用户名: 密码: 验证码:
α-synuclein和tau相互作用参与锰诱导的神经毒性机制及染料木素的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     锰是机体必需的一种微量元素,但摄入过量的锰则会对机体产生毒性作用。锰的毒性作用主要累及中枢神经系统,尤其是基底核。慢性锰中毒主要表现为锥体外系功能障碍,与帕金森病(Parkinson’s disease, PD)的临床表现类似。
     α-共核蛋白(α-synuclein,α-syn)是由140个氨基酸组成的可溶性非折叠蛋白,它是帕金森病(Parkinson’s disease, PD)特征性病理结构——路易氏小体(Lewy’s body)的主要组成部分。体内和体外实验均表明高表达α-syn可促进神经元的损伤,诱导PD相关毒性症状的发生。因此越来越多的实验试图揭示α-syn的生理功能及其在神经退行性疾病中的作用机制。但是关于α-syn的生理功能目前还不十分清楚,有研究表明α-syn参与调节突触传递和神经元的可塑性。另有研究提示它可能在信号转导过程中发挥重要作用。近年来,许多研究证实α-syn在Lewy小体病和帕金森病的发生机制中起到了关键的作用,但是其在锰神经毒性作用中的机制尚不清楚。
     tau蛋白是一种微管相关蛋白,在神经系统的发育和维持微管功能等方面具有重要作用。生理和病理条件下,tau蛋白的许多苏氨酸和丝氨酸残基可以被多种激酶磷酸化。tau蛋白病理条件下的过度磷酸化将影响其正常功能,使其促微管聚合功能丧失,神经元微管解体,tau蛋白聚集成双螺旋丝(paired helical filaments,PHF)以及形成神经原纤维缠结(neurofibrillary tangle,NFT)结构,并转变成为毒性分子,最终引起神经元变性损伤。
     作为存在于细胞质内的可溶性蛋白质,α-syn与tau蛋白之间存在着相互作用。研究表明α-syn与tau蛋白在细胞内除了细胞核外大部分是共定位的,在靠近细胞膜的细胞质边缘,两者的相互作用最强烈。新近研究表明tau蛋白突变可抑制α-syn与tau蛋白的相互作用;α-syn突变也可抑制α-syn与tau蛋白的相互作用。此外,截去羧基端的tau蛋白与α-syn之间的相互作用也被抑制。
     染料木素(genistein,Gen)又称三羟异黄酮,主要是从大豆等豆科植物中提取出来的活性成分,为异黄酮类物质中活性功能最高的一种。Gen对神经系统具有显著的保护作用,其作用机制是多方面的。包括抗氧化、调节细胞内的钙离子浓度、与细胞内信号转导途径相互作用、增强胆碱能神经功能、抑制凋亡等途径,从而提高神经细胞的存活能力。
     【目的】
     在动物和细胞水平探讨锰对α-syn与tau蛋白相互作用的影响,以及这种影响在锰神经毒性中的作用。并进一步探讨染料木素对锰神经毒性可能的抑制效应,以及这种抑制效应与α-syn-tau的相关性。为进一步阐明锰神经毒性的分子机制以及寻找有效的防护措施提供新的思路和实验依据。
     【方法】
     1.利用灌胃的方法建立慢性锰暴露的动物模型,采用免疫荧光染色、Western blot和免疫共沉淀检测多巴胺能神经元的损伤以及α-syn与tau蛋白相互作用的变化。
     2.利用高分化型PC12细胞建立锰毒性的细胞模型,MTT、LDH和TUNEL检测细胞毒性;siRNA转染、Western blot、免疫荧光染色和免疫共沉淀检测α-syn与tau蛋白相互作用的变化。
     3.MTT、TUNEL和氧化应激试剂盒检测染料木素对锰毒性的保护作用。同时,利用Western blot、免疫荧光染色检测染料木素对锰诱导的α-syn蛋白表达、tau磷酸化以及两者共定位的影响。
     【结果】
     1.锰对大鼠黑质多巴胺能神经元损伤和α-syn与tau蛋白相互作用的影响
     通过灌胃方法建立慢性锰暴露的动物模型,免疫荧光染色和Western blot结果显示大鼠黑质TH染色阳性细胞数明显减少,同时黑质TH表达水平显著降低,提示锰诱导了多巴胺能神经元损伤;Western blot结果显示大鼠黑质α-syn和tau表达水平均升高;免疫荧光染色和免疫共沉淀结果显示大鼠黑质α-syn和tau蛋白共定位增强,同时这两种蛋白在黑质的相互作用增强。
     2.锰对PC12细胞的损伤以及对α-syn与tau蛋白相互作用的影响
     MTT结果显示,随着染锰浓度的增加和染锰时间的延长,PC12细胞活力显著下降;TUNEL结果显示,随着锰浓度的增加,PC12细胞凋亡水平逐渐增加;Western blot结果显示锰可使PC12细胞α-syn与tau磷酸化水平增加;免疫荧光染色和免疫共沉淀结果显示锰可使α-syn与tau蛋白在PC12细胞内共定位增强,同时α-syn和tau蛋白相互作用增强。
     3.siRNA α-syn和LiCl对锰诱导的PC12细胞α-syn与tau蛋白相互作用的影响
     MTT结果显示,干涉α-syn的表达或者加入LiCl可以明显改善锰对PC12细胞的活力抑制;Western blot结果显示,干涉α-syn的表达可以使锰诱导的高p-tau396水平降低;免疫荧光染色结果显示,siRNAα-syn和LiCl均可抑制锰诱导的PC12细胞α-syn与tau蛋白的共定位;免疫共沉淀结果进一步显示LiCl可抑制锰诱导的PC12细胞α-syn与tau蛋白的相互作用。
     4.染料木素对锰诱导的PC12细胞毒性的保护作用
     MTT结果显示,染料木素可以明显抑制锰诱导的PC12细胞活力下降; TUNEL结果显示,染料木素可以抑制细胞凋亡;氧化应激试剂盒检测结果提示,染料木素可以抑制锰诱导的PC12细胞氧化应激水平的增高。此外,Western blot实验结果显示,染料木素可抑制锰诱导的α-syn蛋白表达水平的增高以及tau蛋白的磷酸化。免疫荧光染色结果表明染料木素可抑制锰诱导的PC12细胞内α-syn与tau蛋白共定位的增强。
     【结论】
     1.体内外实验均表明,锰可以引起多巴胺能神经元的损伤,诱导α-syn与p-Tau396蛋白表达水平增加;使α-syn与p-tau396蛋白相互作用增强,并且其共定位增强。
     2.体外实验表明,分别降低α-syn或p-Tau396蛋白的表达水平,可在抑制锰毒性的同时一定程度上抑制锰诱导的两种蛋白相互作用的增强。表明α-syn和p-Tau396蛋白的相互作用可能在锰诱导的PC12细胞损伤中发挥一定的作用。
     3.染料木素可抑制锰诱导的PC12细胞毒性,其机制可能与其抑制锰诱导的氧化应激,α-syn蛋白表达水平增高,tau蛋白的磷酸化以及α-syn与tau的相互作用有关。
     综上所述,我们的研究初步阐明锰诱导的多巴胺能神经元的损伤作用中存在α-syn和p-Tau396蛋白的相互作用,这种作用可能参与了锰诱导的损伤过程,并可作为锰损伤防护(如染料木素)的一个潜在作用靶点。我们的结果将为进一步阐明锰神经毒性的分子机制以及寻找有效的防护措施提供新的思路和实验依据。
Background
     Manganese is an essential ubiquitous trace element that is required for normal growth,development, and cellular homeostasis. But excessive exposure to manganese results inneurotoxicity. The main target of manganese-induced toxic effects is the central nervoussystem, especial the basal ganglia. The clinical symptoms of chronic manganism arecharacterized by extrapyramidal dysfunction, same as those of Parkinson’s disease.
     α-synuclein(α-syn) is a140-amino acid heat stable protein that was identified as theprecursor of the non-Aβ protein in amyloid plaques of human Alzheimer's disease. It ishighly conservative among vertebrates. Since the discovery of its relationship with thepathological processes of neurodegenerative disorders, more and more studies have triedto reveal the physiological functiosn of α-syn and its corelation with other proteins. Although the physiological functions of α-syn are still poorly understood, some studieshave shown that it is associated with neuronal synaptic plasticity. Other studies have foundthat it may be important in the processes of signal transduction. Recently many studieshave confirmed that α-syn plays a key role in the pathogenesis of Lewy body disease andParkinson’s disease. However the mechanism of α-syn in manganese neurotoxicity is stillnot yet clear.
     Tau is one of the member of microtubule-associated proteins, which plays animportant role in the development of nervous system and maintain of microtubule stability.Specific characteristic pathological changes associated with tau have been found in manyneurodegenerative diseases. Hyperphosphorylation of tau may affect its normal functionand cause a series of pathological lesions. Hyperphosphorylated tau would lose itsfunction to promote the microtubule polymerization and result in neuronal microtubuledispolymerization, which is easy to aggregate and form paired helical filaments andeventrally neurofibrillary tangles. Thus tau turns to be toxic and can bind with normalmicrotubule-associated proteins, leading to microtubule dispolymerization and neuronaldegeneration.
     As two soluble proteins in cytosol, there is an interaction between α-syn and tau.Studies have showed that α-syn and tau are co-localized in cells except nucleus, and theinteraction between them is most intense on the edge of the cytoplasm near the cellmembrane. Recent studies have shown that tau mutation can inhibit the interactionbetween α-syn and tau, and α-syn mutation can inhibit that too. Furthermore, C-terminaltruncated tau can also inhibit its interaction with α-syn.
     Genistein (Gen), also called trihydroxyisoflavone, is an active component mainlyextracted from soybean and other leguminous plants. It is one of the most activeisoflavones. Genistein plays a prominent role in protecting the nervous system throughmultiple machanisms, including anti-oxydation, modulation of cellular calciumhomeostasis, interaction with cellular signaling pathways, strengthening the function ofcholinergic neurons and inhibition of apoptosis, etc, and improvement of neuronalviability.
     Aims
     We investigated the effect of manganese on interaction between α-syn and tau inanimal and cell models, and the role of this effect in manganese neurotoxicity. We furtherinvestigated the possible inhibitive effects on manganese neurotoxicity by genistein, andthe association with α-syn-tau interaction. Our results may provide new ideas andexperimental bases to further our understanding of manganese-induced neurotoxicity andeffective protective measures.
     Methods
     1. The animal model of chronic manganese exposure was established by lavagemethod; immunofluorescence, western blot, and co-immunoprecipitation were used todetermine dopaminergic neuron injury and interaction between α-syn and tau.
     2. Highly differentiated PC12cell line was used to establish the cell model ofmanganism, and the cytotoxic effect was analyzed through MTT assay, LDH assay, andTUNEL; siRNA transfection, western blot, immunofluorescence, andco-immunoprecipitation were performed to determine the change of α-syn-tau interaction
     3. The neuroprotective effect of genistein was analyzed by MTT, TUNEL, andoxidative stress kit. Western blot, co-immunoprecipitation and immunofluorescence wereperformed to determine the effect of genistein on manganese-induced α-syn expression,tau phosphorylation, and their interaction.
     Results
     1. The effect of manganese on dopaminergic neuron injury and interaction betweenα-syn and tau
     We established the animal model of chronic manganese exposure by lavage method,and the results of immunofluorescence staining and western blot showed that aftermanganese administration, there was an obviously loss of TH positive neurons and andecreased expression of TH in the substantia nigra, suggesting that manganese induced dopaminergic neural injury. Meanwhile, western blot also showed that there was anincreased expression of α-syn and tau. The results of immunofluorescence andco-immunoprecipitation showed that the colocalization of those two proteins wasenhanced and the interaction between them was also increased.
     2. The effect of manganese on PC12cells injury and interaction between α-syn andtau
     The results of MTT assay showed that manganese inhibited cell viability of PC12cells in a concentration-dependent and time-dependent manner. The increased level ofapoptosis with the increase of manganese concerntion were detected by TUNEL. Westernblot results showed that manganese enhanced the expression level of α-syn and tauphosphorylation in PC12cells. As shown by immunofluorescence andco-immunoprecipitation, the colocalization of those two proteins were enhanced and theinteraction between them was also increased.
     3. The effect of siRNA α-syn and LiCl on manganese-induced interaction betweenα-syn and tau in PC12cells
     MTT showed that both siRNA α-syn and LiCl reversed the inhibition ofmanganese-induced PC12cell viability. Western blot results showed that after siRNAtransfection, the increased expression of p-tau396induced by manganese was inhibited.Immunofluorescence showed that both siRNA α-syn and LiCl inhibitedmanganese-induced α-syn-tau colocalization. And co-immunoprecipitation showed thatLiCl inhibited manganese-induced α-syn-tau interaction.
     4. The neuroprotective effect of genistein on manganese-induced PC12cytotoxicity
     MTT assay showed that genistein could markedly inhibit the decrease of PC12cellviability induced by manganese. TUNEL assay showed that genistein inhibitedmanganese-induced apoptosis. The results of oxygenic stress kit indicated that genisteincould inhibit the increased oxygenic stress level induced by manganese. Furthermore,Western blot results showed that genistein inhibited manganese-induced α-synoverexpression and tau phosphorylation. Immunofluorescence showed that genistein inhibited manganese-induced α-syn-tau colocalization.
     Conclusion
     1. Both in vivo and vitro studies showed that manganese may cause dopaminergicneurons injury; induce increased level of α-synuclein and phosphorylated tau expression;promote the interaction between α-syn and tau; and enhance the colocalization of thosetwo proteins.
     2. In vitro research showed that when the expression of α-syn and phosphorylated tauwere decreased respectively, the increased interaction between them was inhibited,suggesting that the interaction between α-syn and phosphorylated tau may play a role inmanganese-induced cytotoxicity.
     3. Genistein may inhibit manganese-induced PC12cells cytotoxicity, which can beconnected with its inhibitory effects on manganese-induced oxidative stress, α-synoverexpression, tau hyperphosphorylatation, and the interaction between α-syn and tau.
     In summary, our research preliminarily verified that there was an interaction betweenα-syn and tau during manganese-induced dopaminergic neural injury, which may beinvolved in manganese-induced neural injuries and can be a new potential therapeutictarget against manganism. Genistein could protect against manganese neurotoxicity tosome extent, which may be connected with its effects on interaction between α-syn and tau.Our results may provide new ideas and experimental bases to further our understanding ofmanganese-induced neurotoxicity and effective protective measures.
引文
1. Erikson K M, Syversen T, Aschner J L, et al. Interactions between excessivemanganese exposures and dietary iron-deficiency in neurodegeneration.Environmental Toxicology and Pharmacology.2005.19(3): p.415-421.
    2. Erikson K M and Aschner M. Manganese neurotoxicity and glutamate-GABAinteraction. Neurochem Int.2003.43(4-5): p.475-80.
    3. Liao S L and Chen C J. Manganese stimulates stellation of cultured rat corticalastrocytes. Neuroreport.2001.12(18): p.3877-81.
    4. Aschner M, Shanker G, Erikson K, et al. The uptake of manganese in brainendothelial cultures. Neurotoxicology.2002.23(2): p.165-8.
    5. Keen C L, Ensunsa J L, Watson M H, et al. Nutritional aspects of manganese fromexperimental studies. Neurotoxicology.1999.20(2-3): p.213-23.
    6. Aschner M and Aschner J L. Manganese neurotoxicity: cellular effects andblood-brain barrier transport. Neurosci Biobehav Rev.1991.15(3): p.333-40.
    7. Aschner M, Guilarte T R, Schneider J S, et al. Manganese: recent advances inunderstanding its transport and neurotoxicity. Toxicol Appl Pharmacol.2007.221(2):p.131-47.
    8. Couper J. On the effects of black oxide of manganese when inhaled into the lungs. BrAnn Med Pharmacol.1837.1: p.41-42.
    9. Olanow C W. Manganese-induced parkinsonism and Parkinson's disease. Ann N YAcad Sci.2004.1012: p.209-23.
    10. Prohaska J R. Functions of trace elements in brain metabolism. Physiol Rev.1987.67(3): p.858-901.
    11. Yamada M, Ohno S, Okayasu I, et al. Chronic manganese poisoning: aneuropathological study with determination of manganese distribution in the brain.Acta Neuropathol.1986.70(3-4): p.273-8.
    12. Calne D B, Chu N S, Huang C C, et al. Manganism and idiopathic parkinsonism:similarities and differences. Neurology.1994.44(9): p.1583-6.
    13. Pal P K, Samii A, and Calne D B. Manganese neurotoxicity: a review of clinicalfeatures, imaging and pathology. Neurotoxicology.1999.20(2-3): p.227-38.
    14. Cai T, Yao T, Li Y, et al. Proteasome inhibition is associated with manganese-inducedoxidative injury in PC12cells. Brain Res.2007.1185: p.359-65.
    15. Prabhakaran K, Ghosh D, Chapman G D, et al. Molecular mechanism of manganeseexposure-induced dopaminergic toxicity. Brain Res Bull.2008.76(4): p.361-7.
    16. Bae Y S, Oh H, Rhee S G, et al. Regulation of reactive oxygen species generation incell signaling. Mol Cells.2011.32(6): p.491-509.
    17. Wang Y, Zhang S X, and Gozal D. Reactive oxygen species and the brain in sleepapnea. Respir Physiol Neurobiol.2010.174(3): p.307-16.
    18. Gavin C E, Gunter K K, and Gunter T E. Manganese and calcium transport inmitochondria: implications for manganese toxicity. Neurotoxicology.1999.20(2-3):p.445-53.
    19. Brouillet E P, Shinobu L, McGarvey U, et al. Manganese injection into the ratstriatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol.
    1993.120(1): p.89-94.
    20. Kienzl E, Puchinger L, Jellinger K, et al. The role of transition metals in thepathogenesis of Parkinson's disease. J Neurol Sci.1995.134Suppl: p.69-78.
    21. Takeda A. Manganese action in brain function. Brain Res Brain Res Rev.2003.41(1):p.79-87.
    22. Chun H S, Gibson G E, DeGiorgio L A, et al. Dopaminergic cell death induced byMPP(+), oxidant and specific neurotoxicants shares the common molecularmechanism. J Neurochem.2001.76(4): p.1010-21.
    23. Tomas-Camardiel M, Herrera A J, Venero J L, et al. Differential regulation ofglutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression inthe aged manganese-treated rats. Brain Res Mol Brain Res.2002.103(1-2): p.116-29.
    24. HaMai D and Bondy S C. Oxidative basis of manganese neurotoxicity. Ann N YAcad Sci.2004.1012: p.129-41.
    25. Stredrick D L, Stokes A H, Worst T J, et al. Manganese-induced cytotoxicity indopamine-producing cells. Neurotoxicology.2004.25(4): p.543-53.
    26. Song W, Su H, Song S, et al. Over-expression of heme oxygenase-1promotesoxidative mitochondrial damage in rat astroglia. J Cell Physiol.2006.206(3): p.655-63.
    27. Reaney S H, Kwik-Uribe C L, and Smith D R. Manganese oxidation state and itsimplications for toxicity. Chem Res Toxicol.2002.15(9): p.1119-26.
    28. Sherer T B, Betarbet R, Testa C M, et al. Mechanism of toxicity in rotenone modelsof Parkinson's disease. J Neurosci.2003.23(34): p.10756-64.
    29. Sherer T B, Betarbet R, Stout A K, et al. An in vitro model of Parkinson's disease:linking mitochondrial impairment to altered alpha-synuclein metabolism andoxidative damage. J Neurosci.2002.22(16): p.7006-15.
    30. Cotzias G C and Greenough J J. The high specificity of the manganese pathwaythrough the body. J Clin Invest.1958.37(9): p.1298-305.
    31. Gunter T E, Gavin C E, Aschner M, et al. Speciation of manganese in cells andmitochondria: a search for the proximal cause of manganese neurotoxicity.Neurotoxicology.2006.27(5): p.765-76.
    32. Kowaltowski A J, Castilho R F, and Vercesi A E. Ca(2+)-induced mitochondrialmembrane permeabilization: role of coenzyme Q redox state. Am J Physiol.1995.269(1Pt1): p. C141-7.
    33. Kruman, II and Mattson M P. Pivotal role of mitochondrial calcium uptake in neuralcell apoptosis and necrosis. J Neurochem.1999.72(2): p.529-40.
    34. Zhang S, Zhou Z, and Fu J. Effect of manganese chloride exposure on liver and brainmitochondria function in rats. Environ Res.2003.93(2): p.149-57.
    35. Tjalkens R B, Zoran M J, Mohl B, et al. Manganese suppresses ATP-dependentintercellular calcium waves in astrocyte networks through alteration of mitochondrialand endoplasmic reticulum calcium dynamics. Brain Res.2006.1113(1): p.210-9.
    36. Barhoumi R, Faske J, Liu X, et al. Manganese potentiateslipopolysaccharide-induced expression of NOS2in C6glioma cells throughmitochondrial-dependent activation of nuclear factor kappaB. Brain Res Mol BrainRes.2004.122(2): p.167-79.
    37. Zwingmann C, Leibfritz D, and Hazell A S. Energy metabolism in astrocytes andneurons treated with manganese: relation among cell-specific energy failure, glucosemetabolism, and intercellular trafficking using multinuclear NMR-spectroscopicanalysis. J Cereb Blood Flow Metab.2003.23(6): p.756-71.
    38. Erikson K and Aschner M. Manganese causes differential regulation of glutamatetransporter (GLAST) taurine transporter and metallothionein in cultured ratastrocytes. Neurotoxicology.2002.23(4-5): p.595-602.
    39. Erikson K M, Dorman D C, Lash L H, et al. Duration of airborne-manganeseexposure in rhesus monkeys is associated with brain regional changes in biomarkersof neurotoxicity. Neurotoxicology.2008.29(3): p.377-85.
    40. Tekkok S B, Brown A M, Westenbroek R, et al. Transfer of glycogen-derived lactatefrom astrocytes to axons via specific monocarboxylate transporters supports mouseoptic nerve activity. J Neurosci Res.2005.81(5): p.644-52.
    41. Deitmer J W, Broer A, and Broer S. Glutamine efflux from astrocytes is mediated bymultiple pathways. J Neurochem.2003.87(1): p.127-35.
    42. Kitazawa M, Anantharam V, Yang Y, et al. Activation of protein kinase C delta byproteolytic cleavage contributes to manganese-induced apoptosis in dopaminergiccells: protective role of Bcl-2. Biochem Pharmacol.2005.69(1): p.133-46.
    43. Chun H S, Lee H, and Son J H. Manganese induces endoplasmic reticulum (ER)stress and activates multiple caspases in nigral dopaminergic neuronal cells, SN4741.Neurosci Lett.2001.316(1): p.5-8.
    44. Erikson K M, Dorman D C, Lash L H, et al. Manganese inhalation by rhesusmonkeys is associated with brain regional changes in biomarkers of neurotoxicity.Toxicol Sci.2007.97(2): p.459-66.
    45. Seth P K and Chandra S V. Neurotransmitters and neurotransmitter receptors indeveloping and adult rats during manganese poisoning. Neurotoxicology.1984.5(1):p.67-76.
    46.姜岳明,张振明,迟晓文..锰的神经行为毒性研究.铁道劳动安全卫生与环保.
    2000.27(3): p.176-178.
    47. Desjardins P and Butterworth R F. The "peripheral-type" benzodiazepine (omega3)receptor in hyperammonemic disorders. Neurochem Int.2002.41(2-3): p.109-14.
    48. Montine T J, Underhill T M, Linney E, et al. Fibroblasts that express aromatic aminoacid decarboxylase have increased sensitivity to the synergistic cytotoxicity ofL-dopa and manganese. Toxicol Appl Pharmacol.1994.128(1): p.116-22.
    49.姜岳明,葛利辉,石屏,等..对氨基水杨酸钠对氯化锰染毒大鼠脑单胺递质的影响.卫生毒理学杂志.1991.5(2): p.92-94.
    50. Desole M S, Miele M, Esposito G, et al. Dopaminergic system activity and cellulardefense mechanisms in the striatum and striatal synaptosomes of the ratsubchronically exposed to manganese. Arch Toxicol.1994.68(9): p.566-70.
    51. Desole M S, Esposito G, Migheli R, et al. Cellular defence mechanisms in thestriatum of young and aged rats subchronically exposed to manganese.Neuropharmacology.1995.34(3): p.289-95.
    52. Prigge S T, Mains R E, Eipper B A, et al. New insights into copper monooxygenasesand peptide amidation: structure, mechanism and function. Cell Mol Life Sci.2000.57(8-9): p.1236-59.
    53. Vig P J, Nath R, and Desaiah D. Metal inhibition of calmodulin activity in monkeybrain. J Appl Toxicol.1989.9(5): p.313-6.
    54. Lipe G W, Duhart H, Newport G D, et al. Effect of manganese on the concentrationof amino acids in different regions of the rat brain. J Environ Sci Health B.1999.34(1): p.119-32.
    55. Gwiazda R H, Lee D, Sheridan J, et al. Low cumulative manganese exposure affectsstriatal GABA but not dopamine. Neurotoxicology.2002.23(1): p.69-76.
    56. Reaney S H, Bench G, and Smith D R. Brain accumulation and toxicity of Mn(II) andMn(III) exposures. Toxicol Sci.2006.93(1): p.114-24.
    57.杜凤其,姜岳明,莫雪安,胡万达.锰神经毒性机制的研究进展.铁道劳动安全卫生与环保.2006.33(2): p.109-112.
    58. Davidson W S, Jonas A, Clayton D F, et al. Stabilization of alpha-synucleinsecondary structure upon binding to synthetic membranes. J Biol Chem.1998.273(16): p.9443-9.
    59. El-Agnaf O M, Jakes R, Curran M D, et al. Aggregates from mutant and wild-typealpha-synuclein proteins and NAC peptide induce apoptotic cell death in humanneuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBSLett.1998.440(1-2): p.71-5.
    60. Jakes R, Spillantini M G, and Goedert M. Identification of two distinct synucleinsfrom human brain. FEBS Lett.1994.345(1): p.27-32.
    61. Seth P K, Hong J S, Kilts C D, et al. Alteration of cerebral neurotransmitter receptorfunction by exposure of rats to manganese. Toxicol Lett.1981.9(3): p.247-54.
    62. Bonilla E, Arrieta A, Castro F, et al. Manganese toxicity: free amino acids in thestriatum and olfactory bulb of the mouse. Invest Clin.1994.35(4): p.175-81.
    63. Struve M F, McManus B E, Wong B A, et al. Basal ganglia neurotransmitterconcentrations in rhesus monkeys following subchronic manganese sulfate inhalation.Am J Ind Med.2007.50(10): p.772-8.
    64. Antonini J M, Sriram K, Benkovic S A, et al. Mild steel welding fume causesmanganese accumulation and subtle neuroinflammatory changes but not overtneuronal damage in discrete brain regions of rats after short-term inhalation exposure.Neurotoxicology.2009.30(6): p.915-25.
    65. Dydak U, Jiang Y M, Long L L, et al. In vivo measurement of brain GABAconcentrations by magnetic resonance spectroscopy in smelters occupationallyexposed to manganese. Environ Health Perspect.2011.119(2): p.219-24.
    66. Sengupta A, Mense S M, Lan C, et al. Gene expression profiling of human primaryastrocytes exposed to manganese chloride indicates selective effects on severalfunctions of the cells. Neurotoxicology.2007.28(3): p.478-89.
    67. HaMai D, Rinderknecht A L, Guo-Sharman K, et al. Decreased expression ofinflammation-related genes following inhalation exposure to manganese.Neurotoxicology.2006.27(3): p.395-401.
    68. Baek S Y, Cho J H, Kim E S, et al. CDNA array analysis of gene expression profilesin brain of mice exposed to manganese. Ind Health.2004.42(3): p.315-20.
    69. Guilarte T R, Burton N C, Verina T, et al. Increased APLP1expression andneurodegeneration in the frontal cortex of manganese-exposed non-human primates. JNeurochem.2008.105(5): p.1948-59.
    70. Conway K A, Lee S J, Rochet J C, et al. Acceleration of oligomerization, notfibrillization, is a shared property of both alpha-synuclein mutations linked toearly-onset Parkinson's disease: implications for pathogenesis and therapy. Proc NatlAcad Sci U S A.2000.97(2): p.571-6.
    71. Uversky V N, Li J, and Fink A L. Evidence for a partially folded intermediate inalpha-synuclein fibril formation. J Biol Chem.2001b.276(14): p.10737-44.
    72. Waxman E A and Giasson B I. Molecular mechanisms of alpha-synucleinneurodegeneration. Biochim Biophys Acta.2009.1792(7): p.616-24.
    73. Spillantini M G, Crowther R A, Jakes R, et al. alpha-Synuclein in filamentousinclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies.Proc Natl Acad Sci U S A.1998.95(11): p.6469-73.
    74. Ueda K, Fukushima H, Masliah E, et al. Molecular cloning of cDNA encoding anunrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A.
    1993.90(23): p.11282-6.
    75. Spillantini M G, Crowther R A, Jakes R, et al. Filamentous alpha-synuclein inclusionslink multiple system atrophy with Parkinson's disease and dementia with Lewybodies. Neurosci Lett.1998.251(3): p.205-8.
    76. Burre J, Sharma M, Tsetsenis T, et al. Alpha-synuclein promotes SNARE-complexassembly in vivo and in vitro. Science.2010.329(5999): p.1663-7.
    77. Greten-Harrison B, Polydoro M, Morimoto-Tomita M, et al.alphabetagamma-Synuclein triple knockout mice reveal age-dependent neuronaldysfunction. Proc Natl Acad Sci U S A.2010.107(45): p.19573-8.
    78. Hutt D M, Da-Silva L F, Chang L H, et al. PRA1inhibits the extraction ofmembrane-bound rab GTPase by GDI1. J Biol Chem.2000.275(24): p.18511-9.
    79. Santpere G and Ferrer I. LRRK2and neurodegeneration. Acta Neuropathol.2009.117(3): p.227-46.
    80. Pifl C, Khorchide M, Kattinger A, et al. alpha-Synuclein selectively increasesmanganese-induced viability loss in SK-N-MC neuroblastoma cells expressing thehuman dopamine transporter. Neurosci Lett.2004.354(1): p.34-7.
    81. Cai T, Yao T, Zheng G, et al. Manganese induces the overexpression ofalpha-synuclein in PC12cells via ERK activation. Brain Res.2010.1359: p.201-7.
    82. Li Y, Sun L, Cai T, et al. alpha-Synuclein overexpression during manganese-inducedapoptosis in SH-SY5Y neuroblastoma cells. Brain Res Bull.2010.81(4-5): p.428-33.
    83. Guilarte T R. APLP1, Alzheimer's-like pathology and neurodegeneration in thefrontal cortex of manganese-exposed non-human primates. Neurotoxicology.2010.31(5): p.572-4.
    84. Scott D A, Tabarean I, Tang Y, et al. A pathologic cascade leading to synapticdysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci.2010.30(24):p.8083-95.
    85. Nemani V M, Lu W, Berge V, et al. Increased expression of alpha-synuclein reducesneurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis.Neuron.2010.65(1): p.66-79.
    86. Nikolaus S, Antke C, and Muller H W. In vivo imaging of synaptic function in thecentral nervous system: I. Movement disorders and dementia. Behav Brain Res.2009.204(1): p.1-31.
    87. Yavich L, Oksman M, Tanila H, et al. Locomotor activity and evoked dopaminerelease are reduced in mice overexpressing A30P-mutated human alpha-synuclein.Neurobiol Dis.2005.20(2): p.303-13.
    88. Li J Y, Englund E, Holton J L, et al. Lewy bodies in grafted neurons in subjects withParkinson's disease suggest host-to-graft disease propagation. Nat Med.2008.14(5):p.501-3.
    89. Eller M and Williams D R. alpha-Synuclein in Parkinson disease and otherneurodegenerative disorders. Clin Chem Lab Med.2011.49(3): p.403-8.
    90. Hansen C, Angot E, Bergstrom A L, et al. alpha-Synuclein propagates from mousebrain to grafted dopaminergic neurons and seeds aggregation in cultured human cells.J Clin Invest.2011.121(2): p.715-25.
    91. Soper J H, Kehm V, Burd C G, et al. Aggregation of alpha-synuclein in S. cerevisiaeis associated with defects in endosomal trafficking and phospholipid biosynthesis. JMol Neurosci.2011.43(3): p.391-405.
    92. Outeiro T F and Lindquist S. Yeast cells provide insight into alpha-synuclein biologyand pathobiology. Science.2003.302(5651): p.1772-5.
    93. Cooper A A, Gitler A D, Cashikar A, et al. Alpha-synuclein blocks ER-Golgi trafficand Rab1rescues neuron loss in Parkinson's models. Science.2006.313(5785): p.324-8.
    94. Lee V M, Goedert M, and Trojanowski J Q. Neurodegenerative tauopathies. AnnuRev Neurosci.2001.24: p.1121-59.
    95. Thayanidhi N, Helm J R, Nycz D C, et al. Alpha-synuclein delays endoplasmicreticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/GolgiSNAREs. Mol Biol Cell.2010.21(11): p.1850-63.
    96. Sivars U, Aivazian D, and Pfeffer S R. Yip3catalyses the dissociation of endosomalRab-GDI complexes. Nature.2003.425(6960): p.856-9.
    97. Uversky V N, Li J, and Fink A L. Metal-triggered structural transformations,aggregation, and fibrillation of human alpha-synuclein. A possible molecular NKbetween Parkinson's disease and heavy metal exposure. J Biol Chem.2001a.276(47):p.44284-96.
    98. Andre C, Truong T T, Robert J F, et al. Effect of metals on herbicides-alpha-synucleinassociation: a possible factor in neurodegenerative disease studied by capillaryelectrophoresis. Electrophoresis.2005.26(17): p.3256-64.
    99. Prabhakaran K, Chapman G D, and Gunasekar P G. alpha-Synuclein overexpressionenhances manganese-induced neurotoxicity through the NF-kappaB-mediatedpathway. Toxicol Mech Methods.2011.21(6): p.435-43.
    100. Peneder T M, Scholze P, Berger M L, et al. Chronic exposure to manganese decreasesstriatal dopamine turnover in human alpha-synuclein transgenic mice. Neuroscience.
    2011.180: p.280-92.
    101. Weingarten M D, Lockwood A H, Hwo S Y, et al. A protein factor essential formicrotubule assembly. Proc Natl Acad Sci U S A.1975.72(5): p.1858-62.
    102. Gu Y, Oyama F, and Ihara Y. Tau is widely expressed in rat tissues. J Neurochem.
    1996.67(3): p.1235-44.
    103. Trojanowski J Q, Schuck T, Schmidt M L, et al. Distribution of tau proteins in thenormal human central and peripheral nervous system. J Histochem Cytochem.1989.37(2): p.209-15.
    104. Tashiro K, Hasegawa M, Ihara Y, et al. Somatodendritic localization ofphosphorylated tau in neonatal and adult rat cerebral cortex. Neuroreport.1997.8(12):p.2797-801.
    105. Klein C, Kramer E M, Cardine A M, et al. Process outgrowth of oligodendrocytes ispromoted by interaction of fyn kinase with the cytoskeletal protein tau. J Neurosci.
    2002.22(3): p.698-707.
    106. Mandelkow E M, Schweers O, Drewes G, et al. Structure, microtubule interactions,and phosphorylation of tau protein. Ann N Y Acad Sci.1996.777: p.96-106.
    107. Goedert M, Spillantini M G, Jakes R, et al. Multiple isoforms of humanmicrotubule-associated protein tau: sequences and localization in neurofibrillarytangles of Alzheimer's disease. Neuron.1989.3(4): p.519-26.
    108. Wei M L and Andreadis A. Splicing of a regulated exon reveals additional complexityin the axonal microtubule-associated protein tau. J Neurochem.1998.70(4): p.1346-56.
    109. Lee G, Thangavel R, Sharma V M, et al. Phosphorylation of tau by fyn: implicationsfor Alzheimer's disease. J Neurosci.2004.24(9): p.2304-12.
    110. Cohen T J, Guo J L, Hurtado D E, et al. The acetylation of tau inhibits its functionand promotes pathological tau aggregation. Nat Commun.2011.2: p.252.
    111. Wilhelmus M M, Grunberg S C, Bol J G, et al. Transglutaminases andtransglutaminase-catalyzed cross-links colocalize with the pathological lesions inAlzheimer's disease brain. Brain Pathol.2009.19(4): p.612-22.
    112. Ledesma M D, Bonay P, Colaco C, et al. Analysis of microtubule-associated proteintau glycation in paired helical filaments. J Biol Chem.1994.269(34): p.21614-9.
    113. Miyasaka T, Ding Z, Gengyo-Ando K, et al. Progressive neurodegeneration in C.elegans model of tauopathy. Neurobiol Dis.2005.20(2): p.372-83.
    114. Reyes J F, Reynolds M R, Horowitz P M, et al. A possible link between astrocyteactivation and tau nitration in Alzheimer's disease. Neurobiol Dis.2008.31(2): p.198-208.
    115. Dorval V and Fraser P E. Small ubiquitin-like modifier (SUMO) modification ofnatively unfolded proteins tau and alpha-synuclein. J Biol Chem.2006.281(15): p.9919-24.
    116. Arnold C S, Johnson G V, Cole R N, et al. The microtubule-associated protein tau isextensively modified with O-linked N-acetylglucosamine. J Biol Chem.1996.271(46): p.28741-4.
    117. Cripps D, Thomas S N, Jeng Y, et al. Alzheimer disease-specific conformation ofhyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48,Lys-11, and Lys-6ubiquitin conjugation. J Biol Chem.2006.281(16): p.10825-38.
    118. Kar S, Fan J, Smith M J, et al. Repeat motifs of tau bind to the insides ofmicrotubules in the absence of taxol. Embo J.2003.22(1): p.70-7.
    119. Santarella R A, Skiniotis G, Goldie K N, et al. Surface-decoration of microtubules byhuman tau. J Mol Biol.2004.339(3): p.539-53.
    120. Al-Bassam J, Ozer R S, Safer D, et al. MAP2and tau bind longitudinally along theouter ridges of microtubule protofilaments. J Cell Biol.2002.157(7): p.1187-96.
    121. Maas T, Eidenmuller J, and Brandt R. Interaction of tau with the neural membranecortex is regulated by phosphorylation at sites that are modified in paired helicalfilaments. J Biol Chem.2000.275(21): p.15733-40.
    122. Augustinack J C, Schneider A, Mandelkow E M, et al. Specific tau phosphorylationsites correlate with severity of neuronal cytopathology in Alzheimer's disease. ActaNeuropathol.2002.103(1): p.26-35.
    123. Biernat J, Mandelkow E M, Schroter C, et al. The switch of tau protein to anAlzheimer-like state includes the phosphorylation of two serine-proline motifsupstream of the microtubule binding region. Embo J.1992.11(4): p.1593-7.
    124. Lee G, Newman S T, Gard D L, et al. Tau interacts with src-family non-receptortyrosine kinases. J Cell Sci.1998.111(Pt21): p.3167-77.
    125. Gustke N, Trinczek B, Biernat J, et al. Domains of tau protein and interactions withmicrotubules. Biochemistry.1994.33(32): p.9511-22.
    126. Jho Y S, Zhulina E B, Kim M W, et al. Monte carlo simulations of tau proteins: effectof phosphorylation. Biophys J.2010.99(8): p.2387-97.
    127. Fischer D, Mukrasch M D, Biernat J, et al. Conformational changes specific forpseudophosphorylation at serine262selectively impair binding of tau tomicrotubules. Biochemistry.2009.48(42): p.10047-55.
    128. von Bergen M, Barghorn S, Biernat J, et al. Tau aggregation is driven by a transitionfrom random coil to beta sheet structure. Biochim Biophys Acta.2005.1739(2-3): p.158-66.
    129. von Bergen M, Barghorn S, Li L, et al. Mutations of tau protein in frontotemporaldementia promote aggregation of paired helical filaments by enhancing localbeta-structure. J Biol Chem.2001.276(51): p.48165-74.
    130. Fanara P, Husted K H, Selle K, et al. Changes in microtubule turnover accompanysynaptic plasticity and memory formation in response to contextual fear conditioningin mice. Neuroscience.2010.168(1): p.167-78.
    131. Mandell J W and Banker G A. A spatial gradient of tau protein phosphorylation innascent axons. J Neurosci.1996.16(18): p.5727-40.
    132. Dixit R, Ross J L, Goldman Y E, et al. Differential regulation of dynein and kinesinmotor proteins by tau. Science.2008.319(5866): p.1086-9.
    133. He H J, Wang X S, Pan R, et al. The proline-rich domain of tau plays a role ininteractions with actin. BMC Cell Biol.2009.10: p.81.
    134. Farias G A, Munoz J P, Garrido J, et al. Tubulin, actin, and tau protein interactionsand the study of their macromolecular assemblies. J Cell Biochem.2002.85(2): p.315-24.
    135. Jenkins S M and Johnson G V. Tau complexes with phospholipase C-gamma in situ.Neuroreport.1998.9(1): p.67-71.
    136. Hwang S C, Jhon D Y, Bae Y S, et al. Activation of phospholipase C-gamma by theconcerted action of tau proteins and arachidonic acid. J Biol Chem.1996.271(31): p.18342-9.
    137. Surridge C D and Burns R G. The difference in the binding of phosphatidylinositoldistinguishes MAP2from MAP2C and Tau. Biochemistry.1994.33(26): p.8051-7.
    138. Flanagan L A, Cunningham C C, Chen J, et al. The structure of divalentcation-induced aggregates of PIP2and their alteration by gelsolin and tau. Biophys J.
    1997.73(3): p.1440-7.
    139. Sanchez-Mejia R O, Newman J W, Toh S, et al. Phospholipase A2reductionameliorates cognitive deficits in a mouse model of Alzheimer's disease. Nat Neurosci.
    2008.11(11): p.1311-8.
    140. Perez M, Santa-Maria I, Gomez de Barreda E, et al. Tau--an inhibitor of deacetylaseHDAC6function. J Neurochem.2009.109(6): p.1756-66.
    141. Ittner L M, Ke Y D, Delerue F, et al. Dendritic function of tau mediates amyloid-betatoxicity in Alzheimer's disease mouse models. Cell.2010.142(3): p.387-97.
    142. Sharma V M, Litersky J M, Bhaskar K, et al. Tau impacts ongrowth-factor-stimulated actin remodeling. J Cell Sci.2007.120(Pt5): p.748-57.
    143. Dawson H N, Ferreira A, Eyster M V, et al. Inhibition of neuronal maturation inprimary hippocampal neurons from tau deficient mice. J Cell Sci.2001.114(Pt6): p.1179-87.
    144. Harada A, Oguchi K, Okabe S, et al. Altered microtubule organization insmall-calibre axons of mice lacking tau protein. Nature.1994.369(6480): p.488-91.
    145. Qiang L, Yu W, Andreadis A, et al. Tau protects microtubules in the axon fromsevering by katanin. J Neurosci.2006.26(12): p.3120-9.
    146. King M E, Kan H M, Baas P W, et al. Tau-dependent microtubule disassemblyinitiated by prefibrillar beta-amyloid. J Cell Biol.2006.175(4): p.541-6.
    147. Brandt R, Leger J, and Lee G. Interaction of tau with the neural plasma membranemediated by tau's amino-terminal projection domain. J Cell Biol.1995.131(5): p.1327-40.
    148. Sultan A, Nesslany F, Violet M, et al. Nuclear tau, a key player in neuronal DNAprotection. J Biol Chem.2011.286(6): p.4566-75.
    149. Miao Y, Chen J, Zhang Q, et al. Deletion of tau attenuates heat shock-induced injuryin cultured cortical neurons. J Neurosci Res.2010.88(1): p.102-10.
    150. Pei J J, Gong C X, An W L, et al. Okadaic-acid-induced inhibition of proteinphosphatase2A produces activation of mitogen-activated protein kinases ERK1/2,MEK1/2, and p70S6, similar to that in Alzheimer's disease. Am J Pathol.2003.163(3): p.845-58.
    151.彭英,王晓良. tau蛋白与阿尔采末病.中国药理学通报.2004.20(6): p.601-5.
    152. Cai T, Che H, Yao T, et al. Manganese induces tau hyperphosphorylation through theactivation of ERK MAPK pathway in PC12cells. Toxicol Sci.2011.119(1): p.169-77.
    153. McMillan P J and Leverenz J B. From model system to clinical medicine:pathophysiologic links of common proteinopathies. Alzheimers Res Ther.2010.2(5):p.26.
    154. Galpern W R and Lang A E. Interface between tauopathies and synucleinopathies: atale of two proteins. Ann Neurol.2006.59(3): p.449-58.
    155. Mandal P K, Pettegrew J W, Masliah E, et al. Interaction between Abeta peptide andalpha synuclein: molecular mechanisms in overlapping pathology of Alzheimer's andParkinson's in dementia with Lewy body disease. Neurochem Res.2006.31(9): p.1153-62.
    156. Wills J, Credle J, Haggerty T, et al. Tauopathic changes in the striatum of A53Talpha-synuclein mutant mouse model of Parkinson's disease. PLoS One.2011.6(3): p.e17953.
    157. Wills J, Jones J, Haggerty T, et al. Elevated tauopathy and alpha-synuclein pathologyin postmortem Parkinson's disease brains with and without dementia. Exp Neurol.2010.225(1): p.210-8.
    158. Irvine G B, El-Agnaf O M, Shankar G M, et al. Protein aggregation in the brain: themolecular basis for Alzheimer's and Parkinson's diseases. Mol Med.2008.14(7-8): p.451-64.
    159. Iseki E, Togo T, Suzuki K, et al. Dementia with Lewy bodies from the perspective oftauopathy. Acta Neuropathol.2003.105(3): p.265-70.
    160. Higashi S, Iseki E, Yamamoto R, et al. Concurrence of TDP-43, tau andalpha-synuclein pathology in brains of Alzheimer's disease and dementia with Lewybodies. Brain Res.2007.1184: p.284-94.
    161. Miklossy J, Steele J C, Yu S, et al. Enduring involvement of tau, beta-amyloid,alpha-synuclein, ubiquitin and TDP-43pathology in the amyotrophic lateralsclerosis/parkinsonism-dementia complex of Guam (ALS/PDC). Acta Neuropathol.2008.116(6): p.625-37.
    162. Duka T, Rusnak M, Drolet R E, et al. Alpha-synuclein induces hyperphosphorylationof Tau in the MPTP model of parkinsonism. Faseb J.2006.20(13): p.2302-12.
    163. Duka T and Sidhu A. The neurotoxin, MPP+, induces hyperphosphorylation of Tau,in the presence of alpha-Synuclein, in SH-SY5Y neuroblastoma cells. Neurotox Res.2006.10(1): p.1-10.
    164. Kozikowski A P, Gaisina I N, Petukhov P A, et al. Highly potent and specificGSK-3beta inhibitors that block tau phosphorylation and decrease alpha-synucleinprotein expression in a cellular model of Parkinson's disease. ChemMedChem.2006.1(2): p.256-66.
    165. Martins-Branco D, Esteves A R, Santos D, et al. Ubiquitin proteasome system inParkinson's disease: a keeper or a witness? Exp Neurol.2012.238(2): p.89-99.
    166. Yang F, Yang Y P, Mao C J, et al. Role of autophagy and proteasome degradationpathways in apoptosis of PC12cells overexpressing human alpha-synuclein.Neurosci Lett.2009.454(3): p.203-8.
    167. Maries E, Dass B, Collier T J, et al. The role of alpha-synuclein in Parkinson'sdisease: insights from animal models. Nat Rev Neurosci.2003.4(9): p.727-38.
    168. Waxman E A and Giasson B I. Induction of intracellular tau aggregation is promotedby alpha-synuclein seeds and provides novel insights into the hyperphosphorylationof tau. J Neurosci.2011.31(21): p.7604-18.
    169. Kaul T, Credle J, Haggerty T, et al. Region-specific tauopathy and synucleinopathy inbrain of the alpha-synuclein overexpressing mouse model of Parkinson's disease.BMC Neurosci.2011.12: p.79.
    170. Giasson B I, Forman M S, Higuchi M, et al. Initiation and synergistic fibrillization oftau and alpha-synuclein. Science.2003.300(5619): p.636-40.
    171. Lei P, Ayton S, Finkelstein D I, et al. Tau protein: relevance to Parkinson's disease.Int J Biochem Cell Biol.2010.42(11): p.1775-8.
    172. Alberici A, Gobbo C, Panzacchi A, et al. Frontotemporal dementia: impact of P301Ltau mutation on a healthy carrier. J Neurol Neurosurg Psychiatry.2004.75(11): p.1607-10.
    173. Peuralinna T, Oinas M, Polvikoski T, et al. Neurofibrillary tau pathology modulatedby genetic variation of alpha-synuclein. Ann Neurol.2008.64(3): p.348-52.
    174. Muntane G, Dalfo E, Martinez A, et al. Phosphorylation of tau and alpha-synuclein insynaptic-enriched fractions of the frontal cortex in Alzheimer's disease, and inParkinson's disease and related alpha-synucleinopathies. Neuroscience.2008.152(4):p.913-23.
    175. Frasier M, Walzer M, McCarthy L, et al. Tau phosphorylation increases insymptomatic mice overexpressing A30P alpha-synuclein. Exp Neurol.2005.192(2):p.274-87.
    176. Kotzbauer P T, Giasson B I, Kravitz A V, et al. Fibrillization of alpha-synuclein andtau in familial Parkinson's disease caused by the A53T alpha-synuclein mutation. ExpNeurol.2004.187(2): p.279-88.
    177. Qureshi H Y and Paudel H K. Parkinsonian neurotoxin1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and alpha-synuclein mutationspromote Tau protein phosphorylation at Ser262and destabilize microtubulecytoskeleton in vitro. J Biol Chem.2011.286(7): p.5055-68.
    178. Liu Y, Stern Y, Chun M R, et al. Pathological correlates of extrapyramidal signs inAlzheimer's disease. Ann Neurol.1997.41(3): p.368-74.
    179. Burns J M, Galvin J E, Roe C M, et al. The pathology of the substantia nigra inAlzheimer disease with extrapyramidal signs. Neurology.2005.64(8): p.1397-403.
    180. Barnes S, Kim H, Darley-Usmar V, et al. Beyond ERalpha and ERbeta: estrogenreceptor binding is only part of the isoflavone story. J Nutr.2000.130(3): p.656S-7S.
    181. Hwang J, Hodis H N, and Sevanian A. Soy and alfalfa phytoestrogen extracts becomepotent low-density lipoprotein antioxidants in the presence of acerola cherry extract. JAgric Food Chem.2001.49(1): p.308-14.
    182. Merz-Demlow B E, Duncan A M, Wangen K E, et al. Soy isoflavones improveplasma lipids in normocholesterolemic, premenopausal women. Am J Clin Nutr.2000.71(6): p.1462-9.
    183. Yamaguchi M and Gao Y H. Anabolic effect of genistein on bone metabolism in thefemoral-metaphyseal tissues of elderly rats is inhibited by the anti-estrogen tamoxifen.Res Exp Med (Berl).1997.197(2): p.101-7.
    184. Yamaguchi M and Gao Y H. Anabolic effect of genistein and genistin on bonemetabolism in the femoral-metaphyseal tissues of elderly rats: the genistein effect isenhanced by zinc. Mol Cell Biochem.1998.178(1-2): p.377-82.
    185. Gao Y H and Yamaguchi M. Inhibitory effect of genistein on osteoclast-like cellformation in mouse marrow cultures. Biochem Pharmacol.1999a.58(5): p.767-72.
    186. Gao Y H and Yamaguchi M. Suppressive effect of genistein on rat bone osteoclasts:apoptosis is induced through Ca2+signaling. Biol Pharm Bull.1999b.22(8): p.805-9.
    187. Su Y, Chakraborty M, Nathanson M H, et al. Differential effects of the3',5'-cyclicadenosine monophosphate and protein kinase C pathways on the response of isolatedrat osteoclasts to calcitonin. Endocrinology.1992.131(3): p.1497-502.
    188. Lautenschlager N T, Cupples L A, Rao V S, et al. Risk of dementia among relativesof Alzheimer's disease patients in the MIRAGE study: What is in store for the oldestold? Neurology.1996.46(3): p.641-50.
    189. Yaffe K, Sawaya G, Lieberburg I, et al. Estrogen therapy in postmenopausal women:effects on cognitive function and dementia. JAMA.1998.279(9): p.688-95.
    190. Linford N J and Dorsa D M.17beta-Estradiol and the phytoestrogen genisteinattenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPaseinhibitor thapsigargin. Steroids.2002.67(13-14): p.1029-40.
    191. Zeng H, Chen Q, and Zhao B. Genistein ameliorates beta-amyloid peptide(25-35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med.2004.36(2):p.180-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700