用户名: 密码: 验证码:
海湾扇贝超氧化物歧化酶家族基因结构、表达和多态性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海湾扇贝Argopecten irradian Lamarck于1982年从美国引种到中国,由于具有较快的生长速度和很高的经济效益,海湾扇贝成为中国最主要的养殖贝类之一。近年来海湾扇贝养殖遇到了死亡率高等问题,深入开展海湾扇贝功能基因的研究,尤其是免疫相关基因及其机制研究并在此基础上寻找扇贝疾病防治的有效方法对海湾扇贝的健康养殖十分重要。
     对于贝类免疫系统来说,其血细胞在先天性免疫防御中起着重要的作用。当受到外界病原侵染时,贝类血细胞的一个重要免疫反应就是吞噬作用。在吞噬病原过程中,受到病原侵染的贝类还会产生其他多种免疫反应,这些免疫反应将消耗大量的能量(ATP),产能的呼吸链会加速运转,由此也会引发与呼吸链相耦联的活性氧(ROS)的大量产生。这些活性氧具有极强的反应特性,能破坏病原微生物的结构和功能分子,实现对入侵病原的杀灭。利用活性氧对被吞噬的病原进行杀灭,这是吞噬作用消除病原抵御侵染的重要机制。但由于活性氧分子反应的非特异性,它们也会破坏宿主机体细胞内的功能蛋白分子、不饱和脂肪酸分子和核酸等,对细胞造成严重的伤害,进而导致机体生理机能的损伤和免疫系统的破坏。所以,及时消除病原感染机体内过量产生的ROS,维持相关细胞的正常代谢,对提高机体抵抗力和免疫力具有重要的作用。O_2~-是生物体内产生的第一种活性氧分子,其他的活性氧分子也是由它衍生而来,消除过量O_2~-是消除过量活性氧危害的第一步也是关键一步。生物体内,超氧化物歧化酶(SOD)是催化O_2~-发生歧化反应,消除O_2~-的关键酶。
     首先,本文通过RACE方法获得了海湾扇贝SOD家族全部三种基因的cDNA全长并对其进行了序列的生物信息学分析,海湾扇贝AiCuZnSOD全长cDNA为1047个碱基,其中开放阅读框为459个碱基,编码152个氨基酸,与栉孔扇贝Chlamys farreri的CuZnSOD相似度为77.5%,与长牡蛎Crassostrea gigas的相似度为75%,与人的相似度为74.7%。AiMnSOD全长cDNA为1207个碱基,其中开放阅读框为678个碱基,编码226个氨基酸,序列比对结果发现AiMnSOD的氨基酸序列与虾夷扇贝Mizuhopecten yessoensis和皱纹盘鲍Haliotis discus hannai的相似度分别为85%和78.4%,与哺乳动物相似度也在68%~72%之间。AiECSOD全长cDNA为893个碱基,其中开放阅读框为657个碱基,编码218个氨基酸。AiECSOD与其它物种ECSOD相似度比较低。与线虫Brugia pahangi的相似度为27.9%,与疟蚊Anopheles gambiae的相似度为31.4%,与斑马鱼Danio rerio的相似度为27.8%,与人的相似度也只有28.6%,与同是贝类的长牡蛎ECSOD也只有28.1%的相似性。主要原因是AiECSOD的信号肽和肝磷脂结合区域在各物种中无同源性。
     其次,采用qRT-PCR(quantitative real time PCR)方法分析三种SOD基因在不同组织中的表达情况,结果表明三种SOD基因的组织表达有所差异。AiCuZnSOD基因在鳃中表达水平最高,其次是血细胞和性腺,在外套膜、闭壳肌和肝胰脏表达水平较低。AiMnSOD基因在鳃中表达水平最高,其次是外套膜,在血细胞、性腺,而在肝胰脏和闭壳肌表达较弱。AiECSOD基因在血细胞中表达水平最高,其次是肝胰脏,在鳃、闭壳肌表达水平较低,而性腺和外套膜没有检测到。同时,采用qRT-PCR对鳗弧菌Vibrio angullarum感染后海湾扇贝血细胞中三种SOD基因mRNA表达变化进行了检测。AiCuZnSOD表达量在各个时间段没有显著差异(P > 0.05)。AiMnSOD的表达量在1.5 h时略有下降,在3 h时达到最高表达量,是空白组(0h)的3倍(P < 0.01),从6 h到24 h表达量逐渐下降,24 h时表达量是空白组的1.6倍,24 h到48 h又稍有升高。AiECSOD的表达量在1.5 h时有所下降,是空白组的0.3倍(P < 0.05),随后逐渐升高,在12 h时达到最高表达量,是空白组(0h)的4.5倍(P < 0.01),从24 h到48 h表达量逐渐下降并恢复到空白组的水平。在对照组,各个时间点没有显著差异(P > 0.05)。在鳗弧菌感染后,海湾扇贝三种SOD的表达并不一致,且差异比较显著。AiCuZnSOD被认为是构成性表达基因,其受外界刺激的影响最小,AiMnSOD和AiECSOD受刺激后表达上调比较明显。
     第三,采用Genome-walking的方法得到了海湾扇贝三种SOD基因的基因组全长和近端启动子序列并对其进行了相关分析。AiCuZnSOD的基因组序列全长为4279bp,包含有4个外显子和3个内含子。AiMnSOD的基因组序列全长为10692bp,包含有4个外显子和3个内含子。AiECSOD的基因组序列全长为5276bp,包含有5个外显子和4个内含子。三种基因外显子和内含子的结合处序列遵循-AT/GT-原则。我们把海湾扇贝SOD家族的三个基因的近端启动子进行了比较分析。发现三种SOD在靠近起始密码子的位置都有Oct-1结合位点。三种SOD共有的转录位点有:Oct-1、C/EBPalp、Oct2.1、Sp-1和GATA-1。AiCuZnSOD和AiMnSOD共有的转录位点有:ICSBP、Ftz、TATA-box、C/EBPbeta和Antp。AiCuZnSOD和AiECSOD共有的转录位点有:AP-1和NFκB。AiMnSOD和AiECSOD共有的转录位点有:GR和ER。AiCuZnSOD独有的位点有:SRF、YY-1和NF-1。AiMnSOD独有的位点有:HNF-1、Hb、MEB、NF-muE1、Pit-1a和Eve。AiECSOD独有的位点有:CREB、RATA-alph、Kruppel-like和AP-3。
     此外,通过构建原核表达载体,本研究对AiCuZnSOD和AiECSOD基因进行了体外重组表达,并对纯化的重组蛋白进行了酶活分析。酶活分析表明,重组AiCuZnSOD蛋白有较高的酶活和稳定性。
     最后,我们对海湾扇贝三种SOD基因的部分区域,包括启动子、编码区,部分内含子区域进行了SNP检测,并对SOD基因部分SNP位点多态性和鳗弧菌敏感性进行了相关分析。三种SOD基因中,我们共发现了59个SNP位点,其中AiECSOD的SNP位点最多,特别是在启动子区,AiCuZnSOD和AiMnSOD多态性较低。其中AiCuZnSOD启动子区的-1739 T-C位点的基因型和等位基因,AiECSOD启动子区的-498 A-T和-267 G-A等位基因频率,AiECSOD的第一个外显子38 Thr-Lys的多态性在敏感和抗菌群体中存在显著差异(P < 0.05)。
The bay scallop Argopecten irradians, which was first introduced into China from the USA in 1982, has become one of the most important bivalves cultured in China. It now dominates scallop farming in China and accounts for about 70% of the total production. However, bay scallop cultivation has suffered seriously from high mortality. Understanding the immunity of bay scallops is crucial for managing diseases and developing sustainable scallop culture.
     It has been proved that one important immune defense reaction of mollusca hemocytes is phagocytosis when the organism is attacked by microorganisms or viruses. During the course of phagocytosis, the host glycolytic reactions get activated which in turns increase the consumption of oxygen and induce the production of a mass of reactive oxygen species (ROS). At the same time, the host also starts other immune response to defense the infection of pathogenys. All these immune response will need more ATP to support the energy which will also result in more ROS production from the electron transport chain. Though ROS can kill foreign invaders, the mass accumulation of these reactive molecules in organisms will damage many cell components such as lipids, proteins, and nucleic acids. So the rapid elimination of these excessive ROS is essential for the proper functioning of cells and the survival of mollusca. Superoxide dismutases (SOD) family are thought to be one of the first lines of antioxidant defense and are highly efficient in protecting cells and tissues against oxidative stress by catalyzing the dismutation of superoxide radicals to form hydrogen peroxide and molecular oxygen.
     To begin with, three unique and highly compartmentalized bay scallop superoxide dismutases genes (CuZnSOD, MnSOD, and ECSOD) have been cloned and charactereized. The full-length CuZnSOD cDNA of bay scallop (AiCuZnSOD) was comprised of 1047bp, containing a 459bp open reading frame (ORF) which encoded 152 amino acids. Sequence comparison showed that the AiCuZnSOD shares 77.5% and 75% similarity with CuZnSOD of Chlamys farreri and Crassostrea gigas respectively. 74.5% similarity with that of human. The full-length cDNA of MnSOD (AiMnSOD) consisted of 1207 bp with a 681 bp ORF encoding 226 amino acids. The deduced amino acid sequence contained a putative signal peptide of 26 amino acids. Sequence comparison showed that the AiMnSOD shares 85% and 78.4% similarity with MnSOD of Mizuhopecten yessoensis and Haliotis discus discus, respectively. The full-length cDNA of ECSOD (AiECSOD) was 893 bp with a 657 bp ORF encoding 218 amino acids. The deduced amino acid sequence contained a putative signal peptide of 20 amino acids. Sequence comparison showed that AiECSOD had low degree of homology to ECSODs of other organisms, which shares 27.9% similarity with that of Brugia pahangi, 31.4% with similarity with Danio rerio, 28.6% with human, and only 28.1% with mollusca C. gigas.
     Then, the genomic length of the AiCuZnSOD gene was about 4279 bp containing 4 exons and 3 introns. The promoter region contained many putative transcription factor binding sites such as ICSBP, Oct-1, Sp1, TBP, C/EBPbeta, C/EBPalp, NF-1, NFκB, GATA-1, AP-1, YY1 and SRF binding sits. The genomic length of the AiMnSOD gene was about 10692 bp containing 4 exons and 3 introns. The promoter region contained many putative transcription factor binding sites such as ICSBP, Oct-1, Sp1, TBP, C/EBPbeta, C/EBPalp, NF-muE1, GATA-1, Pit-1a, HNF-1, GLO, HOXA4 and Antp binding sits. The genomic length of the AiECSOD gene was about 5276 bp containing 5 exons and 4 introns. The promoter region contained many putative transcription factor binding sites such as c-Myb, Oct-1, Sp1, Kruppel-like, c-ETS, NFκB, GATA-1, AP-1, and Ubx binding sites.
     Moreover, a quantitative reverse transcriptase real-time PCR (qRT-PCR) assay was developed to detect the mRNA expression of SODs in different tissues and the temporal expression of SODs in scallop challenged with bacteria Vibrio angullarum. Higher-level mRNA expression of AiCuZnSOD was detected in the tissues of gill filaments, haemocytes and gonad. The expression of AiCuZnSOD was no significant change from 0h to 48h after the bay scallop injected with V. angullarum. Higher-level mRNA expression of MnSOD was detected in gill and mantle. The expression of AiMnSOD reached the highest level at 3 h post-injection with V. anguillarum and then slightly recovered from 6 to 48 h. High levels of expression were detected in haemocytes, but not in gonad and mantle. The expression of AiECSOD reached the highest level at 12 h post-injection with V. anguillarum and then returned to normal between 24 h to 48 h post-injection. The results indicated that bay scallop SODs was a constitutive and inducible protein. It could play an important role in the immune responses against V. anguillarum infection in different way.
     In addition, expression, purification of recombinant and the enzyme activity assay confirm AiCuZnSOD and can express in E. coli with high enzyme activity and the enzyme is stable in vitro. AiECSOD can also expresss in E.coli but with low enzyme activity.
     Finally, three SOD isoforms polymorphism and the possible association of SNPs with resistance/susceptibility to bacteria Vibrio angullarum infection were also studied. In promoters, exons and partially introns of three SODs, 59 SNPs were discovered. Compare to AiCuZnSOD and AiMnSOD, AiECSOD has the most SNPs, especially in promoter. Among them, -1739 T-C SNP in AiCuZnSOD promter, -498 A-T and -267 G-A SNPs in AiECSOD promoter were significant associations with resistance/susceptibility to bacteria V. angullarum infection (P<0.05). The polymorphism of 38 Thr-Lys in the extracellular targeting sequence in AiECSOD is also associated.
引文
Abreu, I.A., Hearn, A., An, H., Nick, H.S., Silverman, D.N., Cabelli, D.E. The Kinetic Mechanism of Manganese-Containing Superoxide Dismutase from Deinococcus radiodurans: A Specialized Enzyme for the Elimination of High Superoxide Concentrations. Biochemistry. 2008;47:2350-2356.
    Adachi, T., Li Wang, X. Association of extracellular-superoxide dismutase phenotype with the endothehal constitutive nitric oxide synthase polymorphism. FEBS lett. 1998;433:166-168.
    Advani, S.J., Durand, L.O., Weichselbaum, R.R., Roizman, B. Oct-1 is posttranslationally modified and exhibits reduced capacity to bind cognate sites at late times after infection with herpes simplex virus 1. J Virol. 2003;77:11927-11932.
    Akita, K., Hanaya, T., Arai, S., Ohta, T., Okamoto, I., Fukuda, S. Purification, identification, characterization, and cDNA cloning of a high molecular weight extracellular superoxide dismutase of hamster that transiently increases in plasma during arousal from hibernation. Comp Biochem Physiol A Mol Integr Physiol. 2007; 146:223-232.
    Ambrosone, C.B., Freudenheim, J.L., Thompson, P.A., Bowman, E., Vena, J.E., Marshall, J.R., Graham, S., Laughlin, R., Nemoto, T, Shields, PG: Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res. 1999; 59:602-606.
    Apel, K., Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373-399.
    Ayala, F.J. Neutralism and selectionism: the molecular clock. Gene. 2000;261:27-33.
    Badariotti, E, Kypriotou, M., Lelong, C, Dubos, M.-P, Renard, E., Galera, P., Favrel, P. The phylogenetically conserved molluscan chitinase-like protein 1 (Cg-Clpl), homologue of human HC-gp39, stimulates proliferation and regulates synthesis of extracellular matrix components of mammalian chondrocytes. J Biol Chem. 2006;281:29583-29596.
    Bannister, W.H., Bannister, J.V Biological and clinical aspects of superoxide and superoxide dismutase. Elsevier/North Holland.
    Bao, Y., Li, L., Zhang, G The manganese superoxide dismutase gene in bay scallop Argopecten irradians: Cloning, 3D modelling and mRNA expression. FishShellfish Immunol. 2008;25:425-432.
    Bates, J.A., Taylor, E.J.A. Scorpion ARMS primers for SNP real-time PCR detection and quantification of Pyrenophora teres. Molecular Plant Pathology.2001;2:275-280.
    Bebianno, M.J., Geret, F., Hoarau, P., Serafim, M.A., Coelho, M.R., Gnassia-barelli,M., Romeo, M. Biomarkers in Ruditapes decussatus: a potential bioindicatorspecies. Biomarkers. 2004;9:305-30.
    Benedetto, M.T., Anzai, Y, Gordon, J.W. Isolation and analysis of the mouse genomicsequence encoding Cu (2+)-Zn2+ superoxide dismutase. Gene. 1991;99:191-5.
    Bohm, J., Hahn, A., Schubert, R., Bahnweg, G, Adler, N., Nechwatal, J., Oehlmann,R., Obszwald, W. Real-time quantitative PCR : DNA determination in isolatedspores of the mycorrhizal fungus Glomus mosseae and monitoring ofPhytophthora infestans and Phytophthora citricola in their respective hostplants. JPhytopathol. 1999;147:409-416.
    Bordo, D., Djinovic, K., Bolognesi, M. Conserved patterns in the Cu, Zn superoxidedismutase family. J Mol Biol. 1994;238:366-86.
    Borgstahl, G.E., Parge, H.E., Hickey, M.J., Beyer Jr, W.F., Hallewell, R.A., Tainer, J.A.The structure of human mitochondrial manganese superoxide dismutasereveals a novel tetrameric interface of two 4-helix bundles. Cell.1992;71:107-18.
    Boutet, I., Tanguy, A., Moraga, D. Response of the Pacific oyster Crassostrea gigas tohydrocarbon contamination under experimental conditions. Gene.2004;329:147-157.
    Brady, T.C., Chang, L.Y., Day, B.J., Crapo, J.D. Extracellular superoxide dismutase isupregulated with inducible nitric oxide synthase after NF-KB activation. Am JPhysiol. 1997;273:1002-1006.
    Brouwer, M., Hoexum Brouwer, T, Grater, W., Brown-Peterson, N.: Replacement of acytosolic copper/zinc superoxide dismutase by a novel cytosolic manganesesuperoxide dismutase in crustaceans that use copper (haemocyanin) foroxygen transport. Biochem J. 2003;374:219-28.
    Cadenas, E., Davies, K.J.A. Mitochondrial free radical generation, oxidative stress,and aging. Free Radic Biol Med. 2000;29:222-230.
    Campa-Cordova, A.I., Hernandez-Saavedra, N.Y., Ascencio, F. Superoxide dismutaseas modulator of immune function in American white shrimp (Litopenaeusvannamei). Comp Biochem Physiol C Toxicol Pharmacol. 2002;133:557-565.
    Canini, A., Albertano, P., Caiola, M.G. Localization of Fe-containing superoxide dismutase in cyanobacteria from the Baltic Sea: depth and light dependency.New Phytol. 1998;139:247-254.
    Canini, A., Albertano, P., Leonardi, D., Di Somma, D., Grilli Caiola, M. Superoxidedismutase in cyanobacteria of the Baltic Sea. Archiv fur Hydrobiologie.Supplementband, Algological studies. 1996;117:129-143.
    Carballal, M.J., Lopez, C, Azevedo, C, Villalba, A. Enzymes Involved in DefenseFunctions of Hemocytes of Mussel Mytilus galloprovincialis. J InvertebrPathol. 1997;70:96-105.
    Carlsson, L.M., Jonsson, J., Edlund, T., Marklund, S.L. Mice lacking extracellularsuperoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci U SA. 1995;92:6264.
    Cheng, P., Liu, X., Zhang, G., Deng, Y. Heat-shock protein70 gene expression in fourhatchery Pacific Abalone Haliotis discus hannai Ino populations using formarker-assisted selection. Aquac Res. 2006a;37:1290-1296.
    Cheng, W., Tung, Y.-H., Chiou, T.-T., Chen, J.-C. Cloning and characterisation ofmitochondrial manganese superoxide dismutase (mtMnSOD) from the giantfreshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol.2006b;21:453-466.
    Choi, J.I., Takahashi, N., Kato, T., Kuramitsu, H.K.: Isolation, expression, andnucleotide sequence of the sod gene from Porphyromonas gingivalis. Am SocMicrobiol, 1991, pp. 1564-1566.
    Choi, Y.S., Lee, K.S., Yoon, H.J., Kim, I., Sohn, H.D., Jin, B.R. Bombus ignitus Cu,Znsuperoxide dismutase (SOD1): cDNA cloning, gene structure, andup-regulation in response to paraquat, temperature stress, orlipopolysaccharide stimulation. Biochem Physiol B Biochem Mol Biol.2006;144:365-371.
    Cohen, G, Cederbaum, A.I. Chemical evidence for production of hydroxyl radicals during microsomal electron transfer. Science. 1979;204:66-68.
    Crapo, J.D., Oury, T., Rabouille, C, Slot, J.W., Chang, L. Copper,zinc superoxidedismutase is primarily a cytosolic protein in human cells. Proc Natl Acad SciUSA. 1992;89:10405-10409.
    Das, K.C., Guo, X.-l., White, C.W. Protein kinase Cdelta-dependent induction ofmanganese superoxide dismutase gene expression by microtubule-activeanticancer drugs. J Biol Chem. 1998;273:34639-34645.
    Dash, B.,Metz,R.,Huebner, H.J., Porter, W., Phillips, T.D. Molecularcharacterization of two superoxide dismutases from Hydra vulgaris. Gene.2007;387:93-108.
    Dikkeboom, R., Tijnagel, J.M., Mulder, E.C., van der Knaap, W.P. Hemocytes of thepond snail Lymnaea stagnalis generate reactive forms of oxygen. J InvertebrPathol. 1987;49:321-31.
    DiSilvestre, D., Kleeberger, S.R., Johns, J., Levitt, R.C. Structure and DNA sequenceof the mouse MnSOD gene. Mamm Genome. 1995;6:281-284.
    Dolashki, A., Abrashev, R., Stevanovic, S., Stefanova, L., Ali, S.A., Velkova, L.,Hristova, R., Angelova, M., Voelter, W., Devreese, B., Van Beeumen, J.,Dolashka-Angelova, P. Biochemical properties of Cu/Zn-superoxide dismutasefrom fungal strain Aspergillus niger 26. Spectrochim Acta A.2008;71:975-983.
    Dougall, W.C., Nick, H.S. Manganese superoxide dismutase: a hepatic acute phaseprotein regulated by interleukin-6 and glucocorticoids. Endocrinology.1991;129:2376.
    Droillard, M.J., Paulin, A. Isozymes of Superoxide Dismutase in Mitochondria andPeroxisomes Isolated from Petals of Carnation (Dianthus caryophyllus) duringSenescence. Plant Physio 1. 1990;94:1187-1192.
    Duttaroy, A, Meidinger, R., Kirby, K., Carmichael, S., Hilliker, A., Phillips, J.: Amanganese superoxide dismutase-encoding cDNA from Drosophilamelanogaster. Gene. 1994;143:223-225.
    Ekanayake, P.M., Kang, H.-S., De Zyosa, M., Jee, Y., Lee, Y.-H., Lee, J. Molecularcloning and characterization of Mn-superoxide dismutase from disk abalone(Haliotis discus discus). Comp Biochem Physiol B Biochem Mol Biol..2006;145:318-324.
    Elliott, N.G, Lowry, P.S., Grewe, P.M., Innes, B.H., Yearsley, G.K., Ward, R.D.Genetic evidence for depth-and spatially separated stocks of the deep-waterspikey oreo in Australasian waters. J Fish Biol. 1998;52:796-816.
    Fattman, C.L., Enghild, J.J., Crapo, J.D., Schaefer, L.M., Valnickova, Z., Oury, T.D.Purification and characterization of extracellular superoxide dismutase in mouse lung. Biochem Biophys Res Commun. 2000;275:542-548.
    Fattman, C.L., Schaefer, L.M., Oury, T.D. Extracellular superoxide dismutase inbiology and medicine. Free Radic Res. 2003;35:236-256.
    Fedorov, A., Merican, A.F., Gilbert, W. Large-scale comparison of intron positionsamong animal, plant, and fungal genes. Proc Natl Acad Sci USA.2002;99:16128-16133.
    Folz, R.J., Crapo, J.D. Extracellular superoxide dismutase (SOD3): tissue-specificexpression, genomic characterization, and computer-assisted sequence analysisof the human EC SOD gene. Genomics. 1994a;22:162-71.
    Folz, R.J., Guan, J., Seldin, M.F., Oury, T.D., Enghild, J.J., Crapo, J.D. Mouse extracellular superoxide dismutase: primary structure, tissue-specific gene expression, chromosomal localization, and lung in situ hybridization. Am J Respir Cell Mol Biol. 1997;17:393-403.
    Folz, R.J., Peno-Green, L., Crapo, J.D.: Identification of a homozygous missensemutation (Arg to Gly) in the critical binding region of the human EC-SODgene (SOD3) and its association with dramatically increased serum enzymelevels. Hum Mol Genet. 1994;:2251-2254.
    Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M. Hydrogen peroxide-andglutathione-associated mechanisms of acclimatory stress tolerance andsignalling. Physiol Plantarum. 1997;100:241-254.
    Fridovich, I. Superoxide radical and superoxide dismutases. Annu Rev Biochem.1995;64:97-112.
    Fukai, T., Siegfried, M.R., Ushio-Fukai, M., Cheng, Y, Kojda, G, Harrison, D.GRegulation of the vascular extracellular superoxide dismutase by nitric oxideand exercise training. J Clin Invest. 2000;105:1631-1639.
    Fukai, T., Siegfried, M.R., Ushio-Fukai, M., Griendling, K.K., Harrison, D.G:Modulation of extracellular superoxide dismutase expression by angiotensin IIand hypertension. Circ Res. 1999;85:23-28..
    Fukuhara, R., Tezuka, T., Kageyama, T. Structure, molecular evolution, and geneexpression of primate superoxide dismutases. Gene. 2002;296:99-109.
    Getzoff, E.D., Tainer, J.A., Stempien, M.M., Bell, G.I., Hallewell, R.A. Evolution ofCuZn superoxide dismutase and the Greek key b-barrel structural motif.Proteins: Struct Funct Genet. 1989;5:322-336.
    Gilmore, T.D. Introduction: The Rel/NF-KB signal transduction pathway. SeminCancer Biol. 1997:8:61-62.
    Glenn, K.L., Grapes, L., Suwanasopee, T., Harris, D.L., Li, Y., Wilson, K., Rothschild, M.F. SNP analysis of AMY2 and CTSL genes in Litopenaeus vannamei and Penaeus monodon shrimp. Anim Genet. 2005;36:235-236.
    Gomez-Anduro, G.A., Barillas-Mury, C.V., Peregrino-Uriarte, A.B., Gupta, L., Gollas-Galvan, T., Hernandez-Lopez, J., Yepiz-Plascencia, G The cytosolic manganese superoxide dismutase from the shrimp Litopenaeus vannamei: Molecular cloning and expression. Dev Comp Immunol. 2006;30:893-900.
    Gonzalez, M., Romestand, B., Fievet, J., Huvet, A., Lebart, M.-C, Gueguen, Y, Bachere, E. Evidence in oyster of a plasma extracellular superoxide dismutase which binds LPS. Biochem Biophys Res Commun. 2005;338:1089-1097.
    Goodall, C.P., Bender, R.C., Brooks, J.K., Bayne, C.J. Biomphalaria glabrata cystosolic copper/zinc superoxide dismutase (SOD1) gene: association of SOD1 alleles with resistance/susceptibility to Schistosoma mansoni. Mol Biochem Parasitol. 2006;147:207-210.
    Gorecki, M., Beck, Y, Hartman, J.R., Fischer, M., Weiss, L., Tochner, Z., Slavin, S., Nimrod, A. Recombinant human superoxide dismutases: production and potential therapeutical uses. Free Radic Res Commun. 1991;12:401-410.
    Halliwell, B., Gutteridge, J.M.C. Free radicals in biology and medicine. Clarendon press, Oxford university pree, New York, NY(USA). 1985.
    Hayes, B., Laerdahl, J.K., Lien, S., Moen, T., Berg, P., Hindar, K., Davidson, W.S., Koop, B.F., Adzhubei, A., H0yheim, B. An extensive resource of single nucleotide polymorphism markers associated with Atlantic salmon (Salmo salar) expressed sequences. Aquaculture. 2007;265:82-90.
    Ho, Y.E.S., Howard, A.J., Crapo, J.D. Molecular structure of a functional rate gene for manganese-containing superoxide dismutase. Am J Respir Cell Mol Biol. 1991;4:278-286.
    Holdom, M.D., Hay, R.J., Hamilton, A.J. The Cu, Zn superoxide dismutases of Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, and Aspergillus terreus: purification and biochemical comparison with the Aspergillus fumigatus Cu, Zn superoxide dismutase. Infect Immun. 1996;64:3326-3332.
    Hsu, J.L., Visner, G.A., Burr, I.A., Nick, H.S. Rat copper/zinc superoxide dismutase gene: isolation, characterization, and species comparison. Biochem Biophys Res Commun. 1992;186:936.
    Huang, Y, Peng, J., Oberley, L.W., Domann, F.E. Transcriptional inhibition ofmanganese superoxide dismutase (SOD2) gene expression by DNAmethylation of the 5' CpG island. Free Radic Res Commun. 1997;23:314-320.
    Hung, R.J., Boffetta, P., Brennan, P., Malaveille, C, Gelatti, U., Placidi, D., Carta, A.,Hautefeuille, A., Porru, S. Genetic polymorphisms of MPO, COMT, MnSOD,NQO1, interactions with environmental exposures and bladder cancer risk.Carcinogenesis. 2004;25:973.
    Hwang, Y.S., Jeong, M., Park, J.S., Kim, M.H., Lee, D.B., Shin, B.A., Mukaida, N.,Ellis, L.M., Kim, H.R., Ahn, B.W. Interleukin-1 bold italic beta stimulatesIL-8 expression through MAP kinase and ROS signaling in human gastriccarcinoma cells. Oncogene. 2004;23:6603-6611.
    Iwanaga, S., Lee, B.L. Recent advances in the innate immunity of invertebrateanimals. J Biochem Mol Biol. 2005;38:128-150.
    Bayne C.J., Moore M.N. Hemolymph functions in Mytilus californianus:thecytochemistry of hemocytes and their responses to foreign implants andhemolymph fetors in phagocytosis. J Invertebr Pathol. 1979;34:l-20.
    Jardi, R., Rodriguez, F, Buti, M., Costa, X., Cotrina, M., Valdes, A., Galimany, R.,Esteban, R., Guardia, J. Quantitative detection of hepatitis B virus DNA inserum by a new rapid real-time fluorescence PCR assay. J Viral Hepat.2001;8:465-471.
    Jung,Y., Nowak, T.S., Zhang, S.-M., Hertel, L.A., Loker, E.S., Adema, CM.Manganese superoxide dismutase from Biomphalaria glabrata. J InvertebrPathol. 2005;90:59-63.
    Kim, H.P., Roe, J.H., Chock, P.B., Yim, M.B. Transcriptional activation of the human manganese superoxide dismutase gene mediated by tetradecanoylphorbol acetate. J Biol Chem. 1999;274:37455-37460.
    Kim, H.T., Kim, Y.H., Nam, J.W., Lee, H.J., Rho, H.M., Jung, G Study of 5'-flankingregion of human Cu/Zn superoxide dismutase. Biochem Biophys ResCommun. 1994;201:1526-33.
    Kim, K.Y, Lee, S.Y, Cho, Y.S., Bang, I.C., Kim, K.H., Kim, D.S., Nam, YK.Molecular characterization and mRNA expression during metal exposure and thermal stress of copper/zinc- and manganese-superoxide dismutases in disk abalone, Haliotis discus discus. Fish Shellfish Immunol. 2007;23:1043-1059.
    Kim, Y.H., Park, K.H., Rho, H.M. Trans criptional activation of the Cu, Zn-superoxidedismutase gene through the AP2 site by ginsenoside Rb2 extracted from amedicinal plant, Panax ginseng. JBiol Chem. 1996;271:24539-24543.
    Kim, Y.H., Yoo, H.Y., Chang, M.S., Jung, G, Rho, H.M. C/EBP[alpha] is a majoractivator for the transcription of rat Cu/Zn superoxide dismutase gene in livercell. FEBS Lett. 1997;401:267-270.
    Kim, Y.H., Yoo, H.Y, Jung, G., Kim, J.Y, Rho, H.M. Isolation and analysis of the ratgenomic sequence encoding Cu/Zn superoxide dismutase. Gene.1993;133:267-271.
    Krumova, E., Dolashka-Angelova, P., Pashova, S., Stefanova, L., Van Beeumen, J.,Vassilev, S., Angelova, M. Improved production by fed-batch cultivation andsome properties of Cu/Zn-superoxide dismutase from the fungal strainHumicola lutea 103. Enzyme Microb Tech. 2007;40:524-532.
    Labreuche, Y, Lambert, C, Soudant, P., Boulo, V, Huvet, A., Nicolas, J.L. Cellularand molecular hemocyte responses of the Pacific oyster, Crassostrea gigas,following bacterial infection with Vibrio aestuarianus strain 01/32. MicrobesInfect. 2006;8:2715-2724.
    Lee, J., Galvin, K.M., Shi, Y Evidence for physical interaction between thezinc-finger transcription factors YY1 and Spl. Proc Natl Acad Sci USA.1993;90:6145-6149.
    Legrand-Poels, S., Schoonbroodt, S., Matroule, J.Y, Piette, J. NF-KB: an importanttranscription factor in photobiology. J Photochem Photobiol B. 1998;45:1-8.
    Levanon, D., Lieman-Hurwitz, J., Dafni, N., Wigderson, M., Sherman, L., Bernstein,Y, Laver-Rudich, Z., Danciger, E., Stein, O., Groner, Y Architecture andanatomy of the chromosomal locus in human chromosome 21 encoding theCu/Zn superoxide dismutase. EMBO J. 1985;4:77-84.
    Li, L., Zhao, J., Wang, L., Qiu, L., Zhang, H., Dong, C, Cong, M., Song, L. Thepolymorphism of lysozyme gene in Zhikong scallop {Chlamys farreri)and itsassociation with susceptibility/resistance to Listonella anguillarum. FishShellfish Immunol. In Press.
    Lin, Y.C., Vaseeharan, B., Chen, J.C. Identification of the extracellular copper-zinc superoxide dismutase (ecCuZnSOD) gene of the mud crab Scylla serrata and its expression following beta-glucan and peptidoglycan injections. MolImmunol. 2008;45:1346-1355.
    Liu, C.H., Yeh, S.T., Cheng, S.Y, Chen, J.C. The immune response of the whiteshrimp Litopenaeus vannamei and its susceptibility to Vibrio infection inrelation with the moult cycle. Fish Shellfish Immunol. 2004; 16:151-161.
    Ludwig, M.L., Metzger, A.L., Pattridge, K.A., Stallings, W.C. Manganese superoxidedismutase from Thermus thermophilus. A structural model refined at 1.8 Aresolution. JMol Biol. 1991;219:335-58.
    Livak, K. J., Schmittgen, T.D. Analysis of relative gene expression data using real-timequantitative PCR and the 2 CT method. Methods. 2001;25:402-408.
    Maehara, K., Oh-Hashi, K., Isobe, K.: Early growth-responsive-1 -dependentmanganese superoxide dismutase gene transcription mediated byplatelet-derived growth factor 1. FASEB J. 2001;15:2025-2026.
    Makoto Ikebuchi, K.T., Takuya Yamane, Osamu Ogikubo,, Toshinaga Maeda, H.K.,Iwao Ohkubo. Primary structure and properties of Mn-superoxide dismutasefrom scallop adductor muscle. Int J Biochem Cell Biol. 2006;38:521-532.
    Marklund, S.L. Expression of extracellular superoxide dismutase by human cell lines.Biochem J. 1990;266:213-9.
    Marklund, S.L. Regulation by cytokines of extracellular superoxide dismutase andother superoxide dismutase isoenzymes in fibroblasts. J Biol Chem.1992;267:6696-6701.
    Marklund, S.L., Bjelle, A., Elmqvist, L.G. Superoxide dismutase isoenzymes of thesynovial fluid in rheumatoid arthritis and in reactive arthritides. Ann RheumDis. 1986;45:847-851.
    Marklund, S.L., Holme, E., Hellner, L. Superoxide dismutase in extracellular fluids.Clin Chim Acta. 1982;126:41-51.
    Marklund, S.L., Nilsson, P., Israelsson, K., Schampi, I., Peltonen, M., Asplund, K.Two variants of extracellular-superoxide dismutase: relationship tocardiovascular risk factors in an unselected middle-aged population. J InternMed. 1997;242:5-14.
    Martello, L.B., Friedman, C. S., Tjeerdema, R.S. Combined effects ofpentachlorophenol and salinity stress on phagocytic and chemotactic functionin two species of abalone. Aquat Toxicol. 2000;49:213-225.
    Masuda, A., Longo, D.L., Kobayashi, Y., Appella, E., Oppenheim, J.J., Matsushima, K.Induction of mitochondrial manganese superoxide dismutase by interleukin 1.FASEB J. 1988;2:3087-3091.
    Meyrick, B., Magnuson, M.A. Identification and functional characterization of thebovine manganous superoxide dismutase promoter. Am J Respir Cell Mol Biol.1994;10:113-121.
    Minc, E., de Coppet, P., Masson, P., Thiery, L., Dutertre, S., Amor-Gueret, M., Jaulin,C. The human copper-zinc superoxide dismutase gene (SOD1) proximalpromoter is regulated by Spl, Egr-1, and WT1 via non-canonical binding sites.JBiol Chem. 1999;274:503-509.
    Mitrunen, K., Sillanpaa, P., Kataja, V, Eskelinen, M., Kosma, V.M., Benhamou, S.,Uusitupa, M., Hirvonen, A. Association between manganese superoxidedismutase (MnSOD) gene polymorphism and breast cancer risk.Carcinogenesis. 2001;22:827.
    Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.2002;7:405-410.
    Mourente, G., D., Salvago, E. Characterization of antioxidant systems, oxidationstatus and lipids in brain of wild-caught size-class distributed Aristeusantennatus (Risso, 1816) Crustacea, Decapoda. Comp Biochem Phys B1999;124:405-416.
    Mruk, D., Cheng, C.H., Cheng, Y.H., Mo, M., Grima, J., Silvestrini, B., Lee, W.M.,Cheng, C. Y. Rat Testicular Extracellular Superoxide Dismutase: ItsPurification, Cellular Distribution, and Regulation 1. Biol Reprod.1998;59:298-308.
    Nader, H.B., Chavante, S.F., dos-Santos, E.A., Oliveira, F.W., de-Paiva, J.F.,JerOnimo, S.M.B., Medeiros, G.F., de-Abreu, L.R.D., Leite, E.L.,de-Sousa-Filho, J.F. Heparan sulfates and heparins: similar compoundsperforming the same functions in vertebrates and invertebrates? Braz J MedBiol Res. 1999;32:529-538.
    Neill, S., Desikan, R., Hancock, J. Hydrogen peroxide signalling. Curr Opin PlantBiol. 2002;5:388-395.
    Ni, D., Song, L., Gao, Q., Wu, L., Yu, Y, Zhao, J., Qiu, L., Zhang, H., Shi, F. ThecDNA cloning and mRNA expression of cytoplasmic Cu, Zn superoxide dismutase (SOD) gene in scallop Chlamys farreri. Fish Shellfish Immunol.2007;23:1032-1042.
    Nichols, T.L., Whitehouse, C.A., Austin, F.E. Transcriptional analysis of a superoxidedismutase gene of Borrelia burgdorferi. FEMS Microbiol Lett.2000;183:37-42.
    Noel, D., Boulo, V., Chagot, D., Mialhe, E., Paolucci, E, Clavies, C, Hervaud, E.,Elston, R. Preparation and characterization of monoclonal antibodies againstneoplastic hemocytes of Mytilus edulis (Bivalvia). Dis Aquat Org.1991;10:51-58.
    Nozik-Grayck, E., Suliman, H.B., Piantadosi, C.A. Extracellular superoxidedismutase. Int J Biochem Cell Biol. 2005;37:2466-2471.
    Olafsen, J.A., Fletcher, T.C., Grant, P.T. Agglutinin activity in Pacific oyster{Crassostrea gigas} hemolymph following in vivo Vibrio anguillarumchallenge. Dev Comp Immunol. 1992;16:123-138.
    Ookawara, T., Eguchi, H., Kizaki, T., Nakao, C, Sato, Y, Imazeki, N., Matsubara, O.,Ohno, H., Suzuki, K. An inter-subunit disulfide bond affects affinity of humanlung extracellular superoxide dismutase to heparin. Free Radic Res.2003;37:823-827.
    Ookawara, T., Kizaki, T., Takayama, E., Imazeki, N., Matsubara, O., Ikeda, Y., Suzuki,K., Li Ji, L., Tadakuma, T., Taniguchi, N. Nuclear translocation of extracellularsuperoxide dismutase. Biochem Biophys Res Commun. 2002;296:54-61.
    Parker, J.D., Parker, K.M., Keller, L.: Molecular phylogenetic evidence for anextracellular Cu Zn superoxide dismutase gene in insects. Insect Mol Biol.2004;13:587-594.
    Peters, L.D., Livingstone, D.R. Antioxidant enzyme activities in embryologic andearly larval stages of turbot. J Fish Biol. 1996;49:986-997.
    Petersen, S.V., Oury, T.D., Valnickova, Z., Thogersen, I.B., Hojrup, P., Crapo, J.D.,Enghild, J.J.: The dual nature of human extracellular superoxide dismutase:One sequence and two structures, Proc Natl Acad Sci USA.2003;100:13875-13880.
    Petersen S.V., Valnickova Z., Oury T.D., Crapo J.D., Chr Nielsen N., Enghild J.J. Thesubunit composition of human extracellular superoxide dismutase (EC-SOD)regulates enzymatic activity. BMC Biochem. 2007;8:19.
    Pierce, A., Whitlark, J., Dory, L. Extracellular Superoxide Dismutase Polymorphismin Mice. Arterioscler Thromb Vasc Biol. 2003;23:1820-1825.
    Plantivaux, A., Furla, P., Zoccola, D., Garello, G, Forcioli, D., Richier, S., Merle,P.-L., Tambutte, E., Tambutte, S., Allemand, D. Molecular characterization oftwo CuZn-superoxide dismutases in a sea anemone. Free Radic Biol Med.2004;37:1170-1181.
    Putnam, CD., Arvai, A.S., Bourne, Y, Tainer, J.A. Active and inhibited humancatalase structures: ligand and NADPH binding and catalytic mechanism. JMol Biol. 2000;296:295-309.
    Qin, Y.A.N., Chen, L.U.O. Genetic and biochemical characteristics of mitochondrialsuperoxide dismutase in grass carp Ctenopharyngodon idellus (In English).Acta Zoologica Sinica. 2004;50:389-394.
    Qin, Z., Reszka, K.J., Fukai, T., Weintraub, N.L. Extracellular superoxide dismutase(ecSOD) in vascular biology: an update on exogenous gene transfer and endogenous regulators of ecSOD. Transl Res. 2008;151:68-78.
    Regoli, F. Trace metals and antioxidant enzymes in gills and digestive gland of theMediterranean mussel Mytilus galloprovincialis. Arch Environ ContamToxicol. 1998;34:48-63.
    Rhee, S.G., Chae, H.Z., Kim, K. Peroxiredoxins: A historical overview andspeculative preview of novel mechanisms and emerging concepts in cellsignaling. Free Radic Biol Med. 2005;38:1543-1552.
    Rinttila, T., Kassinen, A., Malinen, E., Krogius, L., Palva, A. Development of anextensive set of 16S rDNA-targeted primers for quantification of pathogenicand indigenous bacteria in faecal samples by real-time PCR. J Appl Microbio.2004;97:1166-1177.
    Rodriguez-Trelles, F, Tarrio, R., Ayala, F.J. Erratic overdispersion of three molecularclocks: GPDH, SOD, and XDH. Proc Natl Acad Sci U S A. 2001;98:11405.
    Rogers, R.J., Chesrown, S.E., Kuo, S., Monnier, J.M., Nick, H.S. Cytokine-indueibleenhancer with promoter activity in both the rat and humanmanganese-superoxide dismutase genes. Biochem J. 2000;347:233-242.
    Rouhier, N., Jacquot, J.P. The plant multigenic family of thiol peroxidases. Free RadicBiol Med. 2005;38:1413-1421.
    Rudneva-Titova, I. The biochemical effects of toxicants in developing eggs and larvaeof black sea fish species. Mar Environ Res. 1998;46:499-500.
    Saavedra, C, Bachere, E. Bivalve genomics. Aquaculture. 2006;256:l-14.
    Sandstrom, J., Nilsson, P., Karlsson, K., Marklund, S.L. 10-fold increase in humanplasma extracellular superoxide dismutase content caused by a mutation inheparin-binding domain. J Biol. Chem. 1994;269:19163-19166.
    Schwarz, K.B. Oxidative stress during viral infection: A review. Free Radic Biol Med.1996;21:641-649.
    Seo, S.J., Kang, S.S., Cho, G, Rho, H.M., Jung, G C/EBPαand C/EBPβplay similarroles in the transcription of the human Cu/Zn SOD gene. Gene.1997;203:ll-15.
    Shen, J., Subramaniam, S., Wong, C.F., McCammon, J.A. Superoxide dismutase:Fluctuations in the structure and solvation of the active site channel studied bymolecular dynamics simulation. Biopolymers. 1989;28:2085-2096.
    Shinohara, R., Mano, T., Nagasaka, A., Hayashi, R., Uchimura, K., Nakano, I.,Watanabe, F., Tsugawa, T., Makino, M., Kakizawa, H. Lipid peroxidationlevels in rat cardiac muscle are affected by age and thyroid status. J Endocrinol.2000;164:97-102.
    Smith, M.W., Doolittle, R.F. A comparison of evolutionary rates of the two majorkinds of superoxide dismutase. J Mol Evol. 1992;34:175-184.
    Sramko, M., Markus, J., Kabat, J., Wolff, L., Bies, J. Stress-induced inactivation ofthe c-Myb transcription factor through conjugation of SUMO-2/3 proteins. JBiol Chem. 2006;281:40065.
    Stallings, W.C., Metzger, A.L., Paitridge, K.A., Fee, J.A., Ludwig, M.L.Structure-function relationships in iron and manganese superoxide dismutases.Free Radic Res. 1991;12:259-268.
    Stralin, P., Marklund, S.L. Vasoactive factors and growth factors alter vascular smoothmuscle cell EC-SOD expression. Am J Physiol Heart Circ Physiol.2001;281:1621-1629.
    Thongphasuk, J., Oberley, L.W., Oberley, T.D. Induction of superoxide dismutase andcytotoxicity by manganese in human breast cancer cells. Arch BiochemBiophys. 1999;365:317-327.
    Tsang, E.W.T., Bowler, C, Herouart, D., Van Camp, W., Villarroel, R., Genetello, C,Van Montagu, M., Inze, D. Differential regulation of superoxide dismutases inplants exposed to environmental stress. Plant Cell. 1991;3:783-792.
    Vandemark, G.J., Barker, B.M. Quantifying phytophthora medicaginis in susceptibleand resistant alfalfa with a real-time fluorescent PCR assay. J Phytopathol.2003;151:577-583.
    Verrijzer, C.P., van Oosterhout, J.A., van der Vliet, PC. The Oct-1 POU domainmediates interactions between Oct-1 and other POU proteins. Mol and CellBiol. 1992;12:542.
    Wan, X.S., Devalaraja, M.N., St Clair, D.K. Molecular structure and organization ofthe human manganese superoxide dismutase gene. DNA Cell Biol.1994;13:1127-36.
    Wang, L.I., Miller, D.P, Sai, Y., Liu, G, Su, L., Wain, J.C., Lynch, T.J., Christiani,D.C.: Manganese superoxide dismutase alanine-to-valine polymorphism atcodon 16 and lung cancer risk. J Natl Cancer Inst. 2001;93:1818-1821
    Wilke, K.,Duman, B., Horst, J. Diagnosis of haploidy and triploidy based onmeasurement of gene copy number by real-time PCR. Hum Mutat.2000;16:431-436.
    Wool, G.D., Reardon, C.A., Getz, GS. Apolipoprotein AI mimetic peptide helixnumber and helix linker influence potentially anti-atherogenic properties. JLipid Res. 2008;49:1268-1283.
    Wuerges, J., Lee, J.-W., Yim, Y.-I., Yim, H.-S., Kang, S.-O., Carugo, K.D. Crystalstructure of nickel-containing superoxide dismutase reveals another type ofactive site. Proc Natl Acad Sci USA. 2004;101:8569-8574.
    Yamada, H., Yamada, Y, Adachi, T., Goto, H., Ogasawara, N., Futenma, A., Kitano,M., Hirano, K., Kato, K. Molecular analysis of extracellular-superoxidedismutase gene associated with high level in serum. Jpn J Hum Genet.1995;40:177-184.
    Yoo, H.Y, Chang, M.S., Rho, H.M. Heavy metal-mediated activation of the rat Cu/Znsuperoxide dismutase gene via a metal-responsive element. Mol Gen Genet.1999;262:310-313.
    Youn, H., Kim, E., Roe, J., Hah, Y, Kang, S. A novel nickel-containing superoxidedismutase from Streptomyces spp. Biochem. J. 1996;318:889-896.
    Zejnilovic, J., Akev, N., Yilmaz, H., Isbir, T. Association between polymorphismmanganese superoxide dismutase polymorphism and risk of lung cancer.Cancer Genet Cytogen. 2008.
    Zelck, U.E., Janje, B., Schneider, O. Superoxide dismutase expression and H_2O_2 production by hemocytes of the trematode intermediate host Lymnaea stagnalis(Gastropoda). Dev Comp Immunol. 2005;29:305-314.
    Zelko, I.N., Mariani, T.J., Folz, R.J. Superoxide dismutase multigene family: acomparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD(SOD3) gene structures, evolution, and expression. Free Radic Biol Med2002;33:337-349.
    Zhang, H., Song, L., Li, C, Zhao, J., Wang, H., Qiu, L., Ni, D., Zhang, Y A novelClq-domain-containing protein from Zhikong scallop Chlamys farreri withlipopolysaccharide binding activity. Fish Shellfish Immunol. 2008.
    Zhang, Q., Li, F, Wang, B., Zhang, J., Liu, Y, Zhou, Q., Xiang, J. The mitochondrialmanganese superoxide dismutase gene in Chinese shrimp Fenneropenaeuschinensis: Cloning, distribution and expression. Dev Comp Immunol.2007;31:429-440.
    Zhao, B.-L., Wang, J.-C, Hou, J.-W., Xin, W.-J. Studies on nitric oxide free radicalsgenerated from polymorphonuclear leukocytes (PMN) stimulated by phorbolmyristate acetate (PMA). Cell Biol Int. 1996;20:343-350.
    Zhao, J., Song, L., Li, C, Zou, H., Ni, D., Wang, W., Xu, W. Molecular cloning of aninvertebrate goose-type lysozyme gene from Chlamys farreri, and lyticactivity of the recombinant protein. Mol Immunol. 2007;44:1198-1208.
    Zheng, J., Li, N., Tan, Y.P., Sivaraman, J., Mok, Y.-K., Mo, Z.L., Leung, K.Y EscC isa chaperone for the Edwardsiella tarda type III secretion system putativetranslocon components EseB and EseD. Microbiology. 2007;153:1953-1962.
    Zhu, C.H., Huang, Y, Oberley, L.W., Domann, F.E. A family of AP-2 proteinsdown-regulate manganese superoxide dismutase expression. J Biol Chem.2001;276:14407-14413.
    王颖.单核苷酸多态性研究及其对人类医学的影响基础医学与临床2004:24:615.618
    宋林生,扇贝生物抗病功能基因的克隆表达与应用中国海洋生化学术会议论文荟萃集中国湖北,2005
    李素霞,夏文超,袁勤生.铁超氧化物歧化酶的研究进展中国生化药物杂志 2002:23:6
    岳俊杰,镍超氧化物歧化酶模型化合物的设计、合成、表征和构象关系研究天津师范大学,2003,pp ,12-22
    邵勇,宋俊峰.超氧阴离子02-化学通报2001:64:158.163
    曹道俊,杨毅军,赵克然.氧自由基与临床中国医药科技出版社,2000
    曹广力,朱越雄,许宏庆,薛仁宇,周保卫四种甲壳动物超氧化物歧化酶活性检测初报水产养殖1999:15.16
    章跃陵,王三英,彭宣宪.无脊椎动物适应性免疫的研究进展水产科学 2005:24:43.45
    章轶锋,唐善虎,秦文玲,张巍谢芳.铜锌超氧化物歧化酶的研究进展.四川省牧兽医.2008;35:33.35.
    樊甄姣,刘志鸿,杨爱国.氨氮对栉孔扇贝血淋巴活性氧含量和抗氧化酶活性的影响.海洋水产研究.2005;26:23.27.
    刘世良,麦康森.贝类免疫系统和机理的研究进展.海洋学报.2003;25:95.105.
    刘磊,许淑芬,方艳秋,谭岩.人铜锌超氧化物歧化酶原核表达载体的构建,表达及蛋白纯化.中国老年学杂志.2008;28.
    孙少华,李雪梅,魏学蕊等.皮埃蒙特牛双肌基因的SNPs检测与分型研究.中国动物遗传育种研究进展,第11次全国动物遗传育种学术会议论文集.北京:农业出版社。2001:70.72.
    孙虎山,李光友.栉孔扇贝血淋巴中超氧化物歧化酶和过氧化氢酶活性及其性质的研究.海洋与湖沼.2000;3l:259-265.
    张峰,李光友.贝类血细胞活性氧体内防御作用的研究进展.海洋科学. 1999;16-19.
    张剑诚,张峰,王吉桥.皱纹盘鲍血细胞分类及活性氧产生机理的研究.大连水产学院学报.2004;19:182.188.
    张宝,周玫.细胞外超氧化物歧化酶(EcSOD).医学综述.2000;6:340.341.
    杨昭庆,洪坤学.单核苷酸多态性的研究进展.国外医学:遗传学分册. 2000;23:4-8.
    罗勇军,罗光言,黄应平,张昌菊,袁丁,颜克美,陈百玲.过氧化物酶模拟及应用研究进展.分析测试学报.2004;23:136.142.
    贾玉艳,陈宏.SNP分子标记的研究及应用.黄牛杂志.2003;29:42.45.
    赵敏.皱纹盘鲍表达谱基因芯片研制及不同表型家系差异表达基因的初步研究中国科学院研究生院(海洋研究所),青岛,2005.
    郑荣梁.自由基生物学.教育出版社.1992;9.
    陈立力.细胞外超氧化物歧化酶的研究进展.实用医学杂志.2008;2:163.165.
    陈松林.海水养殖鱼类抗病分子育种研究进展及前景展望.科技导报. 2004;9:79-87.
    马森.谷胱甘肽过氧化物酶和谷胱甘肽转硫酶研究进展.动物医学进展. 2008;29:53-56.
    马荣群,陈红运.实时定量PCR方法检测转基因产品.植物检疫.2002;16:61.64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700