用户名: 密码: 验证码:
金雀异黄素对尼罗罗非鱼(Oreochromis niloticus)生长的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着水产养殖业的发展,对水产饲料的需求量大增。由于饲料中的主要原料动物蛋白的价格高且来源有限,大豆蛋白逐步成为首选替代品。大豆蛋白粉中富含大豆异黄酮,弄清大豆异黄酮对鱼类生长的影响对其生产应用十分重要。金雀异黄素(Genistein,4’,5,7-三羟基异黄酮)是大豆异黄酮中含量最高、活性最强的一种异黄酮类植物雌激素,化学结构类似于17β-雌二醇(E2)。
     本论文以“新吉富”品系尼罗罗非鱼为实验动物,以含金雀异黄素浓度为0、30、300和3000g/g的饲料饲喂罗非鱼幼鱼8周,观察了金雀异黄素对罗非鱼生长的影响,并从营养和内分泌两方面初步探讨了金雀异黄素影响罗非鱼生长的作用机制。为科学评价大豆异黄酮对鱼类生长的影响,推广以大豆粉为蛋白源的新型鱼饲料提供重要的理论基础。研究结果表明:
     1、以含0~3000g/g金雀异黄素的饵料饲喂罗非鱼幼鱼8周,30和300μg/g组鱼的终末均重和特定生长率与对照组无显著差异,而3000μg/g组比对照组显著降低。各处理组的摄食率、饲料系数、肝体比、脏体比和鱼体组成成分与对照组相比,没有显著差异。说明低浓度的金雀异黄素对罗非鱼的生长没有影响,而高浓度的金雀异黄素能够抑制罗非鱼的生长。
     2、对罗非鱼主要消化酶的研究表明,含300μg/g金雀异黄素的饲料饲喂罗非鱼幼鱼8周后,其胃蛋白酶和肠淀粉酶的活性比对照组显著降低。3000μg/g饲料组罗非鱼胃蛋白酶、胰蛋白酶、肝淀粉酶和肠淀粉酶的活性与对照组相比均显著降低。胃淀粉酶和SOD的活性,各处理组与对照组相比没有显著差异。结果显示较高浓度的金雀异黄素能干扰罗非鱼的蛋白和糖代谢,降低罗非鱼对营养物质的吸收和转化。
     3、鱼类的生长主要受下丘脑-垂体-肝脏的GH/IGF-I轴调控,垂体GH合成和分泌受到下丘脑分泌产生的ghrelin、GnRHs、NPY和PACAP等因子的调控。本文以含0~3000g/g金雀异黄素的饵料饲喂罗非鱼幼鱼8周后,采用RIA分析法和实时定量RT-PCR方法分别检测了血浆中GH和垂体GHmRNA,以及脑中调控垂体GH表达的因子如ghrelin、GnRHs、GnRHRs、NPY、NPYRs、PACAP等的mRNA表达水平。结果表明:随着饲料中金雀异黄素含量的增加,罗非鱼血浆GH水平和垂体GH mRNA表达量逐步降低,而且3000μg/g饲料组比对照组显著降低。这一变化趋势与罗非鱼生长状况相一致,证实了垂体GH在调控罗非鱼生长中的重要作用。对脑中调节垂体GH表达的主要因子的检测表明,3000μg/g金雀异黄素组鱼脑ghrelin mRNA表达量比对照组显著降低,其对垂体GH合成的促进作用受到抑制。此外,虽然3000μg/g组NPY mRNA表达量显著升高,但其受体基因NPY R1mRNA表达量却显著降低,因此NPY促进垂体合成GH的作用也被抑制。而各处理组中GnRHs、GnRHRs、NPY R2、PACAP mRNA的表达量与对照相比,均没有发生显著变化。说明高浓度金雀异黄素可能通过抑制GH/IGF-I生长轴线上游脑ghrelin、NPY R1的表达,进而降低了GH合成与分泌。
     4、GH在脑垂体合成后,经血液循环运送到肝脏,与肝细胞表面的GHR结合,刺激肝细胞释放IGF-I, IGF-I与IGFBP3结合,经内分泌途径作用于靶细胞的IGF-IR,促进细胞的增殖和生长。以含0~3000g/g金雀异黄素的饵料饲喂罗非鱼幼鱼8周后,采用RIA分析法和实时定量RT-PCR方法分别检测了血浆中IGF-I和肝脏IGF-I、GHR1、GHR2、IGF-IR、IGFBP3mRNA水平。结果表明:随着饲料中金雀异黄素含量不断增加,罗非鱼血浆IGF-I水平和IGF-I mRNA表达量逐步降低,而且3000μg/g饲料组IGF-I mRNA表达量比对照组显著降低,这与生长及GH的表现一致。此外,3000μg/g饲料组的肝脏GHR2及IGF-IRmRNA表达量也比对照组显著降低,而肝脏IGFBP3mRNA表达水平比对照组显著升高。说明金雀异黄素可能通过抑制肝脏GHR2表达造成IGF-I合成的降低,并通过促进IGFBP3的合成使鱼体内具有活性的游离IGF-I水平降低,造成IGF-IR表达的减少,从而抑制了IGF-I介导的GH促生长作用。
     综上所述,饵料中含较低浓度的金雀异黄素(0~300μg/g)对罗非鱼的生长无显著影响,高于3000μg/g的金雀异黄素能够显著抑制罗非鱼生长。其作用机理一方面通过抑制罗非鱼胃蛋白酶、胰蛋白酶、肝淀粉酶和肠淀粉酶等主要消化酶的活性,抑制罗非鱼蛋白质和糖的代谢,从而阻遏了罗非鱼对营养物质的消化和吸收;另一方面也通过影响罗非鱼的生长内分泌调控,高浓度金雀异黄素抑制了GH/IGF-I生长轴线上游脑ghrelin、NPY R1的表达,进而降低GH合成与分泌;通过抑制肝脏GHR2、IGF-IR表达和促进IGFBP3表达,造成IGF-I合成的降低和游离IGF-I的减少,从而抑制了IGF-I介导的GH促生长作用。
With the development of aquaculture, the demand for aquatic feed increasedgreatly. Moreover, Because of the high price and limited supply of animal protein, thesoybean protein has gradually become the preferred alternative. Soybean isoflavone isrich in soybean protein powder, so it is very important to find out the influence ofsoybean isoflavones on the growth of fish. Genistein shares structural features with17β-estradiol(E2) and it is one of the most potent and higest levels phytoestrogens insoybean and soy products.
     Therefore, we chose "New GIFT Strain Nile tilapia" as the experimental animalin this paper, and fed tilapia diets for8weeks with dietary genistein concentration0,30g/g,300g/g and3000g/g, and determined the effect of genistein on the growthof tilapia, and from the two aspects of nutrition and endocrine discussed themechanism of genistein affecting the growth of Nile tilapia. Our study provided thetheoretical basis for the future scientific evaluation of genistein on fish and exploringnew type of fish feed which was taken soybean meal as protein source. The resultsshowed that:
     1、With dietary genistein concentration0~3000g/g feeding tilapia diets for8weeks,30and300μg/g group of fish final weight and specific growth rate were notsignificantly different from control, while3000μg/g group decreased significantlycompared with control. Among each treatment group, feed intake, feed efficiencyratio, hepatosomatic index, viscerosomatic index and the fish body composition didnot differ significantly. It showed that low concentration of genistein had no effect onthe growth of tilapia, and high concentration of genistein could inhibit the growth oftilapia.
     2、From the study on the main digestive enzymes of tilapia showed that theactivities of stomach protease and intestinal amylase of300μg/g group feeding tilapiaafter8weeks were significantly lower than those of the control. In the3000μg/g group, the activities of stomach protease, trypsin, liver amylase and intestinal amylasewere significantly lower than those of the control. There were no significantdifference in SOD activity and stomach amylase among each treatment. The resultssuggested high level of genistein could interfere in the proteometabolism andglycometabolism, and reduce the tilapia conversion and absorption of nutrients.
     3、The growth of fish was mainly regulated by GH/IGF-I axis, and GH synthesisand secretion were regulated by ghrelin, GnRHs, NPY and PACAP which weresecreted by hyothalamus. With dietary genistein concentration0~3000g/g feedingtilapia diets for8weeks, GH levels in plasma were examined by radioimmunoassay.GH、ghrelin、GnRHs、GnRHRs、NPY、NPYRs and PACAP mRNA expression levelswere examined by real-time PCR. It turned out, GH levels in plasma and theexpression of mRNA decreased gradually in tilapia, and3000g/g group wassignificantly lower than that of the control, the changing trend was consistent with thegrowth of tilapia, and it confirmed the important role of pituitary GH in regulating thegrowth of tilapia. The detection on the main factors of hyothalamus which regulatedthe pituitary GH showed, the expression of ghrelin mRNA in3000μg/g group wassignificantly lower than that of the control treatment, so its promoting effect onpituitary GH was restrained. In addition, NPY mRNA expression reached the highestlevel in3000μg/g group, however, the expression level of NPY R1mRNA decreasedsignificantly. Its promoting effect on pituitary GH was also restrained. With theconcentration of dietary genistein increasing, the expressions of GnRHs, GnRHRs,NPYR2and PACAPmRNA were not significantly changed. It showed that highconcentration of genistein ruduced the synthesis and secretion of GH by inhibiting theexpression of ghrelin and NPY R1which were located on the up-stream of GH/IGF–Iaxis.
     4、GH was synthesised in the pituitary, following the blood circulation to theliver, then combined with the GHR in liver cells and stimulated the liver cells toreleasing IGF-I which combined with the IGFBP3, through the endocrine function tothe target cells, and promoted cell proliferation and growth ultimately. With dietarygenistein concentration0~3000g/g feeding tilapia diets for8weeks, IGF-I levels in plasma were examined by radioimmunoassay. IGF-I、GHR1、GHR2、IGF-IR、IGFBP3mRNA expression levels in liver were examined by real-time PCR. IGF-I level inplasma and the expression of mRNA decreased gradually in tilapia, and3000g/ggroup was significantly lower than that of the control, which was consistent with theperformance of growth and GH. In addition, the expression level of GHR2andIGF-IR mRNA in3000μg/g group decreased significantly compared to the controltreatment, while IGFBP3mRNA increased significantly compared to the controltreatment. It suggested that genistein may reduce the synthesis of IGF-I by inhibitingthe expression of liver GHR2, and also reduced the levels of free IGF-I by promotingthe synthesis of IGFBP3, then resulted in the decrease of the expression of IGF-IR,thus inhibited the function of GH mediated by IGF–I.
     In conclusion, it had no significant effect on the growth of tilapia in the lowconcentration (0~300g/g) of genistein, while it had significant effect when the theconcentration was higher than3000g/g. For its machanism, on one hand, it couldreduce the protein metabolism and glycometabolism of the tilapia by inhibiting themain activities of digestive enzymes of tilapia including stomach protease, trypsin,liver amylase and intestinal amylase, thus, reduce the tilapia conversion andabsorption of nutrients. On the other hand, it also could affect the GH/IGF–I axis.The high concentration of genistein could inhibit the expression of ghrelin and NPYR1, and thus reduced the synthesis and secretion of GH; By inhibiting the expressionof liver GHR2, IGF-IR, and IGFBP3, it reduced the synthesis of IGF-I and free IGF-I,resulting in inhibiting the function of GH mediated by IGF–I.
引文
艾庆辉,谢小军.南方鲇的营养学研究:饲料中大豆蛋白水平对摄食率和消化率的影响.水生生物学报,2002b,26(3):215-220.
    蔡英华,几种大豆抗营养因子对牙鲆(Paralichthys olivaceus)生长和消化生理的影响,中国海洋大学,2006.
    陈洁,金雀异黄素对雄性斑马鱼VTG的诱导及其机理研究,中国海洋大学,2010.
    桂建芳,鱼类性别和升值的遗传基础及其人工控制.科学出版社.2007.
    韩正康.异黄酮植物雌激素调控动物神经内分泌及生产性能的研究.中国农业科技导报.1999,61-66.
    纪靓靓.2,4,6-三氯苯酚诱导鲫鱼肝脏自由基的产生及氧化损伤的研究.辽宁大学,2007.
    姜巨峰,张殿昌,邱丽华等.用IGF-ImRNA表达量评价鲮饲料配方效果的研究.南方水产,2010,6(2):66-72.
    蒋传葵.工具酶的活力测定[M].上海:上海科学技术出版社,1982.
    李革新,皮静波,郑全美,等.三种SOD测定方法的比较.中国卫生检验杂志,1999,6(5):273-274.
    李文笙,林浩然.鱼类生长激素合成与分泌的内分泌调控网络:垂体生长激素分泌细胞中的信号整合.中国科学:生命科学.2010,40(2):149-158
    林浩然,1996.鱼类生长和生长激素分泌活动的调节.动物学报,42(1):69-79
    林浩然,2000.神经内分泌学调控鱼类生殖和生长的相互作用.动物学研究21(3):12-16
    高荣兵,庄平,章龙珍,刘鉴毅,侯俊利,冯广朋,邹雄.豆粕替代鱼粉对点篮子鱼生长性能的影响.水产学报.2010,34(10):1534-1540.
    郭晓红,赵恒寿.大豆黄酮对肉仔鸡生产性能和免疫机能的影响.粮食与饲料工业.2004,6:40-42.
    林成招,马海田.大豆异黄酮对大鼠小肠上皮细胞生长及葡萄糖和氨基酸吸收的影响.南京农业大学学报.2005,28(1):71-75.
    刘根桃.异黄酮植物雌激素一大豆黄酮对动物生长和泌乳的影响及神经内分泌机理的研究.南京农业大学,1996。
    刘燕强.异黄酮植物雌激素—大豆黄酮对产蛋鸡生产性能及其血液中几种激素水平的影响.中国畜牧杂志,1998,34(3):9-10.马海田,异黄酮植物雌激素对动物生长及其吸收机理的研究.南京农业大学博士论文,
    2005.马海田,姚一琳,陈香,等.染料木黄酮对幼年大鼠脂代谢和抗氧化作用的影响.中国组织工程研究与临床康复,2008,12(2):297-301.
    马学会,武现军,倪耀娣.大豆黄酮对产蛋鸡蛋壳品质和骨骼代谢的影响.饲料工业,2004,25(7):32-34.
    马细兰,张勇,刘晓春,林浩然.雄尼罗罗非鱼肝脏2种生长激素受体基因表达的发育性变化.中国水产科学,2009,16(1):1-7.
    毛姗姗,金雀异黄素对金鱼消化酶活性和抗氧化系统的影响,中国海洋大学,2009.
    米海峰,不同蛋白源和大豆抗营养因子对牙鲆蛋白消化酶的活性与基因表达的影响,中国海洋大学,2008.
    全吉淑,尹学哲,金泽武道,柳明洙,尹宗柱.大豆异黄酮对α-葡萄糖苷酶和α-淀粉酶的抑制作用.2001,24:239-242.
    袁建平,王江海,刘昕.大豆异黄酮生理活性的研究进展(1)大豆异黄酮的代谢及雌激素特性.中国食品学报.2003.3(3):81-85.
    孙碧桂.豆粕替代鱼粉对鲤鱼生长的影响.内陆水产.2008(4):39-40.
    王春娥,赵团结,盖钧镒.中国大豆资源异黄酮含量及其组分的遗传变异和演化特征.中国农业科学.2010.43(19):3919-3929.
    王崇,雷武,解绶启,朱晓鸣,杨云霞,韩冬.饲料中豆粕替代鱼粉蛋白对异育银鲫生长、代谢及免疫功能的影响.水生生物学报.2009.33(4):740-747.
    王亚菊,母源性大豆黄酮对雏鸭生长及其相关基因表达的影响,南京农业大学,2002.
    相启森,周俊,王冬等.植物雌激素活性成分及生理功能研究进展。安徽农业科学,2006,34(10):2038-2039.
    徐增洪.大豆黄酮在水产养殖中的应用研究.淡水渔业.2005.35(6):41-43.
    余祖功,夏德全,吴婷婷.大豆黄酮对奥利亚罗非鱼生长及相关激素水平、血液生化指标的影响.中国兽医学报.2006.26(2):183-185.
    张殿昌.鱼类胰岛素样生长因子研究进展.上海水产大学学报.2005,14(1):66-71.
    张响英,王根林,唐现文,黄金明.大豆黄酮对仔公猪增重及血清激素水平的影响.动物营养学报,2006,18(1):59-61.
    张伟,大豆皂甙与大豆异黄酮对异育银鲫生长、生理及肠道健康的影响,苏州大学,2010.
    赵巍,粪臭素对几种重要消化酶部分性质影响的研究,四川大学,2006.
    郑高利,张信岳.葛根异黄酮对去卵巢大鼠胫骨钙、磷、镁和微量元素含量的影响.中国药理学会通讯.2002,19(1)75-76.
    郑元林,艾晓杰.大豆黄酮对大鼠肝脏生长代谢和相关酶活性的影响.上海交通大学学报:农业科学版,2002,20(2):105-109.
    郑元林,韩正康.克仑特罗对大鼠肝细胞氮代谢及6-磷酸葡萄糖脱氢酶活性的影响.药学学报,2002,37(1):14-18.
    郑艳.久效磷农药对尼罗罗非鱼(Oreochromis niloticus)幼鱼生长及GH/IGF-I轴的影响研究.中国海洋大学,2012.
    周玉传,卢立志.大豆黄酮对产蛋初期和后期绍兴鸭产蛋性能及血清激素水平的影响.动物营养学报,2002,14(2):14-18.
    朱泽远,周维仁,乐国伟.异黄酮植物雌激素对动物生长的影响及其作用机制.兽药与饲料添加剂.2003.8(5):25-27.
    Abel, H.J., Becker, K., Meske, C.H.R., Friedrich, W.,1984. Possibilities of using heat-treatedfull-fat soybeans in carp feeding. Aquaculture42,97–108.
    Adrian Elangovan, K.F. Shim. The influence of replacing fish meal partially in the diet withsoybean meal on growth and body composition of juvenile tin foil barb(Barbodes altus).Aquaculture,2000,189:133–144.
    Anna W ojcik-G adysz, Katarzyna Romanowicz, Tomasz Misztal, Jolanta Polkowska, BernardBarcikowski. Effects of intracerebroventricular infusion of genistein on the secretory activityof the GnRH/LH axis in ovariectomized ewes. Animal Reproduction Science,2005,86:221–235.
    Argenton F, Bernardini S, Puttini S, Colombo L, Bortolussi M. ATGACG motif mediatesgrowth-hormone-factor-1/pituitary transcriptional-activator-1-dependent cAMP regulation ofthe rainbow flout growth-hormone promoter. Eur J Biochem1996;238:591-598.
    Ari Ry okkynen, Jussi V.K. Kukkonen, Petteri Nieminen. Effects of dietary genistein on mousereproduction, postnatal development and weight-regulation. Animal Reproduction Science,2006,93:337–348.
    Association of Official Analytical Chemists (AOAC),1995. Official Methods of Analysis ofOfficial Analytical Chemists International,16th ed. Association of Official AnalyticalChemists, Arlington, VA.
    Bureau D P, Harris A M, Cho C Y. The effects of purified alcohol extracts from soy products onfeed intake and growth of Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout(Oncorhychus mykiss). Aquaculture,1998,161:27-43.
    Beckman B. R., Shimizu M., Gadberry B. A., Cooper K. A.,2004.Response of the somatotropicaxis of juvenile coho salmon to alterations in plane of nutrition with an analysis of therelationships among growth rate and circulating IGF-I and41kDa IGFBP. Gen. Comp.Endocrinol.135,334-344
    Bennetau-Pelissero C, et al. Effect of Genistein-Enriched Diets on the Endocrine Process ofGametogenesis and on Reproduction Efficiency of the Rainbow Trout (Oncorhynchusmykiss). General and Comparative Endocrinology,2001,121:173–187.
    Bradford M M. A rapid and sensitive method for the quantitation of microg ram quantities of protein utilizing the principle of pro tein dye binding. Anal Bio chem,1976,72:248-254.
    Butler A. A., LeRoith D. L.,2001. Control of growth by the somatotrophic axis: growth hormoneand the insulin-like growth factors have related and independent roles. Ann Rev Physiol.63,141-164
    Calduch-Giner J. A., Duval H., Chesnel F., Boeuf G., Pérez-Sánchez J., Boujard D.,2001. Fishgrowth hormone receptor: molecular characterization of two membrane-anchored forms.Endocrinology142,3269-3273.
    Cai Q, Wei H. Effect of dietary genistein on antioxidation enzyme activities in SENCARmice. Nutr Cancer,1996,25:1-7.
    Cao Q.-P., Duguay S. J., Plisetskaya E. M., Steiner D. F., Chan S. J.,1989. Nucleotide sequenceand growth hormone-regulated expression of salmon insulin-like growth factor-I mRNA.Mol. Endocrinol.3,2005-2010
    Cao, Y. K., Zhang, S. F., Zou, S. E., and Xia, X.,2012. Daidzein improves insulin resistance inovariectomized rats. Climacteric, DOI:10.3109/13697137.2012.664831.
    Castillo J., Codina M., Martínez M. L., Navarro I., Gutiérrez J.,2004.Metabolic and mitogeniceffects of IGF-I and insulin on muscle cells of rainbow trout. Am. J. Physiol. Regul. Integr.Comp. Physiol.283, R647-R652
    Carter C.G., Hauler R.C.. Fish meal replacement by plant meals in extruded feeds for Atlanticsalmon, Salmo salar L [J]. Aquaculture,2000,185:299–311.
    Cavari B., Le Bail P. Y., Levavi-Sivan B., Melamed P., Kawauchi H., Funkenstein B.,1994.Isolation of growth hormone and in vitro translation of mRNA isolated from pituitaries of thegilthead sea bream Sparus aurata. Gen. Comp. Endocrinol.95,321–329
    Chang J P, Johnson J D, Van Goor F, et al. Signal transduction mechanismmediating secretion ingoldfish gonadotropes and somatotropes. Biochem. Cell Biol.,2000,78:139-153.
    Chen J. Y., Chen J.C., Chang C.Y., Shen S.C., Chen M.S., Wu J.L.,2000. Expression ofrecombinant tilapia insulin-like growth factor I and stimulation of juvenile tilapia growth byinjection of recombinant IGFs polypeptides. Aquaculture181,347-360.
    Claudia Kalbe, Marcus Mau, Charlotte Rehfeldt. Developmental changes and the impact ofisoflavones on mRNA expression of IGF-I receptor, EGF receptor and related growthfactors in porcine skeletal muscle cell cultures. Growth Hormone&IGF Research,2008,18(5):424-433.
    Clemmons D. R.,2001a.Use of mutagenesis to probe IGF-binding protein structure/functionrelationships.Endor. Rev.22(6),800-817
    Clemmons D. R.,2001b.Commercial assays available for insulin-like growth factor I and their usein diagnosing growth hormone deficiency.Horm. Res.55s2,73-79
    Coolican S. A., Samuel D. S., Ewton D. Z., McWade F. J., Florini J. R.,1997. The mitogenic andmyogenic actions of insulin-like growth factors utilize distinct signaling pathways. J. Biol.Chem.272,6653-6662
    Dabrowski, K., Poczyczynski, P., Ko¨ck, G., Berger, R.,1989. Effect of partially or totallyreplacing fishmealprotein by soybean meal protein on growth, food utilisation and proteolyticenzyme activities in rainbow trout(Salmo gairdneri). New in vivo test for endocrinepancreatic secretion. Aquaculture77,29–49.
    Dixon R A, Ferreira D. Genistein. Phytochemistry,2002,60:205–211.
    Drakenberg K., V. R. Sara, S. Falkmer, S. Gammeltoft C. Maake, M. Reínecke,1993.Identification of IGF-I receptors in primitive vertebrates. Reg. Pep.43,73-81.
    Drpaer C R, Edel M J, Diek I M, et al.Phytoestrogens reduce bone loss and bone resorption inoophoreectomized rats.J Nurt,1997,127:1795-1799.
    Duan C. M., Duguay S. J., Plisetskaya E. M.,1993. Insulin-like growth factor-I (IGF-I)messenger-RNA expression in coho salmon, Oncorhynchus kisutch-tissue distribution andeffects of growth hormone prolactin family proteins. Fish Physiol. Biochem.11,371-379
    Duan C. M.,1997. The insulin-like growth factor system and its biological actions in fish. Am.Zool.,37,491-503
    Duan C.,1998. Nutritional and development regulation of insulin-like growth factors in fish. J.Nutr.128,306S-314S
    Duan C. M., Bauchat J. R., Hsieh T.,2000. Phosphatidylinositol3-kinase is required forIGF-I-induced vascular smooth muscle cell proliferation and migration. Cir. Res.86,15-23
    Duan C.,2003. A zebrafish view of the insulin-like growth factor (IGF) signaling pathway. ActaZoologica Sinica49,421-431
    Duguay S., Swanson P., Dickhoff W. W.,1994. Differential expression and hormonal regulation ofalternatively spliced IGF-I mRNA transcripts in salmon. J. Mol. Endocrinol.12,25-37
    El-Saidy, D.M.S.D., Gaber, M.M.A.,2002. Complete replacement of fish meal by soybean mealwith dietary l-lysine supplementation for Nile tilapia Oreochromis niloticus (L.) fingerlings.J.World Aquac. Soc.33,297–306.
    El-Sayed, A.F.M.,1999. Alternative dietary protein sources for farmed tilapia, Oreochromis spp.Aquaculture179,149–168.
    Emmanuel M. V. C., Christopher L. B., J. Adam L., Matthew E. P., Remedios B. B., Russell J. B.,2005. Insulin-like growth factor-I cDNA cloning, gene expression and potential use as agrowth rate indicator in Nile tilapia, Oreochromis niloticus. Aquaculture,251,585-595.
    Fox B.K., Riley L.G., Hirano T., Grau E.G.,2006. Effects of fasting on growth hormone, growthhormone receptor, and insulin-like growth factor-I axis in seawater-acclimated tilapia,Oreochromis mossambocus. Gen. Comp. Endocrinol.148,340-347.
    Francoise Medale, Thierry Boujard, Frederic Vallee, et al. Voluntary feed intake, nitrogen andphosphorus losses in rainbow trout (Nncorhynchus mykiss) fed increasing dietary levels ofsoy protein concentrate[J]. Aquat. Living Resour.,1998,11(4):239-246.
    Francesco M, Parisi G, et al. Effect of long-term feeding with a plant protein mixture based diet ongrowth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss).Aquaculture.2004.236:413–429.
    Fruchtman S., Jackson L., Borski R.,2000. Insulin-like growth factor-I disparately regulatesprolactin and growth hormone synthesis and secretion: studies using the teleost pituitarymodel. Endocrinology141,2886-2894
    Gallagher, M.L.,1994. The use of soybean meal as a replacement for fish meal in diets for hybridstriped bass (Morone suxutillis×M. chrysops). Aquaculture126,119–127.
    Gomes E F, Rema P, Kaushik S J. Replacement of fish meal by plant proteins in the diets ofrainbowtrout (Oncorhynchus mykiss): digestibility and growth performance [J]. Aquaculture,1995,130:177-186.
    Gradin K A, Buss C L, Li J Y, et al. Neuropeptide Y2receptor are involved in enhancedneurogenic vasoconstriction in spontaneously hypertensive rats. Br J Pharmacol,2006,148(5):703-713.
    Gray E.S., Kelley K.M., Law S., Tsai R., Young G., Bern H.A.,1992. Regulation of hepaticgrowth hormone receptors in coho salmon (Oncorhynchus kisutch). Gen. Comp. Endocrinol.88,243-252
    Greene M. W., Chen T. T.,1999.Quantitation of IGF-I, IGF-II, and multiple insulin receptorfamily member messenger RNAs during embryonic development in rainbow trout.Mol.Reprod. Dev.54,348-361
    Guler H. P., Zapf J., Froesch E. R.,1987.Short-term metabolic effects of recombinant humaninsulin-like growth factor-I in healthy adults. J. New Engl. J. Med.317,137-140
    Gustavo Alejandro Rodriguez Montes de Oca. Evaluation of dietary phytochemicals on sexdifferentiation and growth in Nile Tilapia(Oreochromis niloticus), The Ohio State University,2005.
    Gutierrez J. M., Parrizas M., A. Maestro, E. M. Plisetskaya,1995.Insulin and IGF-I binding andtyrosine kinase activity in fish heart. J. Endocrinol.146,35-44
    Harris D. M., Besselink E., et al. Phytoestrogens induce differential estrogen receptor Alpha-orBeta-mediated responses in transfected breast cancer cells. Experimental biology andmedicine,2005,230(8):558-568.
    Holloway A. C., Leatherland J. F.. Neuroendocrine regulation of growth hormone secretion inteleost fishes with emphasis on the involvement of gonadal sex steroids.
    Hidalgo M.C., Urea E., Sanz A.,1999. Comparative study of digestive enzymes in fish withdifferent nutritional habits. Proteolytic and amylase activities. Aquaculture170,267–283.
    Imai Y., Clemmons D. R.,1999. Roles of phosphatidylinositol3-kinase and mitogen-activatedprotein kinase pathways in stimulation of vascular smooth muscle cell migration anddeoxyribonucleic acid synthesis by insulin-like growth factor-I. Endocrinology140,4228-4235
    Ishibashi H, Kobayashi M, Koshiishi T, et al. Induction of plasma vitellogenin synthesis by thecommercial fish diets in male goldfish (Carassius auratus) and dietary phytoestrogens. JHealth Sci,2002,48:427-434.
    Jiang Y, Li W S, Lin H R. The prokaryotic expression and biological activity of the pituitaryadenylate cyclase activating polypeptide in groupers Epinephelus coioides. Acta ZoologicaSinica,2005,51:1162-1166
    Jones J. I., Clemmons D. R.,1995. Insulin-like growth factors and their binding proteins:biological actions. Endocr. Rev.16,3-34
    Jones J. I., Gockerman A., Busby Jr. W. H., Camacho-Hubner C., Clemmons D. R.,1993.Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of theeffects of IGF-I. J. Cell Biol.121,679-687
    Kaiya H, Kojima M, Hosoda H, et al. Identification of tilapia ghrelin and its effects on growthhormone and prolactin release in the tilapia, Oreochromis mossambicus. Comp. Biochem.Physiol.,2003b.135:421-429.
    Kaldas R S, et al. Reprodution and general metbaolic effects of Phytoestrogens in mmamals.
    Reprod Toxieol Rev,1989,3(2):81-89.
    Kaushik S J, Cravedi J P, Lalle`s J, et al. Partial or total replacement of fish meal by soya proteinon growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia andflesh quality in rainbow trout. Aquaculture,1995,133:257–274.
    Kelley K. M., Haigwood J. T., Perez M., Galima M. M.,2001.Serum insulin-like growth factorbinding proteins (IGFBPs) as markers for anabolic/catabolic conditions in fishes. Comp.Biochem. Physiol. Part B Biochem. Mol. Biol.129,229-236
    Kelley K. M., Schmidt K. E., Berg L., Sak K., Galima M. M., Gillespie C., Balogh L., HawayekA., Reyes J. A., Jamison M.,2002. Comparative endocrinology of the insulin-like growthfactor-binding protein. Endocrinol.175,3-18
    Kelley K. M., Siharath K., Bern H. A.,1992. Identification of insulin-like growth factor-bindingproteins in the circulation of four teleost fish species. Journal of Experimental Zoology263,220-224.
    Kenneth A. Faber and Claude L. Hughes Jr.. Dose-response characteristics of neonatal exposure togenistein on pituitary responsiveness to gonadotropin releasing hormone and volume of thesexually dimorphic nucleus of the preoptic area (SDN-POA) in postpubertal castrated femalerats. Biology of reproduction,1991, Soc. Study Reprod.,45:649-653.
    Klausen C, Chang JP, Habibi HR. The effect of gonadotropin-releasing hormone on growthhormone and gonadotropin subunit gene expression in the pituitary of goldfish, Carassiusauratus. Comp Biochem Physiol2001:129B:511-516.
    Kinarm K, Maliso JA. Effect of genistein on the growth and reproductive function of male andfemale Yellow Perch Perca flavescens.Journal of the world aquaculture society,1999.30(1):73-79.
    Kostyo J. L., Goodman H. M.(Eds),1999. Handbook of Physiology, Section7: The EndocrineSystem, Volume V: Hormonal Control of Growth. Oxford University Press.
    Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B,Gustafsson JA. Interaction of estrogenic chemicals and phytoestrogens with estrogenreceptorβ. Endocrinology,139:4252–4263,1998.
    Kuzmina V..Influence of age on digestive enzyme activity in some freshwater teleosts.Aquaculture,1996,148:25-37.
    Le Gac F., Blaise O., Forstier A., Le Bail P. Y., Loir M., Mourot B., Weil C.,1993. Growthhormone (GH) and reproduction: a review. Fish Physiol. Biochem.11,219-232
    Lee L. T. O., Nong G., Chan Y. H., Tse D. L. Y., Cheng C. H. K.,2001. Molecular cloning of ateleost growth hormone receptor and its functional interaction with human growth hormone.Gene270,121-129.
    Lemieux, H., Blier, P., Dutil, J.D.,1999. Do digestive enzymes set a physiological limit on growthrate and food conversion efficiency in the Atlantic cod (Gadus morhua). Fish Physiol.Biochem.20,293–303.
    LeRoith D., Warner H., Beitner-Johnson D., Roberts Jr. C. T.,1995. Molecular and cellular aspectsof the insulin-like growth factor I receptor: a review. Endocr. Rev.16,143-163.
    Lindsay R C. Flavour of fish. Shahidi F, Botta J R (Eds.) Seafoods Chemistry, ProcessingTechnology and Quality. Glasgow: Blackie Academic and Professional,1994.
    Lin S., Luo L., Effects of different levels of soybean meal inclusion in replacement for fish mealon growth, digestive enzymes and transaminase activities in practical diets for juveniletilapia,Oreochromis niloticus×O. aureus. Anim. Feed Sci. Technol.(2011),doi:10.1016/j.anifeedsci.2011.03.012
    Loir M., Le Gac F.,1994.Insulin-like growth factor-I and–II binding and action on DNA synthesisin rainbow trout spermatogonia and spermatocytes.Biol. Reprod.51,1151-1163
    Lori K. Davis, Nancy Visitacion, Larry G. Riley, Naoshi Hiramatsu, Craig V. Sullivan, TetsuyaHirano, E. Gordon Grau,2009. Effects of o,p’-DDE, heptachlor, and17β-estradiol onvitellogenin gene expression and the growth hormone/insulin-like growth factor-I axis in thetilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology, Part C149,507-514
    Lugo J M, Rodriguez A, Helguera Y, et al. Recombinant novel pituitary adenylatecyclase-activating polypeptide from African catfish (Clarias gariepinus) authenticates itsbiological function as a growth-promoting factor in low vertebrates.J Endocrinol,2008,197:583-597.
    Mambrini M, Roem A J, Cravedi J P, et al. Effects of Replacing Fish Meal with Soy ProteinConcentrate and of DL-Methionine Supplementation in High-Energy, Extruded Diets on theGrowth and Nutrient Utilization of Rainbow Trout, Oncorhynchus mykiss. American Societyof Animal Science,1999.77:2990–2999.
    Mai Kangsen, Zhang Yanjiao et al. Effects of Dietary Soy Isoflavones on Feed Intake, GrowthPerformance and Digestibility in Juvenile Japanese Flounder (Paralichthys olivaceus). OceanUniv. China,201211(4):511-516.
    Maures T., Chan S. J., Xu B.,2002a. Structural, biochemical, and expression analysis of twodistinct insulin-like growth factor (IGF)-I receptors and their ligands in zebrafish.Endocrinology143(5),1858-1871
    Maures T., Duan C.,2002b. Structure, developmental expression, and physiological regulation ofzebrafish IGF-binding protein-1. Endocrinology143(7),2722-2731
    McCormick S. D.,2001.Endocrine control of osmoregulation in teleost fish. Am. Zool.41,781-794
    McCormick S.D., Kelley K.M., Young G., Nishioka R.S., Bern H.A.,1992.Stimulation of cohosalmon growth by insulin-like growth factor-I. Gen. Comp. Endocrinol.86,398-406
    Medale F, Boujard T, Vallee F, et al. Voluntary feed intake, nitrogen and phosphorus losses inrainbow trout (Oncorhynchus mykiss) fed increasing dietary levels of soy protein concentrate.Aqua Living Resour.,1998,11(4):239-246.
    Melamed P, Gur G, Elizur A, Rosenfeld H, Sivan B, Rentier Delrue F, Yaron Z. Differential effectsof gonadotropin-releasing hormone, dopamine and somatostatin and their second messengerson the mRNA levels of gonadotropin II b subunit and growth hormone in the teleost fish,tilapia. Neuroendocrinology1996;64:320-328.
    Metais P, Biet h J. Determination del a-amylase parune microtechnique. Ann Biol Clin,1968,26:133-142.
    Mingarro M., Vega-Rubin de Celis S., Astola A., Pendon C., Valdivia M. M., Pérez-Sánchez J.,2002. Endocrine mediators of seasonal growth in gilthead sea bream (Sparus aurata): thegrowth hormone and somatolactin paradigm. Gen. Comp. Endocrinol.128,102-111
    Mommsen T. P.,1998.Growth and metabolism. In: Evans D. H.(Ed), The Physiology of Fishes.CRC Press LLC, Boca Raton, FL, pp.65-77
    Negatu Z., Meier A. H.,1995. In vitro incorporation of [14C] glycine into muscle protein of gulfkillifish (Fundulisgrandis) in response in insulin-like growth factor-I. Gen.Comp. Endocrinol.98,193-201
    Niu P. D., Le Bail P. Y.,1993. Presence of insulin-like growth factor binding protein (IGF-BP) inrainbow trout (Oncorhynchus mykiss) serum. Journal of Experimental Zoology265,627-636.
    NRC. National Research Council. Nutrient requirement of fish,1998.
    Park R., Shepherd B. S., Nishioka R. S., Grau E. G., Bern H. A.,2000. Effects of homologouspituitary hormone treatment on serum insulin-like growth factor-binding proteins (IGFBPs)in hypophysectomized tilapia, Oreochromis mossambicus, with special reference to a novel20-kDa IGFBP. General and Comparative Endocrinology117,404-412
    Parker D B, Power M E, Swanson P, et al. Exon skipping in the gene encoding pituitary adenylatecyclase-activating polypeptide in salmon alters the expression of two hormones that stimulategrowth hormone release. Endocrinology,1997,138:414-423
    Parrizas M., E. M. Plisetskaya, J. Planas, J. Gutierrez,1995b. Abundant insulin-like growthfactor-I (IGF-I) receptor binding in fish skeletal muscle. Gen. Comp. Endocrinol.98,16-25
    Parrizas M., M. A. Maestro, N. Banos, I. Navarro, J. Planas, J. Gutierrez,1995a. Insulin/IGF-Ibinding ratio in skeletal and cardiac muscles of vertebrates: a phylogenetic approach. Am. J.Physiol.38, R1370-R1377.
    Pedro Go′mez-Requeni Mauricio Ne′stor Kraemer et al,2012. Regulation of somatic growthand gene expression of the GH–IGF system and PRP-PACAP by dietary lipid level in earlyjuveniles of a teleost fish, the pejerrey (Odontesthes bonariensis). J Comp Physiol B,182:517–530.
    Peng C, Trudeau V L, Peter R E. Seasonal variation of neuropeptide Y actions on growth hormoneand gonadotropin-II secretion in the goldfish: effects of sex steroids. J Neuroendocrinol,1993,5:273—280
    Pérez-Sánchez J., Weil C., Le Bail P. Y.,1992. Effects of human insulin-like growth factor-I onrelease of growth hormone by rainbow trout (Oncorhynchus mykiss) pituitary cells. J. Exp.Zool.262,287-290
    Pérez-Sánchez J., Martí-Palanca H., Kaushik S. J.,1995. Ration size and protein intake affectcirculating growth hormone concentration, hepatic growth hormone binding and plasmainsulin-like growth factor-I immunoreactivity in a marine teleost, the gilthead sea bream(Sparus aurata). J. Nutr.125,546-552
    Pérez-Sánchez J., Le Bail P. Y.,1999. Growth hormone axis as marker of nutritional status andgrowth performance in fish. Aquaculture177,117-128
    Pereira, O., Rosa, E., Pires, M. A., and Fonta nhas-Fernandes, A.,2002. Brassica by-products indiets of rainbow trout (Oncorhynchus mykiss) and their effects on performance, bodycomposition, thyroid status and liver histology. Animal Feed Science and Technology,101(1):171-182.
    Peter R E. J P Chang growth hormone secretion in the fish. Sellchiro kawashima, Sakae Kikuyama.Advances in comparative endocrinology, proceedings of XIII international congress ofcomparative endocrinology. Japan: Yokohama, November16-21,1997,915-919.
    Pierce A. L., Fox B. K., Davis L. K., Visitacion N., Kitashashi T., Hirano T., Grau E. G.,2007.Prolactin receptor, growth hormone receptor, and putative somatolactin receptor inMozambique tilapia: tissue specific expression and differential regulation by salinity andfasting. Gen. Comp. Endocrinol.154,31-40
    Pollack S.J., Ottinger MA. The Effects of the soy isoflavone genistein on the reproductivedevelopment of striped bass. North American Journal of Aquaculture,2003,65:226–234.
    Pozios K. C., Ding J., Degger B., Upton Z., Duan C.,2001. IGFs stimulate zebrafish cellproliferation by activating MAP kinase and PI3-kinase-signaling pathways. Am. J. Physiol.Regul. Integr. Comp. Physiol.280, R1230-R1239
    Qiang J, Yang H et al2012. Growth and IGF-I response of juvenile Nile tilapia (Oreochromisniloticus) to changes in water temperature and dietary protein level. Journal of ThermalBiology.37,686-695.
    Rajaram S., Baylink D. J., Mohan S.,1997. Insulin-like growth factor-binding proteins in serumand other biological fluids: regulation and functions. Endocrin. Rev.18,801-831
    Rechler M. M.,1993. Insulin-like growth factor binding proteins. Vitamins and Hormones47,1-114
    Refstie S, Storebakken T, Roem A J. Feed consumption and conversion in Atlantic salmon(Salmo salar)fed diets with fish meal, extracted soybean meal or soybean meal with reducedcontent ofoligosaccharides, trypsin inhibitors, lectins and soya antigens. Aquaculture,1998,162:301-312.
    Robaina, L., Izquierdo, M.S., Moyano, F.J., Socorro, J., Vergara, J.M., Montero, D.,Fernandez-Palacios, H.,1995. Soybean and lupin seed meals as protein sources in diets forgilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture130,219–233.
    Sakamoto T., McCormick S. D.,2006.Prolactin and growth hormone in fish osmoregulation. Gen.Comp. Endocrinol.147,24-30
    Sassi-Messai1Sana, Gibert Yann. The phytoestrogen genistein affects zebrafish developmentthrough two different pathways. www.plosone.org,2009,4(3):1-13.
    Sawisky G R, Chang J P. Intracellular calcium involvement in pituitary adenylatecyclase-activating polypeptide stimulation of growth hormone and gonadotrophin secretionin goldfish pituitary cells. J Neuroendocrinol,2005,17:353-371.
    Shamblott M. J., Cheng C. M., Bolt D., Chen T. T.,1995. Appearance of insulin-like growth factormRNA in the liver and pyloric ceca of a teleost in response to exogenous growth hormone.Proc. Natl. Acad. Sci. USA92,6943-6946
    Shimasaki S., Ling N.,1991. Identification and molecular characterization of insulin-like growthfactor binding proteins (IGFBP-1.-2,-3,-4,-5and-6). Progress in Growth Factor Research3,243-266
    Shimizu M., Swanson P., Dickhoff W. W.,1999.Free and protein-bound insulin-like growthfactor-I (IGF-I), and IGF-binding proteins in plasma of coho salmon, Oncorhynchus kisutch.Gen. Comp. Endocrinol.115,398-405
    Shingo K., Katsuhisa U., Takashi Y., Tetsuya H., Katsumi A., E. G. G.,2002. Effects of insulin likegrowth factors (IGF-I and-II) on growth hormone and prolactin release and gene expressionin euryhaline tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol.127,223-231
    Siharath K., Kelley K. M., Bern H. A.,1996. A low-molecular-weight (25-kDa) IGF-bindingprotein is increased with growth inhibition in the fasting striped bass, Morone saxatilis.General Comparative Endocrinology102,307-316
    Siharath K., Nishioka R. S., Madsen S. S., Bern H. A.,1995a. Regulation of IGF-binding proteinsby growth hormone in the striped bass, Morone saxatilis. Molecular Marine Biology andBiotechnology4,171-178
    Stefaan Keppens. Effect of genistein on both basal and glucagon-induced levels of cAMP in rathepatocytes. Biochemical Pharmacology,1995,50(8):1303-1304.
    Storebakken, T., Shearer, K.D., Roem, A.J.,1998. Availability of protein, phosphorus and otherelements in fishmeal, soy protein concentrate and phytase-treated soyprotein-concentrate-based diets to Atlantic salmon, Salmo salar. Aquaculture161,365–379.
    Sze K H, Zhou H, Yang Y, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) as agrowth hormone (GH)-releasing factor in grass carp: II. Solution structure of a brain-specificPACAP by nuclear magnetic resonance spectroscopy and functional studies on GH releaseand gene expression. Endocrinology,2007,148:5042—5059
    Tacon AGJ, Dominy WG. Overview of world aquaculture and aquafeed production.WorldAquaculture’99[C],26April22May1999,Sydney,Australia.World Aquaculture Society,BatonRouge,LA,853.
    Takeshi Yamamoto, Nobuhiro Suzuki, et al. Supplemental effect of bile salts to soybeanmeal-based diet on growth and feed utilization of rainbow trout (Oncorhynchus mykiss).Fisheries Science,2007,73:123–131.
    Tepavcevi V, Atanackovi M, Miladinovi J, Malenci D, Popovi J, Cveji J. Isoflavonecomposition, total polyphenolic content, and antioxidant activity in soybeans of differentorigin. J Med Food.2010.13(3):657-64.
    Tzchori Itai, Degani Gad. The influence of phytoestrogens and oestradiol-17β on growth and sexdetermination in the European eel (Anguilla anguilla). Aquaculture Research,2004,35(13):1213-1219.
    Unniappan S, Lin X, Cervini L, et al. Goldfish ghrelin: molecular characterization of thecomplementary deoxyribonucleic acid, partial gene structure, and evidence for its stimulatoryrole in food take. Endocrinology,2002,143:4143-4146.
    Viola,S., Mokady, U., Rappapor, U., Arieli, Y.,1982. Partial and complete replacement offishmeal by soybean meal in feeds for intensive culture of carp. Aquaculture26,223–236.
    Wang Jun, Ai Qinghui, Mai Kangsen, Xu Wei et al.,2010. Effects of dietary ethoxyquin ongrowth performance and body composition of large yellow croaker Pseudosciaena crocea.Aquaculture,306:80-84.
    Weber G., Sullivan C. V.,2000. Effects of insulin-like growth factor-I on in vitro final oocytematuration and ovarian steroidgenesis in striped bass, Morone saxatilis.Biol. Reprod.63,1049-1057
    Webster, C.D., Yancey, D.H., Tidewell, J.H.,1992. Effect of partially or totally replacing fish mealwith soybean meal on growth of blue catfish (Ictalurus furcatus). Aquaculture103,141-152.
    Wong A O L, Li Wen Sheng, Lee E K Y, et al. Pituitary adenylate cyclase activating polypeptide asa novel hypophysiotropic factor in fish. Biochem Cell Biol,2000,78:329-343.
    Wong A O L, Leung M Y, Shea W L C, et al. Hypophysiotropic action of pituitary adenylatecyclase activating polypeptide (PACAP) in the goldfish:Immunohistochemical demonstrationof PACAP in the pituitary, PACAP stimulation of growth hormone release from pituitary cells,and molecular cloning of pituitary type I PACAP receptor. Endocrinology,1998,139:3465-3476
    Wong A O, Li W, Leung C Y, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) asa growth hormone (GH)-releasing factor in grass carp. I. Functional coupling of cyclicadenosine3',5'-monophosphate and Ca2+/calmodulin-dependent signaling pathways inPACAP-induced GH secretion and GH gene expression in grass carp pituitary cells.Endocrinology,2005,146:5407-5424
    Xiao, C. W., Mei, J., and Wood, C. M.,2008. Effect of soy proteins and isoflavones on lipidmetabolism and involved gene expression. Frontiers in Bioscience,13:2660-2673.
    Yamamoto T, Suzuki N, et al. Supplemental effect of bile salts to soybean meal-based diet ongrowth and feed utilization of rainbow trout (Oncorhynchus mykiss). Fisheries Science,2007,73:123-131.
    Yada T., Nagae M., Moriyasa S., Azuma T., et al.,1999. Effects of prolactin and growth hormoneon plasma immunoglobulin M levels of hypophysectomized rainbow trout, Oncorhynchusmykiss. General Comparative Endocrinology115(1),46–52.
    Yang K, Guan H, Arany E, et al. Neuropeptide Y is produced in visceral adipose tissue andpromote proliferation of adipocyte precursor cells via the Y1receptor. FASEB,2008,22(7):2452-2464.
    Ye, J. D., and Chen, X. H.,2008. Effects of dietary daidzein on growth and activities of digestiveenzyme, superoxide dismutase and acid phosphatase in American eel, Anguilla rostrata.Journal of Jimei University (Natural Science),31:1-6.
    Yeung C M, Chan C B, Woo N Y, et al. Seabream (Sparus macrocephalus)ghrelin: cDNA cloning,genomic organization and promoter studies. Endocrinol,2006,189:365-379.
    Yin L J, Li L T, Li Z G, Eizo T, Masayoshi S. Changes in isoflavone contents and compositionof sufu(fermented tofu) during manufacturing. Food Chemistry,2004,87:587–592.
    Zhang L., Huang X. G., Wang D. S.,2005. Progress in the studies on the IGF system in fishes.Chinese Journal of zoology,40,99-105
    Zhang Y., Na X., Zhang Y., Li L., Zhao X., Cui H.. Isoflavone reduces body weight bydecreasing food intake in vvariectomized rats. Ann Nutr Metab,2009,54:163–170.
    Zhou, Q. C., Tan, B. P., Mai, K. S., and Liu, Y. J.,2004. Apparent digestibility of selected feedingredients for juvenile cobia Rachycentron canadum. Auqaculture,241:441-451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700