid. Commun., 1982, 3, 127.
    Otsu T., Yoshida M., Polym. Bull., 1982, 7, 197.
    大津隆行, 高分子, 1992, 41, 358.
    大津隆行, 高分子, 1982, 37, 248.
    Rizzardo E., Solomon D.H., Polym. Bull., 1979, 6, 429.
    Moad G., Rizzardo E., Solomon D.H., J. Macromol. Sci-Chem, 1982, A17, 51.
    Georges M.K., Veregin R.P.N., Macromolecules, 1993, 26, 2987.
    Tsoukatos T., Hadjichristidis N., J. Polym. Sci.: Part A, Polym. Chem., 2001, 39, 320.
    Chieffari J., Chong Y.K., Macromolecules, 1998, 31, 5559.
    Moad G., Rizzardo E., Polym. Int., 2000, 49, 993.
    M.Kato, M.Sawamoto, Macromolecules, 1995, 28, 1721.
    Wang J.S., Matyjaszewski K., J. Am. Chem. Soc., 1995, 117, 5614.
    Matyjaszewski K., Xia J. H., Chem. Rev. 2001, 101, 2921.
    Coessens V., Pintauer T., Matyjaszewski K., Prog. Plym. Sci. 2001, 26, 337.
    Matyjaszewski K., Wang J. S., WO Pat. 9630421, U.S. Pat. 5, 763,548.
    Wang J.S., Matyjaszewski K. Macromolecules 1995, 28, 7901.
    
    Percec V., Barboiu B., Macromolecules 1995, 28, 7970.
    Ando T., Kamigaito M., Sawamoto M., Tetrahedron 1997, 53, 15445.
    Destarac M., Boutevin B., Matyjaszewski K., ACS Symp. Ser. 2000, 768, 234.
    Brandts J. A. M., van de Geijn, P., van Faassen E. E., Boersma J., van Koten G., J. Organomet. Chem. 1999, 584, 246.
    Kotani Y., Kamigaito M., Sawamoto M., Macromolecules 1999, 32, 2420.
    Ando T., Kamigaito M., Sawamoto M., Macromolecules 1997, 30, 4507.
    Matyjaszewski K., Wei M., Xia J., McDermott N. E., Macromolecules 1997, 30, 8161.
    Percec V., Asandei A. D., Asgarzadeh F., Bera T. K., Barboiu B., J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 3839.
    Xia J., Zhang X., Matyjaszewski K., ACS Symp. Ser. 2000, 760,207.
    Bednarek M., Biedron T., Kubisa P., Macromol. Chem. Phys.2000, 201, 58.
    Simal F., Demonceau A., Noels A. F., Angew. Chem., Int. Ed.Engl. 1999, 38, 538.
    Percec V., Barboiu B., Neumann A., Macromolecules 1996, 29, 3665.
    Moineau G., Granel C., Dubois P., Je′ro?me R., Teyssie′ P., Macromolecules 1998, 31, 542.
    Uegaki H., Kotani Y., Kamigato M., Sawamoto M., Macromolecules 1997, 30, 2249.
    Uegaki H., Kotani Y., Kamigato M., Sawamoto M., Macromolecules, 1998, 31, 6756.
    Lecomte P., Drapier I., Dubois P., Teyssie′ P., Je′ro?me, R.,
    
    
    Macromolecules 1997, 30, 7631.
    Matyjaszewski K., Wei M., Xia J., Gaynor S. G., Macromol.Chem. Phys. 1998, 199, 2289.
    Zhu S., Yan D., Zhang G., Li M., Macromol. Chem. Phys. 2000,201, 2666.
    Teodorescu M., Gaynor S. G., Matyjaszewski K., Macromolecules 2000, 33, 2335.
    Xia J., Gaynor S. G., Matyjaszewski K., Macromolecules 1998,31, 5958.
    Coca S., Jasieczek C. B., Beers K. L., Matyjaszewski K., J.Polym. Sci., Part A: Polym. Chem. 1998, 36, 1417.
    Muhlebach A., Gaynor S. G., Matyjaszewski K., Macromolecules 1998, 31,6046.
    Coca S., Jasieczek C., Matyjaszewski K., Macromol. Chem.Phys. 1997, 198, 4011.
    Davis K. A., Matyjaszewski K., Macromolecules 2000, 33, 4039.
    Destarac M., Matyjaszewski K., Boutevin B., Macromol. Chem.Phys. 2000, 201, 265.
    Percec V., Barboiu B., Kim H.J., J. Am. Chem. Soc. 1998, 120,305.
    Gaynor S., Qiu J., Matyjaszewski K., Macromolecules 1998, 31,5951.
    Haddleton D. M., Martin C. C., Dana B. H., Duncalf D. J., Heming A. M., Kukulj D., Shooter A. J., Macromolecules 1999,32, 2110.
    Kotani Y., Kato M., Kamigaito M., Sawamoto M., Macromolecules 1996, 29, 6979.
    Zhang X., Xia J., Matyjaszewski K., Macromolecules 1998, 31,5167.
    Beers K. L., Boo S., Gaynor S. G., Matyjaszewski K.,
    
    
    Macromolecules, 1999, 32, 5772.
    Beers K. L., Gaynor S. G., Matyjaszewski K., Sheiko S. S., Moller M., Macromolecules 1998, 31, 9413.
    Zhang X., Matyjaszewski K., Macromolecules 1999, 32, 7349.
    Ashford E. J., Naldi V., O’Dell R., Billingham N. C., Armes S. P., Chem. Commun. 1999, 1285.
    Wang X. S., Armes S. P., Macromolecules 2000, 33, 6640.
    Xia J., Johnson T., Gaynor S., Matyjaszewski K., DeSimone J., Macromolecules 1999, 32, 4802.
    Betts D. E., Johnson T., LeRoux D., DeSimone J. M., ACSSymp. Ser. 1998, 685, 418.
    Zhang Z., Ying S., Shi Z., Polymer 1999, 40, 5439.
    Teodorescu M., Matyjaszewski K., Macromolecules 1999, 32,4826.
    Matyjaszewski K., Gaynor S. G., In Applied Polymer Science; Craver, C. D., Carraher, C. E., Jr., Eds.; Pergamon Press:Oxford, UK, 2000, p 929.
    Matyjaszewski K., Coessens, V., Nakagawa Y., Xia J., Qiu J., Gaynor S., Coca S., Jasieczek C., ACS Symp. Ser. 1998, 704, 16.
    Matyjaszewski K., Patten T. E., Xia J., J. Am. Chem. Soc. 1997,119, 674.
    Wang X., Luo N., Ying S., Polymer 1999, 40, 4157.
    Perrier S., Arme, S. P., Wang X. S., Malet F., Haddleton, D.M., J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 1696.
    Granel C., Dubois P., Macromolecules, 1996, 29, 8576.
    万小龙,应圣康,.高分子学报 2000, 1, 27.
    万小龙.乳液可控自由基聚合及其后处理 [博士论文].上海:华东理工大
    
    
    学,1999.
    周其凤,胡汉杰.高分子化学.化学工业出版社,2001.10. 129.
    Coessens V., Matyjaszewski K., Prog. Polym. Sci., 2001, 26, 337.
    Von Werne T., Patten T.E., J. Am. Chem. Soc., 2001, 123, 7497.
    Nakagawa Y., Gaynor S.G., Matyjaszewski K., 4400 Fifth Avenue, Pittsburgh, PA 15213, 577.
    段海宝,蔡宇杰等,高分子材料科学与工程 2003,19,28.
    彭惠,沈艳华,柯勇。程时远,高分子通报 2003,1,43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700