用户名: 密码: 验证码:
新型美普他酚类治疗AD的多靶向配体的设计、合成和生物活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer's Disease,AD)属严重威胁老年人生命健康的神经系统退行性疾病。随着发病机理和致病基因的深入认识,从早期的以改善认知能力为主的“治标”药物转为阻止或逆转AD病程发展为目的的疾病修正类药物研究。同时,由于AD的多因子发病机制和复杂的病理生化改变,AD治疗方案开始向多途径、全方位发展;利用单一配体药物,同时作用AD的两个或更多个靶点的多靶向配体研究成为目前的热点。我们课题组自主开发的左旋美普他酚衍生物XQ509,具有抑制AChE(IC_(50)=3.9 nM)、抑制β-淀粉样蛋白(Aβ)聚集(IC_(50)=16.6μM)和抗炎(优于对照药布洛芬)的多重治疗AD作用;细胞和急性毒性极小(LD_(50)=313mg/kg),是一个很好的侯选药物,也是本论文的研究基础和立题依据。
     论文从左旋美普他酚衍生物与TcAChE之间作用模式的研究出发,利用来源于相应的复合物晶体结构中的已知配体评价了FlexX、GOLD和MVD对接方法对AChE体系的可靠性,以及不同因素对结果的影响,最终建立起一种可靠的、适用于AChE抑制剂结合模式研究的MVD分子对接算法。利用此方法,对本课题组己合成的11个美普他酚双配体进行分子对接验证,三个打分函数值与实测活性均表现良好的相关性(最优r=0.948),证明了该方法的可靠性。我们还探讨了左旋美普他酚与TcAChE可能的结合模式,它能较好的解释美普他酚左旋体和右旋体药理活性的差异,并被我们最近得到的XQ509与TcAChE复合物的单晶X衍射结果确证。本研究结果为美普他酚双配基系列的设计提供了依据和参考。
     根据基于性质的药物设计原理,良好的ADME/T性质与较强的生物学活性是上市药物必须同时具备的特征。XQ509具有有效的多重作用和极低的毒性,但它的脂溶性太大,溶解度差,不利于体内的吸收,为降低脂溶性,我们在XQ509的结构中引入亲水性片段,以改善其药代动力学性质。设计了结构多样的117个新化合物(连接链长为间隔8-11个原子距离),利用分子对接方法预测其活性;再通过ADME/T预测算法,淘汰类药性差的化合物。最终选定相对活性好,成药潜力大的5个化合物进行优先合成和药理研究。药理初筛显示,化合物ZQ103和ZQ105显示很好的AChE抑制活性。ZQ103的AChE抑制活性与XQ509相当;而它的类药性明显优于XQ509,更具有开发潜力。
     另外,在分子对接研究中,我们发现先导化合物XQ509的对映体(药理编号ZQ100)有明显的预测活性,这引起了我们的关注,对其进行了合成和药理初筛,结果表明ZQ100也有较好的AChE抑制活性,IC_(50)为193 nM,甚至比上市药物利斯的明高28倍。我们利用新解析的XQ509与TcAChE复合物的晶体结构作进一步的分子对接研究,探讨了化合物ZQ100与AChE催化位点和PAS的作用模式。
     研究表明金属离子具有促进纤维产生和沉积的作用,同时金属离子异常与加剧氧化损害有直接联系。调节脑内的金属平衡已成为AD的一有效治疗策略。我们在XQ509的中间连接链部分引入金属离子螯合剂的药效基团,使其在保持原有的多重作用外,还能具有协同的金属离子螯合作用。设计了系列新化合物并进行虚拟筛选,选择了其中的2个化合物进行优先合成。初步药理结果显示化合物ZQ106和ZQ107具有金属离子螯合作用的同时保留了AChE抑制活性,它同时满足了类药性要求,值得继续进行抗AB聚集和抗炎活性研究,希望能作为治疗AD的多靶向配体开发。
     在神经退行性疾病中的活性氧分子(ROS)的危害性类似于感染性疾病中的微生物,细胞内氧异常发生在AD病程的早期,可能是AD病程发展的最主要诱因之一。几项临床研究己证实了抗氧剂治疗AD等神经退行性疾病的有效性。我们运用多靶点治疗策略,采用药效团的拼合原理,将左旋美普他酚分别与具有抗氧作用的硫辛酸和褪黑素分子拼合,希望获得具有AChE抑制、抗Aβ聚集、抗炎和抗氧化多重作用的候选药物分子,达到有效治疗AD的目的。共设计了47个新化合物并进行虚拟筛选,选择了其中的4个化合物进行优先合成。其中化合物ZQ211和ZQ309对AChE的IC_(50)分别为1.821μM和1.261μM,优于上市药物利斯的明(IC_(50)=5.5μM),它们的抗氧活性测试正在进行中。
     全文共涉及40个化合物的合成和结构确证,未见报道的新化合物26个,进行药理筛选的化合物12个。
     为减少合成化合物的数量,提高命中率,运用计算机辅助设计和经典的药物化学相结合的方法,对侯选药XQ509进行结构修饰和优化,是本论文的特色。最终成功筛选出活性高且类药性好的化合物ZQ103;发现了具有金属离子螯合作用且保留AChE抑制活性的化合物ZQ106和ZQ107,其预期的抗Aβ聚集和抗炎活性还有待研究。这三个化合物值得进一步研究,是本论文的创新成果。
Alzheimer's disease(AD),which is a kind of neurodegenerative disease,is becoming a serious threat to life expectancy for elderly people.With more understanding of the pathogenesis of AD,AD drug development has gradually shifted from the early palliative treatments mainly based on alleviating the cognitive deficit, to today's disease-modifying drugs on preventing or reversing the,course of AD.At the same time,as a result of the multifactorial pathogenesis and complicated pathological changes,treatments for AD have shown multi-ways and omni-direction. A hot area of study is to employ one compound to hit the multiple targets,which can be termed as multi-target-directed ligands.
     In our previous study,we have developed(-)-meptazinol(MEP) derivative XQ509 as a good AD candidate,which has multiple functions,i.e.,inhibiting of AChE(IC_(50) =3.9 nM),preventing AChE-induced Aβaggregation(IC_(50)=16.6μM) and anti-inflammatory activities(better than the control drug ibuprofen);Additionally,its cytotoxicity and acute toxicity is very low(LD_(50)=313 mg/kg).Further study is ongoing.
     In this thesis,starting with investigations on the action mechanism of(-)-MEP derivatives on TcAChE using the known crystal structures of TcAChE-ligand complexes,We evaluated the reliabilities of FlexX,GOLD and MVD molecular docking methods on AChE system,and different factors that may affect the result. Finally,we set up a reliable MVD molecular docking that fit for ACHE.11 bis-(-)-nor-MEP ligands in our group were verified efficiently by this new method. Three docking scores and their experimental activities showed good correlation(up to r=0.948),which proved that the method was reliable.We also explored the possible binding mode of(-)-MEP on TcAChE,which could explain the pharmacological difference between(+)- and(-)-meptazinol enantiomers.The results were verified by X-Ray crystal diffraction of XQ509 and TcAChE complex,which was important for structural optimization of XQ509.
     An ideal marketed drug should simultaneously have good ADME/T(absorption, distribution,metabolism,excretion/toxicity) nature and strong biological activity. XQ509 is multipotent and low toxic,but it is not conducive to absorption and distribution in vivo due to its high lipophilicity and low solubility."Property-based drug design" strategy was applied aiming to reduce lipophilicity by introducing hydrophilic fragments into XQ509.Six series of totally 117 compounds were designed,and their activities were virtually screened using molecular docking method. We also predicted their ADME/T properties,and eliminate those with bad drug-like properties.Finally,5 compounds were chosen for synthesis and pharmacological study.Of those compounds,ZQ103 showed excellent AChE inhibitory activity, similar to lead compound XQ509,and its "drug-like" was significantly better than XQ509,which indicated that ZQ103 is a promising drug candidate.
     In addition,we found that enantiomer of XQ509(pharmacological code ZQ100) also had significant predicted activity in molecular docking studies,which aroused our attention.ZQ100 was synthesized,and its AChE inhibitory activity(IC_(50)=193 nM) was 28 times more potent than a marketed drug rivastigmine.Molecular modeling of ZQ100 was performed to elucidate its binding pose and interactions with the active sites of the enzyme.
     It is evident that metal ions can accelerate the production and aggregation of Aβ, and abnormal metal ion would promote oxidative damage.Therefore,adjustment of metal ion balance is an effective way to treat AD.In my design,metal chelation pharmacophores were introduced into the middle chain of XQ509,keeping its multifunctions and with a synergistic metal-chelation effect.A few new compounds were designed and screened.2 of them were synthesized initially.Physiological study showed that compounds ZQ106 and ZQ107 keep AChE inhibition activity and metal chelation property.They are also satisfied with drug-like properties and further studies are ongoing.
     The damage of reactive oxygen species(ROS) in neurodegenerative diseases is similar to that of microorganism in infectious diseases.The abnormal activity of oxygen inside cells occurs in the beginning of AD,and most probably is what induces the progression of AD.Several clinical studies verified the efficiency of antioxidant on neurodegenerative diseases,including AD.We applied multi-target strategy,with the combination of pharmacophores.(-)-MEP was combined to antioxidants thioctic acid and melatonin,wishing to get drug candidates with AChE inhibition activity, anti-Aβaggregation,and antioxidant activity,to achieve efficient AD therapy.In this study,47 new compounds were designed and virtual screened,of which,4 compounds were chosen for synthesis initially.Compounds ZQ211 and ZQ309 showed IC_(50) of 1.821μM and 1.261μM respectively,which are better than marketed drug rivastigmine (IC_(50)=5.5μM).Their pharmacological studies in antioxidative activity are currently underways.
     Especially noteworthy,to reduce the number of synthesized compounds and improve efficiency,we use the combination of computer aided drug design and traditional medicinal chemistry to design and optimize the structure of candidate XQ509,which is the special feature of this thesis.At last,we successfully screened out the compound ZQ103 with good activity and drug-like properties,and the compounds ZQ106 and ZQ107 with good AChE inhibition activities and metal chelation properties.
     All together,40 compounds were reported in this thesis,including their synthesis and structure verification;Of them,26 are new compounds,and 12 compounds went to pharmacological screening.
引文
1. Alzheimer, A.; Stelzmann, R.A.; Schnitzlein, H.N.; Murtagh, F.R. An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde"[J]. Clin. Anat. 1995, 8(6), 429-431.
    
    2. Mount, C.; Downton, C. Alzheimer disease: progress or profit[J]. Nat.Med. 2006, 12(7), 780-784.
    
    3. Hardy, J.A.; Higgins, G.A. Alzheimer's disease: the amyloid cascADe hypothesis [J]. Science 1992, 256, 184-185.
    
    4. Mandelkow, E. Alzheimer's disease: The tangled tale of tau[J]. Nature 1999, 402.588-589.
    
    5. Decker, M.W.; McGaugh, J.L.. The role of interactions between the cholinergic system and other neuromodulatory systems in learing and memory [J]. Synapse 1991,7(2), 151-168
    
    6. Berger, A.K.; Fratiglioni, L; Forsell. Y; WinblAD, B; Backman, L.. The occurrence of depressive symptoms in the preclinical phase of AD[J]. Neurology. 1999,53(9),1998.
    
    7. Stockley, J.H.; O'Neill, C. Understanding BACE1: essential protease for amyloid-P production in Alzheimer's disease[J]. Cell. Mol. Life Sci. 2008, 65(20), 3265-3289
    
    8. Hong, L; Koelsch, G; Lin, X. et al. Structure of the protease domain of memapsin 2 (P-secretase) complexed with inhibitor[J]. Science 2000,290,150 -153.
    
    9. Ghosh, A.K.; Shin, D.; Downs, B.; Koelsch, G.; Lin, X.; Ermolieff, J; Tang, J. Design of potent inhibitors for human brain memapsin 2 ((3-secretase) [J]. J. Am. Chem. Soc. 2000,122, 3522-3523.
    
    10. Turner, R.T. 3rd; Koelsch, G.; Hong , L. et al. Subsite specificity of memapsin 2 (P-secretase): implications for inhibitor design[J]. Biochemistry 2001, 40, 10001-10006.
    
    11. Hong, L.; Turner, R.T. 3rd; Koelsch, G.; Shin, D.; Ghosh, A.K.; Tang, J. Crystal structure of memapsin 2 (P-secretase) in complex with an inhibitor OM00-3[J]. Biochemistry 2002, 41, 10963-10967.
    
    12. Hussain, I.; Hawkins, J.; Harrison, D. et al. Oral ADministration of a potent and selective non-peptidic BACE-1 inhibitor decreases beta-cleavage of amyloid precursor protein and amyloid-beta production in vivo[J]. J Neurochem 2007,100, 802- 809.
    
    13. Miyamoto, M.; Matsui, J.; Fukumoto, H.; Tarui, N. Preparation of 2-[2-amino-or 2-(N-heterocyclyl)ethyl]-6-(4-biphenylylmethoxy)tetralin derivatives as β-secretase inhibitors[P]. PCT Int. Appl. 2001, 86 pp. WO 0187293 Al.
    
    14. Cole, D.C.; Manas, E.S.; Stock, J.R. et al. Acylguanidines as small-molecule beta-secreta.se inhibitors[J]. J. Med. Chem 2006, 49, 6158-6161.
    
    15. Baxter, E.W.; Conway, K.A.; Kennis, L. et al. 2-Amino-3,4-dihydroquinazolines as inhibitors of BACE-1 (beta-site APP cleaving enzyme): use of structure based design to convert a micromolar hit into a nanomolar leAD[J]. J.Med.Chem 2007,50,4261-4264.
    
    16. see CoMentis announcement at http://www.athenagen.com/index.php?/athenagen /press_releases/48).
    
    17. Sastre, M.; Dewachter, I.; Rossner, S. et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma[J]. Proc. Natl AcAD. Sci. U. S. A. 2006, 103, 443-448.
    
    18. Risner, M.E.; Saunders, A.M.; Altman, J.F. et al. Rosiglitazone in Alzheimer's Disease Study Group. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease[J]. Pharmacogenomics J. 2006, 6, 246-254.
    
    19. Wong, G. T.; Manfra, D.; Poulet, F.M. et al. Chronic treatment with the y-secretase inhibitor LY-411,575 inhibits Aβ production and alters lymphopoiesis and intestinal cell differentiation[J].J. Biol. Chem. 2004, 279, 12876-12882.
    
    20. Molinoff, P. et al. Symposium on molecular mechanisms and therapeutic strategies for neurodegenerative diseases, Shanghai, 2001.
    
    21. Siemers, E.R.; Quinn, J.F.; Kaye, J. et al. Effects of a gamma secretase inhibitor in a randomized study of patients with Alzheimer disease[J]. Neurology 2006, 66, 602- 604.
    
    22. Rosen, L.B.; Stone, J.A.; Plump, A. et al. The gamma secretase inhibitor MK-0752 acutely and significantly reduces CSF Abeta40 concentrations in humans[J]. Alzheimers Dement. 2006, 2 ,S79.
    
    23. Wang, J.; Ho, L.; Passinetti, G.M. The Development of NIC5-15, a natural anti-diabetic agent, in the treatment of Alzheimer's disease[J]. Alzheimers Dement. 2005, 1 (Suppl. 1), 62.
    
    24. Weggen, S.; Eriksen, J. L.; Sagi, S. A.; Pietrzik, C. U.; Ozols, V.; Fauq, A.; Golde, T. E.; Koo, E. H. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity[J]. J Biol Chem 2003, 278, 31831-31837.
    
    25. Wilcock, G.K.; Black, S.; Haworth, J. et al. A placebo-controlled, double-blind trial of the selective Aβ42 lowering agent, flurizan (MPC-7869, (R)-flurbiprofen) in patients with mild to moderate Alzheimer's disease [A]. Alzheimer's Association International Conference on Prevention of Dementia, 18-21 June, Washington,DC, 2005 (Abstract).
    
    26. Mintzer, J.; Wilcock, G.; Black, S.; Zavitz, K.; Laughlin, M.; Hendrix, S. MPC-7869, a selective Aβ42-lowering agent, delays time to clinically significant psychiatric ADverse events in Alzheimer's disease: analysis from a 12-month phase 2 trial[J]. Alzheimers Dement. 2006, 2(Suppl. 1), S368.
    
    27. Fahrenholz, F.; Postina, R. Alpha-secretase activation - an approach to Alzheimer's disease therapy [J]. Neurodegener. Dis.2006, 3 , 255-261.
    
    28. Robinson, P. 8~(th) Intl Conf Alzheimer's Dis Relat Disord, Stockholm, 2002. Abst 356.
    
    29. Hock, C.; MADdalena, A.; Raschig, A. et al. Treatment with the selective muscarinic ml agonist talsaclidine decreases cerebrospinal fluid levels of A beta 42 in patients with Alzheimer's disease [J]. Amyloid 2003,10,1-6.
    
    30. Walsh, D. M.; Klyubin, I.; FADeeva, J. V. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo [J].Nature 2002, 416, 535-539.
    
    31. Gilman, S.; Koller, M.; Black, R.S. et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial[J]. Neurology 2005, 64 , 1553-1562.
    
    32. (http://www.wyeth.com/news?nav=display&navTo=/wyeth_html/home/news/pressreleases/2007/1180013248454.html)
    
    33. Yamamoto, M. ; Kiyota, T.; Horiba, M. et al. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice[J]. Am. J. Pathol. 2007, 170 .680-692.
    
    34. Saito, T. ; Iwata, N. ; Tsubuki, S. et al. Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degrADation[J]. Nat. Med. 2005,11,434-439.
    35. Eckman, E.A.; ADams, S.K.; Troendle, F.J. et al. Regulation of steADy-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme[J]. J. Biol. Chem. 2006, 281, 30471-30478.
    
    36. Deane, R.; Zlokovic, B.V. Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease[J]. Curr. Alzheimers Res. 2007, 4 ,191-197.
    
    37. Donahue, J.E. ; Flaherty, S.L.; Johanson, C.E. et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease[J]. Acta Neuropathol. 2006, 112,405-415.
    
    38. Deane, R.; Wu, Z.; Zlokovic, B.V. RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier[J]. Stroke 2004, 35(11 Suppl. 1), 2628-2631.
    
    39. Pepys, M. B.; Herbert, J.; Hutchinson, W. L. et al. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis[J]. Nature 2002, 417, 254-259.
    
    40. Bieler, S; Soto, C. Beta-sheet breakers for Alzheimer's disease therapy[J]. Curr. Drug Targets 2004, 5, 553-558.
    
    41. Geerts, H. NC-531 Neurochem. Curr. Opin. Investig. Drugs. 2004, 5, 95-100.
    
    42. Aisen, P.S.; Saumier, D.; Briand, R. et al. A phase II study targeting amyloid- beta with 3APS in mild-to-moderate Alzheimer disease [J]. Neurology 2006, 67, 1757-1763.
    
    43. Francotte, P.; Graindorge, E.; Boverie, S.; de Tullio, P.; Pirotte, B. New trends in the design of drugs against Alzheimer's disease [J]. Curr. Med. Chem. 2004, 11,1757-1778.
    
    44. Bush, A I. ; Rudolph, E. T.Therapeutics for Alzheimer's Disease Based on the Metal Hypothesis [J]. Neurotherapeutics 2008, 5, 421-432
    
    45. House, E.; Collingwood, J.; Khan, A, et al. Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer's disease[J]. Alzheimers Dis 2004, 6(3),291-301.
    
    46. Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). [J] Chem. Rev. 2006,106, 1995-2044
    
    47. Doraiswamy, P.M.; Finefrock, A.E. Metals in our minds: therapeutic implications for neurodegenerative disorders[J]. Lancet Nenrol. 2004, 3, 431-434.
    
    48. Lin, M.T.; Beal. M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443, 787-79
    
    49. Liu, G; Garret, M.R.; Men, P. et al. Nanoparticle and other metal chelation therapeutics in Alzheimer disease[J]. Biochim Biophys Acta 2005, 1741(3),246-252.
    
    50. Cherney, R. A.; Atwood, C. S.; Xilinas, M. E. et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. [J] Neuron. 2001, 30, 665-676.
    
    51. Ritchie, C. W.; Bush, A. I.; Mackinnon, A. et al. Metal-protein attenuation with iodochlorhydroxyquin (Clioquinol) targeting Amyloid beta amyloid deposition and toxicity in Alzheimer disease: a pilot Phase 2 clinical trial [J]. Arch. Neurol. 2003,60,1685-1691.
    
    52. Bray, T. M. Antioxidants and oxidative stress in health and disease:introduction [J]. Proc. Soc. Exp. Biol. Med. 1999, 222,195.
    
    53. Andersen, J. K. Oxidative stress in neurodegeneration: cause or consequence [J]. Nat. Med. 2004,10 (Suppl.), S18-S25.
    
    54. Contestabile, A. Oxidative stress in neurodegeneration: mechanisms and therapeutic perspectives[J]. Curr. Top. Med. Chem. 2001,1, 553-568.
    
    55. Mecocci ,P; Mac Garvey, U; Beal, M.F. et al. Neurology, 1995,45,51
    
    56. Wang, J.Y.; Wen, L. L.; Huang, Y.N.; Chen, Y.T.; Ku, M. C.Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation[J]. Curr. Pharm. Des. 2006,12, 3521-3533.
    
    57. halliday G, Robinson SR, Shepherd C. Alzheimer's disease and inflammation: a review of cellular and therapeutic mechanisms[ J ].Clin Exp Pharmacol Physiol,2000,27(1/2), 1-8.
    
    58. Bartus, R. T.; Dean 3rd, R. L.; Beer, B.; Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. [J] Science 1982, 217,408-414.
    
    59. Mankil J.; Jungae T; Yongnam L and Youngae J. Quantitative structure-activity relationship (QSAR) of tacrine derivatives against acetylcholinesterase (AChE) activity using variable selections [J] Bioorg Med Chem Lett 2001, 17, 1082-1090.
    
    60. Mucke, H.A.M. Curr. Opin. Invest. Drugs, 2001, 2, 1595.
    
    61. Takeuchi,Y.; Shibata, T.; Suzuki, E.; Iimura, Y.; Kosasa, T.; Yamanishi, Y.; Sugimoto,H.1-Benzyl-4-[(5,6-dimethoxy-2-fluoro-1-indanon)-2-yl]methyl piperidine.PCT Int.Appl.WO0220482,2002.
    62.Isoame,K;Morimoto,S;Hasegawa,H;Morita,K;Kamei,J.Effects of T-82,a novel acetylcholinesterase inhibitor,on impaired learning and memory in passive avoidance task in rats[J].Eur.J.Pharmacol.2003,465,97-103
    63.Martinez,A;Castro,A.Novel acetylcholinesterase inhibitor as future effective drugs for the treatment of Alzheimer's disease[J].Expert Opin Investig.Drugs.2006,15(1),1-12.
    64.Yu,Q.;Zhu,X.;Holloway,H.W.;Whittaker,N.F.;Brossi,A.;Greig,N.H.Anticholinesterase activity of compounds related to geneserine tautomers.N-Oxides and 1,2-oxazines[J].J.Med Chem.2002,45,3684
    65.Butterfiled,D.A.;Pocernich,C.B.;The glutamatergic system and Alzheimer's disease:therapeutic implications[J].CNS Drugs 2003,17,641-652.
    66.Chenard,B.L.;Bordner,J.;Butler,T.W.et al.(1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol:a potent new neuroprotectant which blocks N-methyl-D-aspartate responses[J].J.Med.Chem.1995,38 3138-3145.
    67.Fischer,G.;Mutel,V.;Trube,G.et al.Ro 25-6981,a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit.Characterization in vitro[J].J.Pharmacol.Exp.Ther.1997,283,1285-1293.
    68.Borza,I.;Kolok,S.;Gere,A.et al.Indole-2-carboxamides.as novel NR2B selective NMDA receptor antagonists[J].Bioorg.Med.Chem.Lett.2003,13,3859-3861.
    69.Graul,A.;Castaner,J.Xanomeline:cognition enhancer muscarinic Ml agonist[J].Drugs Fut.1996,21,911-916.
    70.Sauerberg,P.;Olesen,P.H.;Nielsen,S.et al.Novel functional M1 selective muscarinic agonists.Synthesis and structure-activity relationships of 3-(1,2,5-thiADiazolyl)-1,2,5,6-tetrahydro-1-methyl pyridines[J].J.Med Chem.1992,35,2274-2283.
    71.Hacksell,U.;Nash,N.;Burstein,E.S.;Piu,F.;Croston,G.;Brann,M.R.Chemical genomics:massively parallel technologies for rapid leAD identification and target validation[J].Cytotechnology 2002,38,3-10.
    72.Hitchcock,S.;Allen,J.;Baker,A.et al.Discovery of a novel class of muscarinic M1 agonists suitable for clinical development.Abstract of Papers,225th ACS National Meeting,New Orleans,LA.United States,March 23-27,2003.
    73. ClADer, J. W.; Billard, W.; Binch, H.; Chen, L-Y.; Crosby, G.; Duffy, R. A.; Ford, J.; Kozlowski, J. A.; Lachowicz, J. E.; Li, S.; Liu, C., McCombie, S. W.; Vice, S.; Zhou, G.; Greenlee, W. J. Muscarinic M2 antagonists: anthranilimides derivatives with exceptional selectivity and in vivo activity[J]. Bioorg. Med. Chem. 2004, 12,319-326.
    
    74. Buccafusco, J. J.; Letchworth, S. R.; Bencherif, M.; Lippiello, P. M.Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic-pharmacodynamic discordance[J]. Trends Pharmacol. Sci. 2005, 26, 352-360.
    
    75. Hogg, R. C.; Bertrand, D. Nicotinic Acetylcholine receptors as drug targets[J]. Curr. Drug Targets - CNS Neurol. Disord. 2004, 3, 123-130.
    
    76. Cooper, E.; Couturier, S.; Ballivet, M. Pentameric structure and subunit stoichiometry of a neuronal acetylcholine receptor[J]. Nature 1991, 350, 235-238.
    
    77. Cowart, M.; Pratt, J. K; Stewart, A.O. et al. A new class of potent non-imidazole H3 antagonists: 2-aminoethylbenzofurans[J]. Bioorg. Med. Chem. Lett.2004, 14,689-93.
    
    78. Company Communication, Wyeth Global and US Analysis, PharmaVitae 2004, October 26,2004.
    
    79. Ahmed, M.; Briggs, M.A.; Bromidge, S.M. et al. Bicyclic heteroarylpiperazines as selective brain penetrant 5-HT6 receptor antagonists[J]. Bioorg. Med. Chem.Lett. 2005,15, 4867-4871.
    
    80. Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery parADigm[J]. J. Med. Chem. 2005,48, 6523-6543.
    
    81. Michel Espinoza-Fonseca L. The benefits of the multi-target approach in drug design and discovery[J]. Bioorg. Med .Chem. Lett .2006,14,896-897
    
    82. Buccatusco, J. J.; Terry, A.V. Jr. Multiple Central Nervous System Targets for Eliciting Beneficial Effects on Memory and Cognition[J] J. Pharmacol. Exp. Ther. 2000, 295(2), 438-446.
    
    83. Lamirault, L.; Guillou, C.; Thal, C.; Simon, H.. Combined treatment with galanthaminium bromide, a new cholinesterase inhibitor, and RS 67333, a partial agonist of 5-HT_4 receptors, enhances place and object recognition in young ADult and old rats[J]. Prog. NeuroPsychopharmacol. Biol. Psychiatry. 2003. 27(1), 185-195.
    
    84. Tariot, P.N.; Farlow, M.R.; Grossberg, G.T.; Graham, S.M.; McDonald, S.; Gergel, I..Memantine Treatment in Patients With Moderate to Severe Alzheimer Disease AlreADy Receiving Donepezil:A Randomized Controlled Trial[J].J.Am.Med Assoc.2004,291(3),317-324
    85.Zhang,H.Y.One-compound-multiple-targets strategy to combat Alzheimer's disease[J].FEBS Lett 2005,579,5260-5264
    86.Cavalli,A.;Bolognesi,M.L.;Melchiorre C.et al.Multi-target-directed ligands to combat neurodegenerative diseases[J].J.Med.Chem.2008,51,347-372
    87.Van der Schyf,C.J.;Geldenhuys,W.J.;Youdim,M.B.H.Multifunctional neuroprotective drugs for the treatment of cognitive and movement impairment disorders,including Alzheimer's and Parkinson's diseases[J].Drugs Fut 2006,31(5):447-460.
    88.Weinstock,M.;Goren,T.;Youdim,M.B.H.Development of a novel neuroprotective drug(TV3326) for the treatment of Alzheimer's disease,with cholinesterase and monoamine oxidase inhibitory activities[J].Drug.Dev.Res.2000,50,216-222.
    89.Youdim,M.B.H.;Weinstock,M..Novel neuroprotective anti-Alzheimer drugs with anti-depressant activity derived from the anti-Parkinson drug,rasagiline[J].Mech.Ageing Dev.2002,123(8),1081-1086.
    90.Youdim,M.B.H.;Weinstock,M..Molecular Basis of Neuroprotective Activities of Rasagiline and the Anti-Alzheimer Drug TV3326[(N-Propargyl-(3R)Aminoindan-5-YL)-Ethyl Methyl Carbamate][J].Cell.Mol.Neurobiol.2002,21(6),555-573
    91.Weinstock,M.;Poltyrev,T.;Bejar,C.;Youdim,M.B.H..Effect of TV3326,a novel monoamine-oxidase cholinesterase inhibitor,in rat models of anxiety and depression[J].Psychopharmacology,2002,160,318-324.
    92.Youdim,M.B.;Amit,T.;Bar-Am,O.;Weinreb,O.;Yogev-Falach,M.Implications of co-morbidity for etiology and treatment of neurodegenerative diseases with multifunctional neuroprotective-neurorescue drugs;lADostigil[J].Neurotoxic.Res.2006,10,181-192.
    93.Bruhlmann,C.;Ooms,F.;Carrupt,P.A.;Testa,B.;Catto,M.;Leonetti,F.;Altomare,C.;Carotti,A.Coumarins derivatives as dual inhibitors of acetylcholinesterase and monoamine oxidase[J].J.Med.Chem.2001,44,3195-3198.
    94.Novaroli,L.;Daina,A.;Bertolini,F.;Di Giovanni,S.;Bravo,J.;Reist,M.; Carrupt, P.-A. Identification of novel multifunctional compounds for the treatment of some aging related neurodegenerative diseases[J]. Chimia 2005, 59, 315-320.
    
    95. Kogen, H.; Toda, N.; Tago, K.; Marumoto, S.; Takami, K.; Ori, M.;YamADa, N.; Koyama, K.; Naruto, S.; Abe, K.; Yamazaki, R.; Hara, T.; Aoyagi, A.; Abe, Y.; Kaneko, T. Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer's disease[J]. Org. Lett. 2002, 4, 3359-3362.
    
    96. Toda, N.; Tago, K.; Marumoto, S.; Takami, K.; Ori, M.; YamADa, N.; Koyama, K.; Naruto, S.; Abe, K.; Yamazaki, R.; Hara, T.; Aoyagi, A.; Abe, Y.; Kaneko, T.; Kogen, H. Design, synthesis and structure-activity relationships of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease[J]. Bioorg. Med. Chem. 2003,11, 1935-1955.
    
    97. Toda, N.; Tago, K.; Marumoto, S.; Takami, K.; Ori, M.; YamADa, N.; Koyama, K.; Naruto, S.; Abe, K.; Yamazaki, R.; Hara, T.; Aoyagi, A.; Abe, Y.; Kaneko, T.; Kogen, H. A conformational restriction approach to the development of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease[J]. Bioorg. Med. Chem. 2003,11, 4389-441
    
    98. Mattson, M. P.; Chan, S. L. Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bAD genes and bAD habits[J]. J. Mol. Neurosci. 2001, 17, 205-224.
    
    99. Marco-Contelles, C.; Leon, R.; de los Rios, C.; Guglietta, A.; Terencio, J., et al,Novel Multipotent Tacrine-Dihydropyridine Hybrids with Improved Acetylcholinesterase Inhibitory and Neuroprotective Activities as Potential Drugs for the Treatment of Alzheimer's Disease [J] J. Med. Chem. 2006, 49, 7607-7610
    
    100.Witkin, J. M.; Nelson, D. L. Selective histamine H_3 receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system[J]. Pharmacol. Ther. 2004, 103, 1-20.
    
    101.Petroianu, G.; Arafat, K.; Sasse, B. C.; Stark, H. Multiple enzyme inhibitions by histamine H_3 receptor antagonists as potential precognitive agents[J]. Pharmazie 2006,61,179-182.
    
    102.Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman. I. Atomic structure of acetylcholinesterase from Torpedo califomica: a prototypic acetylcholine-binding protein[J]. Science 1991, 253, 872-879.
    103.Alvarez. A.; Bronfman, F.; Perez, C. A.; Vicente, M.; Garrido, J.; Inestrosa, N. C. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides[J]. Neurosci. Lett. 1995,201,49-52.
    104.Alvarez, A.; Opazo, C.; Alarcon, R.; Garrido, J.; Inestrosa, N. C. Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils[J]. J. Mol. Biol. 1997, 272, 348-361.
    105.Inestrosa, N. C.; Alvarez, A.; Perez, C. A.; Moreno, R. D.; Vicente, M.; Linker, C.; Casanueva, O. I.; Soto, C.; Garrido, J. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer's fibrils: Possible role of the peripheral site of the enzyme[J]. Neuron 1996, 16, 881-891.
    106.De Ferrari, G. V.; Canales, M. A.; Shin, I.; Weiner, L. M.; Silman, I.; Inestrosa, N. C. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation[J]. Biochemistry 2001, 40, 10447-10457.
    107.Johnson, G.; Moore, S. W. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design[J]. Curr. Pharm. Des.2006, 12,217-225.
    108.Pang, Y. P.; Quiram, P.; Jelacic, T.; et al. Highly potent, selective and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase: Steps toward novel drugs for treating Alzheimer's Disease[J]. J. Biol. Chem. 1996, 271, 23646-23649.
    109.Carlier, P. R.; Han, Y. F.; Chow, E. S. et al. Evaluation of short-tether bis-THA AChE inhibitors. A further test of the dual binding site hypothesis[J]. Bioorg. Med. Chem. 1999.7,351-357.
    110.Nie H, Yu W J, Li X Y, et al. Inhibition by bis(7)-tacrine of native delayed rectifier and K_v1.2 encoded potassium channels [J\.Neurosci. Lett. 2007, 412, 108-113.
    111.Jose' C B, Cesar F S, Jesus M C. Docking and quantum mechanic studies on cholinesterases and their inhibitors[J]. Eur. J Med Chem 2007. 42. 10-19
    112.Savini, L.; Gaeta, A.; Fattorusso, C.; Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors[J]. J. Med. Chem. 2003. 46, 1-4
    113.Gemma, S.; Gabellieri, E.; Huleatt, P.; Fattorusso, C.; Borriello. M.; Catalanotti, B.; Butini. S.; Angelis. M. D.; Novellino. E.; Nacci, V.; Belinskaya. T.; Saxena. A.;Campiani,G.Discovery of huperzine A-tacrine hybrids as potent inhibitors of human cholinesterases targeting their midgorge recognition sites[J].J.Med.Chem.2006,49,3421-3425.
    114.Alonso,D.;Dorronsoro,I.;Rubio,L.;Munoz,P.;Garcia-Palomero,E.;Monte,M.D.;Bidon-Chanal,A.;Orozco,M.;Luque,F.J.;Castro,A.;Medina,M.;Martinez,A.Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE[J].Bioorg.Med.Chem.2005,13,6588-6597.
    115.Bolognesi,M.L.;Andrisano,V.;Bartolini,M.;Banzi,R.;Melchiorre,C.Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced Amyloid-β aggregation[J].J.Med.Chem.2005,48,24-27.
    116.Mun(?)z-Ruiz,P.;Rubio,L.;Garcia-Palomero,E.;et al.Design,synthesis,and biological evaluation of dual binding site acetylcholinesterase inhibitors:new disease-modifying agents for Alzheimer's Disease[J].J.Med.Chem.2005,48,7223-7233.
    117.Camps,P.;Formosa,X.;Mun(?)z-Torrero,D.;Petrignet,J.;BADia,A.;Clos,M.V.Synthesis and pharmacological evaluation of huprine-tacrine heterodimers:Subnanemolar dual binding site acetylcholinesterase inhibitors[J].J.Med.Chem.2005,48,1701-1704.
    118.He,X C;Feng,S;Bai,D L;et al.Study on dual-site inhibitors of acetylcholinesterase:highly potent derivatives of bis- and bisfunctional huperzine B[J].Bioorg.Med.Chem.2007,15,1394-1408.
    119.Feng,S;Wang,Z;Bai,D L;et al.Bis-huperzine B:highly potent and selective acetylcholinesterase inhibitors[J].J.Med.Chem.2005,48,655-657.
    120.Piazzi,L;Belluti,F;Rampa,A;et al.Cholinesterase inhibitors:SAR and enzyme inhibitory activity of 3-[ω-(benzylmethylamino)alkoxy]xanthen-9-ones[J].Bioorg.Med.Chem.2007,15,575-585.
    121.Belluti,F;Rampa,A;Recanatini,M;et al.Cholinesterase inhibitors:xanthostigmine derivatives blocking the acetylcholinesterase-induced β-amyloid aggregation[J].J.Med.Chem.2005,48,4444-4456.
    122.Rosini,M.,Andrisano,V.,Bartolini,M.,Bolognesi,M.L.,Hrelia,P.,Minarini,A.,Tarozzi,A.and Melchiorre,C..Rational approach to discover multipotent anti-Alzheimer drugs[J].J.Med.Chem.2005,48,360
    123.Rodriguez-Franco,M.I.;Fernandez-Bachiller,M.I.;Perez,C.;Hernandez- Ledesma,B.;Bartolome,B.Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer Disease,with improved acetylcholinesterase inhibitory and antioxidant properties[J].J.Med.Chem.2006,49,459-462.
    124.Cavalli,A;Bolognesi,M L;Capsoni S;et al.A small molecule targeting the multifactorial nature of Alzheimer's disease[J].Angew.Chem.Int.Ed.2007,46,3689-3692.
    1.Kitchen,D.B.;Decomez,H.;Furr,J.R.;Bajorath,J.Docking and scoring in virtual screening for drug discovery:methods and applications[J].Nat.Rev.Drug.Discov.2004,3,935-949.
    2.Eldridge,M.D.;Murray,C.W.;Auton,T.R.;Paolini,G.V.;Mee,R.P.Empirical scoring functions:I.The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes[J].J.Comput.Aided Mol.Des.1997,11,425-445.
    3.Wang,R.;Lai,L.;Wang,S.Further development and validation of empirical scoring functions for structure-based binding affinity prediction[J].J.Comput.-Aided Mol.Des.2002,16,11-26.
    4.Muegge,I.;Martin,Y.C.A general and fast scoring function for protein-ligand interactions:A simplified approach[J].J.Med.Chem.1999,42,791-804.
    5.Gohlke,H.;Hendlich,M.;Klebe,G.Knowledge-based scoring function to predict protein-ligand interactions[J].J.Mol.Biol.2000,295,337-356.
    6.Charifson,P.S.;Corkery,J.J.;Murcko,M.A.;Walters,W.P.Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins [J]. J. Med. Chem. 1999, 42, 5100-5109.
    
    7. Leach, A. R.; Schoichet, B. K.; Peishoff, C. E. Prediction of protein-ligand interactions. Docking and scoring: Success and gaps [J]. J. Med. Chem. 2006, 49, 5851-5855.
    
    8. Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein[J]. Science 1991, 253, 872-879.
    
    9. Harel, M.; Schalk, I.; Ehret-Sabatier, L.; Bouet, F.; Goeldner, M.; Hirth, C., Axelsen, P. H.; Silman, I.; Sussman, J. L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase[J]. Proc. Natl. AcAD. Sci. USA 1993, 90, 9031-9035.
    
    10. Raves, M. L.; Harel, M.; Pang, Y. P.; Silman, I.; Kozikowski, A. P.; Sussman, J. L. 3D structure of acetylcholinesterase complexed with the nootropic alkaloid, (3S)-huperzine A[J]. Nat. Struct. Biol. 1997, 4, 57-63.
    
    11. Kryger, G.; Sliman, I.; Sussman, J. L. Structure of acetylcholinesterase complexed with E2020 (Aricept ): implications for the design of new anti-Alzheimer drugs[J]. Structure 1999, 7,297-307.
    
    12. Bartolucci, C.; Perola, E.; Pilger, C.; Fels, G.; Lamba, D. Three-dimensional structure of a complex of galanthamine (Nivalin?) with acetylcholinesterase from Torpedo Californica: Implications for the design of new anti-Alzheimer drugs[J]. Proteins Struct. Funct. Genet. 2001,42, 182-191.
    
    13. Greenblatt, H. M.; Kryger, G.; Lewis, T.; Silman, I.; Sussman, J. L. Structure of acetylcholinesterase complexed with (3S)-galanthamine at 2.3A resolution[J]. FEBS Lett. 1999, 463, 321-326.
    
    14. Bourne, Y.; RADic, Z.; Sulzenbacher, G.; Kim, E.; Taylor, P.; Marchot, P. Substrate and product trafficking through the active center gorge of acetylcholinesterase analyzed by crystallography and equilibrium binding[J]. J. Biol Chem. 2006, 281, 29256-29267.
    
    15. Johnson, G.; Moore, S. W. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design[J]. Curr Pharm. Des. 2006, 12,217-225.
    
    16. Hirashima, A.; Kuwano, E.; Eto, M. Docking study of enantiomeric fonofos oxon bound to the active site of Torpedo californica acetylcholinesterase[J].Bioorg.Med.Chem.2000,8,653-656.
    17.Moustakas,D.T.;Lang,P.T.;Pegg,S.;Pettersen,E.T.;Kuntz,I.D.;Broojimans,N.;Rizzo,R.C.Development and validation of a modular,extensible docking program:DOCK 5[J].J.Comput.-Aid.Mol.Des.2006,20,601-609.
    18.Morris,G.M.;Goodsell,D.S.;Halliday,R.S.;Huey,R.;Hart,W.E.;Belew,R.K.;Olson,A.J.Automated docking using a lamarckian genetic algoritm and an empirical binding free energy function[J].J.Comput.Chem.1998,19,1639-1662.
    19.Rarey,M.;Kramer,B.;Lengauer,T.;Klebe,G.A.A fast flexible docking method using an incremental construction algorithm[J].J.Mol.Biol.1996,261,470-489.
    20.Jones,G.;Willett,P.;Glen,R.C.;Leach,A.R.;Taylor,R.Development and validation of a genetic algorithm for flexible docking[J].J.Mol.Biol.1997,267,727-748.
    21.Friesner,R.A.;Banks,J.L.;Murphy,R.B.;Halgren,T.A.;Klicic,J.J.;Mainz,D.T.;Repasky,M.P.;Knoll,E.H.;Shelley,M.;Perry,J.K.;Shaw,D.E.;Francis,P.;Shenkin,P.S.Glide:a new approach for rapid,accurate docking and scoring.1.Method and assessment of docking accuracy[J].J.Med.Chem.2004,47,1739-1749.
    22.Kontoyianni,M.;McClellan,L.M.;Sokol,G.S.Evaluation of docking performance:comparative data on docking algorithms[J].J.Med.Chem.2004,47,558-565.
    23.Gasteiger,J.;Marsili,M.Iterative partial equalization of orbital electronegativity -a rapid access to atomic charges.Tetrahedron 1980,36,3219-3228.
    24.Munoz-Torrero D,Camps P.Dimeric and hybrid anti-Alzheimer drug candidates [J].Curr.Med.Chem.2006,13,399-422.
    25.陈燕.美普他酚合成、拆分及光学活性体的研究,上海:复旦大学,硕士学位论文,2004.
    26.Bourne,Y.;RADic,Z.;Sulzenbacher,G.;Kim,E.;Taylor,P.;Marchot,P.Substrate and product trafficking through the active center gorge of acetylcholinesterase analyzed by crystallography and equilibrium binding[J].J.Biol.Chem.2006,281,29256-29267.
    1.Xie,Q;Wang,H;Xia,Z;et al Bis-(-)-nor-meptazinols as Novel Nanomolar Cholinesterase Inhibitors with High Inhibitory Potency on Amyloid-βAggregation.J.Med.Chem.2008,51,2027-2036
    2.Feng,S;Wang,Z;Bai,D L;et al.Bis-huperzine B:highly potent and selective acetylcholinesterase inhibitors.J.Med.Chem.2005,48,655-657.
    3.陈燕.美普他酚合成、拆分及光学活性体的研究,上海:复旦大学,硕士学位论文,2004.
    4.卢美艳.美普他酚前体药物和双配基的设计和合成,上海:复旦大学,硕士学位论文,2005.
    5.Smissman,E.E.Makriyannis.Azodicarboxylic acid esters as dealkylating agents.J.Org.Chem.1973,18,1652-1657.
    6.Pecherer,B.;Stumpf,J.;Brossi,A.Synthesis and characteristics of various 3-benzazocines,a class of potential analgesics.Helv.Chim.Acta.1970,53,763-770.German.
    7.Hobson,J.D.;McCluskey,J.G.Cleavage of tertiary bases with phenyl chloroforrnate:the reconversion of 21-deoxyajmaline into ajmaline.J.Chem.Soc.1967,2015-2017.
    8.Abdel-Monem,M.M.;Porgoghese,P.S.N-Demethylation of morphine and structurally related compounds with chloroformate esters.J.Med.Chem.1972,15,208-221.
    9.Prill,E.A.;McElvain,S.M Cyclization of a series of ω,ω′-dicarbethoxy dialkylmethylamines through the acetoacetic ester condensation.J.Am.Chem Soc.1933,55,1233-41.
    10.Glaser,R.;Hug,P.;Drouin,M.;Michel,A.,Solution- and solid-state stereochemistry of(-)-alpha-lobeline hydrochloride and hydrobromide,a respiratory-stimulant drug[J].Journal of the Chemical Society-Perkin Transactions 2,1992,(7),1071-1079.
    11.Glaser,R.;Bemstein,M.A.,~1H and ~(13)C NMR studies on the conformation of N-methyl diastereomers of(+)-glaucine hydrotrifluoroacetate,an aporphine alkaloid salt[J].Journal of the Chemical Society-Perkin Transactions 2,1991, (12),2047-2053.
    12.伊莱尔,E.L.;威伦,S.H.;多伊尔,M.P.,基础有机立体化学[M].科学出版社:北京,2005;p 83-86.
    13.李炜.复旦大学,博士学位论文,2007.
    14.Ellman,G.L.;Courtney,K.D.;Andres,V.J.;Featherstone,R.M.,A new rapid colorimetric determination of acetylcholinesterase activity,Biochem.Pharmacol.1961,7,88-95.
    15.Yu,Q.;Zhu,X.;Holloway,H.W.;Whittaker,N.E;Brossi,A.;Greig,N.H.Anticholinesterase activity of compounds related to geneserine tautomers.N-Oxides and 1,2-oxazines.J.Med.Chem.2002,45,3684.
    16.Paz,A.;Xie,Q.;Greenblatt,H.M.;Fu,W.;Tang,Y.;Silman,I.;Qiu,Z.;Sussman,J.L.The Crystal Structure of a Complex of Acetylcholinesterase with a Bis-(-)-Nor-Meptazinol Derivative Reveals Disruption of the Catalytic TriAD.J.Med.Chem.2009,10.1021/jm801657v
    1.Gaggelli,E.;Kozlowski,H.;Valensin,D.;Valensin,G.Copper homeostasis and neurodegenerative disorders(Alzheimer's,prion,and Parkinson's diseases and amyotrophic lateral sclerosis).Chem.Rev.2006,106,1995-2044
    2.Doraiswamy,P.M.;Finefrock,A.E.Metals in our minds:therapeutic implications for neurodegenerative disorders.Lancet Neurol.2004,3,431-434.
    3.Gaeta,A.;Hider,R.C.The crucial role of metal ions in neurodegeneration:the basis for a promising therapeutic strategy.Br.J.Pharmacol.2005,146,1041-1059.
    4.Lin,M.T.;Beal,M.F.Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.Nature 2006,443,787-795.
    5.Zeevalk,G.D.;Bernard,L.P.;Song,C.;Gluck,M.;Ehrhart,J.Mitochondrial inhibition and oxidative stress:reciprocating players in neurodegeneration.Antioxid.Redox Signaling 2005,7,1117-1139.
    6.Salvemini,D.;Riley,D.P.;Cuzzocrea,S.Nature Rev.Drug Discovery 2002,1,367
    7.Ji,H.-F.;Zhang,H.-Y.,Bioorg.A new strategy to combat Alzheimer's disease.Combining rADical-scavenging potential with metal-protein-attenuating ability in one molecule.Bioorg.Med.Chem.Lett.15,21-24.
    8.Dedeoglu,A.;Cormier,K.;Payton,S.;Tseitlin,K.A.;Kremsky,J.N.;Lai,L.;Li,X.;Moir,R.D.;Tanzi,R.E.;Bush,A.I.;Kowall,N.W.;Rogers,J.T.;Huang,X.Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer's amyloidogenesis.Exp.Gerontol.2004,39,1641-1649.
    9.Bolognesi,M.L.;Cavalli,A.;Valgimigli,L.et al.Multi-Target-Directed Drug Design Strategy:From a Dual Binding Site Acetylcholinesterase Inhibitor to a Trifunctional Compound against Alzheimer's Disease.J.Med.Chem.2007,50,6446-6449
    10.Ellman,G.L.;Courtney,K.D.;Andres,V.J.;Featherstone,R.M.,A new rapid colorimetric determination of acetylcholinesterase activity,Biochem.Pharmacol.1961,7,88-95.
    11.Baum,L.;Ng,A.Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer's disease animal models.J.Alzheimer's Dis.2004,6,367-377.
    12.Xie,Q;Wang,H;Xia,Z;et al Bis-(-)-nor-meptazinols as Novel Nanomolar Cholinesterase Inhibitors with High Inhibitory Potency on Amyloid-βAggregation.J.Med.Chem.2008,51,2027-2036
    1.Hajieva,P;Behl,C.Antioxidants as a potent tetrapy against age-related neurodegenerative diseases:Amyloid beta toxicity and Alzheimer's disease.Curr Pharm.Des.2006,12,699
    2.Maczurek,A;Hager,K;Kenklies,M;et al.Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease.ADvanced Drug Delivery Reviews 2008,60,1463-1470
    3.Feng,Z;Qin,C;Chang,Y;et al.Early melatonin supplementation alleviates oxidative stress in a t ransgenic mouse model of Alzheimer's disease[J].Free RADic Biol Med,2006,40(1):101-109.
    4.Feng,Z;Chang,Y;Cheng,Y;et al.Melatonin alleviates behavioral deficit s associated wit hapoptosis and cholinergic system dysfunction in t he APP 695transgenic mouse model of Alzheimer's disease[J].J Pineal Res,2004,37(2):129-136.
    5.Bendheim,P.E.;Poeggeler,B.;Neria,E.;Ziv,V.;Pappolla,M.A.;Chain,D.G.Development of indole-3-propionic acid(OXIGON) for Alzheimer's disease.J.Molecul.Neurosci.2002,19,213-217.
    6.Cavalli,A;Bolognesi,M L;Capsoni S;et al.A small molecule targeting the multifactorial nature of Alzheimer's disease.Angew.Chem.Int.Ed.2007,46,3689-3692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700