用户名: 密码: 验证码:
干旱胁迫对水曲柳苗木细根衰老的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细根是树木根系的组成部分,具有重要的生理和生态学功能。细根生长、死亡和周转对树木个体发育、林分的生产力以及森林生态系统的物质和能量流动产生重要的影响。细根衰老是细根周转的重要阶段,是细根功能变化的转折。细根衰老的发生及进程是研究细根个体发育、细根寿命和细根周转的关键。干旱是导致细根衰老的主要环境胁迫因子之一。本研究以1年生水曲柳(Fraxinus mandshurica Rupr.)苗木为研究对象,通过干旱胁迫处理后观察细根外部形态(颜色和直径)、生理功能(细根活力、膜透性、可溶性蛋白含量、抗氧化酶等)、内部细胞结构(解剖结构和超微结构)及遗传物质(DNA结构)变化,分析细根衰老的生物学反应并探索导致细根发生衰老的内在机理。本研究不仅有助于完善细根生物学理论,也可为细根生态学领域(尤其是细根周转研究)研究提供理论依据。主要研究结果如下:
     (1)1年生水曲柳苗木由5级根构成,具有不同的解剖结构特征。4、5级根及大部分3级根具有连续木栓层,主要起到输导功能,为非吸收次生根。1、2级根及少部分3级根没有木栓层(直径<0.4mm),是具吸收功能初生根。后者可以定义为1年生水曲柳苗木细根。
     (2)干旱胁迫下细根主要有白色,黄色,褐色及白色黑尖4种类型,较对照颜色复杂(对照仅有白色和黄色2种类型)。随胁迫时间延长,白色、黄色根逐渐减少,褐色及白色黑尖根比例逐渐增多。干旱胁迫产生的1级根颜色类型最多(白色、黄色、褐色及白色黑尖),变化也最明显,存在大量颜色过渡类型根。2级根有3种颜色(白色、黄色、褐色),变化趋势与1级根相似。3级根仅有黄色和褐色两种颜色,与对照相比少了白色根。1级根对干旱胁迫的反应最敏感。
     (3)干旱胁迫下1-3级根平均直径显著低于对照(P<0.05),且随胁迫时间延长直径显著减小,表明根发生收缩。其中1级根直径随胁迫时间延长降低最显著(P<0.05),2、3级根直径也呈下降趋势,但只在胁迫30d和40d时显著小于对照(P<0.05)。在胁迫过程中不同颜色细根直径变化趋势也有所差异。与对照相比,白色1级根直径随胁迫时间延长减小最为明显(P<0.05)。2级三种颜色根直径到胁迫30d时才显著小于对照(P<0.05)。3级根黄色根在胁迫过程中直径变化不大。直径减小是干旱胁迫下水曲柳细根形态变化的显著特征之一。
     (4)干旱胁迫下细根活力下降、膜透性增加、可溶性蛋白含量减少,三个生理指标之间具有明显的相关性(r~2=0.61-0.87,P<0.05),在胁迫过程中,1级根抗氧化酶活性显著高于对照,2级根活性虽高于对照但差异不显著。随着胁迫时间的延长,1级根各酶下降幅度均大于2级根。可见1级根抗氧化酶系活性较2级根减少更明显,发生膜质氧化的可能性也更高,表明1级根首先发生衰老。
     (5)干旱胁迫引起了1、2级及部分3级根褐化。褐化1、2级根主要是二原型且没有木栓层的初生根;褐化3级根为四原型且有连续木栓层的次生根。1、2级根褐化是由于皮层薄壁细胞大量死亡,色素沉积所致,是干旱胁迫下细根发生衰老的标志。1级根皮层细胞衰老较2级根明显。褐化3级根主要有两种类型:一种类型根的褐化是由于产生了连续木栓层(但层数较少),同时其内部皮层细胞也大量死亡。但这类根的韧皮部细胞仍为活细胞,细根具有较强的输导功能。另外一种类型的根褐化是由于细根具有层数较多的木栓层和大量死亡的皮层及韧皮部细胞,这类根处于衰老死亡过程中。由此可见,干旱胁迫下引起了1、2级(二原型)及部分3级根(具有死亡的皮层薄壁细胞和死亡的韧皮部)褐化衰老。
     (6)干旱胁迫下白色及黄色根皮层薄壁细胞内线粒体形状、结构及分布数量与对照相似,无显著差异。少数干旱胁迫下的黄色根皮层细胞内的线粒体中心电子密度较低,内膜嵴分布较少。与白色和黄色根相比,干旱胁迫下产生的褐色根皮层薄壁细胞线粒体数量减小,分布密度也变低,仅有少数线粒体成簇分布。线粒体或者外膜完整时内膜嵴先发生不同程度的解体,或者内膜嵴密度较大时有些部位的外膜发生解体,最终表现为内、外膜消失,线粒体解体。干旱胁迫显著干扰了线粒体膜的正常呼吸偶联作用,细根线粒体RCR与P/O均显著低于对照(P<0.05)。随细根颜色加深,线粒体RCR和P/O值逐渐下降,白色根>黄色根>褐色根。褐色根线粒体RCR值最低,接近极值1。说明褐色根线粒体结构完整性最差,能量转化效率最低。干旱胁迫下不同颜色细根线粒体内H_2O_2含量、线粒体膜透性、膜脂氧化产物MDA含量均显著高于对照(P<0.05)。且随细根颜色加深,各值增加明显。分析可能是由于干旱胁迫导致线粒体内H_2O_2含量升高,线粒体膜脂质过氧化(MDA含量升高),结构受到破坏(膜透性增加)(电镜下可见部分线粒体内膜电子密度下降及外膜解体)。线粒体膜结构完整性的破坏,直接影响线粒体呼吸代谢反应,使线粒体呼吸功能下降,导致细根衰老。
     (7)干旱胁迫下白色和黄色根细胞核形态与对照相比,无显著差异。细胞核轮廓清晰,结构完整。可见细胞核双层核膜及内部较大的核仁。对照白色和黄色根内染色质凝集明显并均匀分布于核质内,干旱胁迫下白色和黄色根内只见少数染色质凝集。但是干旱胁迫下褐色与白色黑尖根细胞核形态变化较大,核膜逐渐解体,核仁也逐渐消失。内部染色质凝集明显,但不形成染色体。染色质随着核膜、核仁的消失也逐渐消失,溶解于细胞质当中。褐色与白色黑尖根细胞核发生了与叶片及动物细胞程序化死亡相似的核形态变化。DNA梯状图谱与TUNEL末端荧光标记进一步证明干旱胁迫产生的褐色根和白色黑尖根细胞发生了细胞程序化死亡。对照白色和干旱白色根无DNA梯状图谱,也没有TUNEL荧光标记,没有发生细胞程序化死亡。对照黄色和干旱黄色根虽然没有检测出DNA梯状图谱,但是TUNEL检测表明有些细胞染色质上出现了DNA分子链的断裂,是细胞程序化死亡的早期表现。
     综合分析表明:干旱胁迫破坏了线粒体呼吸链,诱发产生大量的活性氧分子(H_2O_2),不能及时清除的活性氧分子氧化伤害线粒体膜结构,导致线粒体数量减少、内嵴消失、外膜结构破坏,呼吸功能明显下降。线粒体结构和功能破坏后,诱发细胞核结构以及DNA结构变化,细胞发生程序化死亡。死亡后细胞壁栓化,颜色加深,细根褐化。同时细根活力和可溶性蛋白含量均下降,细胞膜透性增加,细根衰老死亡。低级根较高级根更易受干旱胁迫影响,最先发生衰老。
Fine roots are the most important components of tree root system,and have significant physiological and ecological functions.The development and tumover of fine roots have vital effects on the development of an individual tree,the forest productivity and the flux of material and energy in a forest ecosystem.Fine roots senescence is the transition phase of fine roots turnover.Its occurrence and processes are the key points of individual root development,root longevity and root turnover.Drought stress is one of the environment factors inducing fine root senescence.In order to make clear the real physiological responses of fine roots to drought stress and to explore the mechanisms of fine root senescence,one year old seedlings of Fraxinus mandshurica were used to investigated the outer morphological changes(including the color and diameter of root),the physiological changes(including root vigor,membrane permeability,soluble protein content and activities of antioxident enzymes),the inner structure changes(including microstructrue and ultrastructure),and DNA degradation.The aims of the present dissertation are to make more perfect the theory of fine root biology and to provide more base for fine root ecological research.The main results are summarized as follows:
     (1)There were five root orders in the root system of one years old seedlings of Fraxinus mandshurica,different order roots with different anatomical structure characteristics.All forthand fifth-order roots and a majority of third-order roots with successive phellems were second growth roots without ability to absorb water and nutrition,but with transport ability.All the first- and second-order roots and a small quantity of third-order roots,which diameter were less than 0.4 mm and without successive phellems,were the primary roots with absorption ability. These roots were defined as fine roots of one years old Fraxinus mandshurica seedlings.
     (2)Four colors of fine roots under drought stress,i.e.,white,yellow,brown and white root with black tips,were observed.They were more complex than the control that had just white and yellow roots.During the drought stress treatment,the numbers of white and yellow roots decreased but the brown and white roots with black tips increased gradually.The first-order roots under drought stress showed 4 colors mentioned above and other transitional colors.The second-oder roots showed 3 colors,i.e.,white,yellow and brown,which had the same trendancy as the first-order roots,there were yellow and brown roots in The third-order roots showed yellow and brown,but didn't show white.Therefore,the first-order roots were the most sensitive to drougth stress.
     (3) The average diameters of the first three order roots were significantly smaller than control(P<0.05),and decreased during drought stress treatment.The decrease in the average diameters of the first-order roots was more than the second- and third-order roots.During the drought stress treatment,the diameters of different color roots changed differently.Compared with the control,the diameters of white first-order roots decreased most significantly.After 30 days of drought stress,the diameters of the second-order roots with three colors were significantly lower than control(P<0.05).The diameters of yellow third-order roots changed little during drought stress.Dcreased diameter was the one of the typical morphological responses to drought stress for fine roots of Fraxinus mandshurica seedling.
     (4)During drought stress treatment,the root vigor and soluble protein content decreased, and the membrane permeability increased.There were significant relationships among these three physiological indexes(γ~2=0.61-0.87,P<0.05).The activities of the antioxidant enzymes in the first-order roots were higher than control,but their activities in the second-order roots were not.And the decline extents of the enzymatic activities in the first-order roots were higher than those in second-order roots druing drought stress treatment.It was obvious that the the possibility that membranes were oxidated occurred easier in first-order roots than in the second-order roots under drought stress,thus the first-order roots senesced at first under drought stress.
     (5) All the first- and second-order roots,and parts of third-order roots browned during drought stress treatment.The first- and second-order browned roots were primary roots with diarch protoxylems but without phellem.But the browned third-order roots were second growth roots with successived phellem and tetrarch protoxylems.The reason why the first- and second-order roots browned was that many cortical parenchyma cells died.And these were senescent roots induced by drought stress treatment.The quantity of dead cortical parenchyma cells in the first-order roots were higher than that in the second-order roots.Accorder to the anatomical analyses,there were two reasons for browning of the third-order roots.One reason was that a few successived phellem and more dead corical parenchyma cells occurred in the third-order roots.The parenchyma cells in phloem were still alive in the roots,and they still had ability to transport water and nutrition.The other reason was that there were so many successived phellem and lots of dead cortical parenchyma cell in the browned roots.These roots had neither transprot ability nor absorption ability,and they were senesceing under drougth stress.Therefore,it can be concluded that all the first-and second-order roots with diarch protoxylems and parts of third-order roots with dead cortical parenchyma cell and dead phloems senesced after drought stress treatment.
     (6)The shapes,structures and quantity of mitochondria in cortical parenchyma cells of white and yellow roots under drought stress were same as those of control.For few yellow roots under drought stress,there were lower center electron density in mitochondrias and fewer cristaes in their inner membrane.Compared with white and yellow roots,the browned roots induced by drought stress had fewer mitochondrias,which distributed seperately.The inner membranes of some mitochondrias with intact outer membrane had disorganized to some extent.But outer membranes of some mitochondrias with intact inner membrane also degraded. At last,the inner and outer membranes in the mitochondrias all dissapered and all the mitochondias decomposed.The respiratory control ratio of mitochondiras was strongly influenced by drought stress.The values of RCR and P/O in fine roots under drought stress were significantly lower than those in control,and decreased significantly with root colors,i.e., white root>yellow root>brown root.The RCR value of the brown roots was the lowest, close to 1.All these results indicated that the integrality of mitochondia in brown roots was the worst and they had little ability to produce energy.When mitochondria integrality was destroied,which resulted in the loss of respiration ability,fine roots senesced.
     (7)The nucleuses in the cells of white and yellow roots under drought stress were the same as those of control,with intact outline and a big nucleolus.The chromatin distribution of in the white and yellow roots of control assembled apparently and uniformly.It was few chromatin assembling in the white and yellow roots under drought stress.There were great changes in nucleus shapes in brown roots and black tips of white roots and those nuclear membranes gradually degraded and the nucleoluses disappeared gradually.The chromatin concentrated deeply but did't become chromosomes.As nuclear membranes and nucleoluses disappeared,the chromatin disappeared in the cytoplasm.The nucleus changes happening in brown and black tips of white roots were same as those happening in leave and animal cells' programmed cell death.On the other hand the DNA ladder and TUNEL test provided evidence that there were PCD happening in brown and black tips of white roots.There were no DNA ladder and TUNEL fluorescence signs in control roots.Althought there were not apparent DNA ladder and TUNEL fluorescence signs in yellow and white roots of control,there still a little TUNEL fluorescence signs seen in some chromatin,suggesting that some DNA molecule chain degraded.It was the premonitory behavior for PCD.
     In conclusion,drought stress induced the respiration reactions of mitochondria,which producing more H_2O_2.Some H_2O_2 couldn't be scavenged in time and induced oxidation of the mitochondria membranes so that mitochondria structures were detroied and mitochondria disappeared.As mitochondria structures and functions changed,the nucleus and DNA structure also changed.And then the PCD happened.The dead cells with more phellem assembled in the cell walls resulted in browning of fine roots.And at the same time the root vigor and content of soluble proteoins decreased,and membrane pemeability increased.At last the fine roots senesced.The lower order roots was more affected by drought stress than the higher order roots and senesced earlier.
引文
[1]Burton,A.J.,K.S.Pregitzer,and G.P.Zogg.Latitudinal Variation in Sugar Maple Fine Root Respiration.Canadian Journal of Forest Research,1996,26:1761-1768
    [2]Hendrick R.L.,K.S.Pregitzer.The Dynamics of Fine Root Length,Biomass and Nitrogen Content in Two Northern Hardwoods Ecosystems.Canadian Journal of Forest Research,1993,23:2507-2520
    [3]Jackson,R.B.,M.M.Caldwell.The Time and Degree of Root Proliferation in Fertile-Soil Microsites for Three Cil-desert Perennials.Oecologia,1989,81:149-153
    [4]Nadelhoffer,K.S.the Potential Effects of Nitrogen Deposition on Fine Root Production in Forest Ecosystems.New Phytologist,2000,147:131-139
    [5]Hetrick,D.B.A.,J.F.Leslie,T.Wilson,et al..Physical and topological Assessment of Effects of a Vesicular-Arbuscular Mycorrhizal Fungus on Root Architecture of Big Bluestem.New Phytologist,1988,110:85-96
    [6]Miller,R.M.,B.A.D.Hetrick,G.W.T.Wilson.Mycorrhizal Fungi Affect Root Stele Tissue in Grasses.Canadian Journal of Botany,1997,75:1778-1784
    [7]Hendrick,R.L.,K.S.Pregitzer.Spatial Variation in Root Distribution and Growth Associated with Minirhizotrons.Plant and Soil,1992,143:283-288
    [8]Fahey,T.J.,J.W.Hughes.Fine Root Dynamics in a Northern Hardwood Forest Ecosystem,Hubbard Brook Experimental Forest,NH.Journal of Ecology,1994,82:533-548
    [9]Gordon,W.S.,R.B.Ackson.Nutrient Concentrations in Fine Roots.Ecology,2000,81:275-280
    [10]Joslin,J.D.,G.S.Henderson.Organic Matter and Nutrients Associated with Fine Root Turnover in a White Oak Stand.Forest Science,1987,33:330-346
    [11]Van Praf H.,S.Sougnez-Remy,F.Weissen,et aL.Root Turnover in a Beech and a Spruce Stand of the Belgian Arpotheisis.Plant and Soil,1985,105:87-103
    [12]Mcclaugherty,C.The Role of Fine Roots in the Organic Matter and Nitrogen Budgets of Two Forested Ecosystems.Ecology,1982,63:1481-1490
    [13]Nadelhoffer,K.,J.Aber,and J.Melillo.Fine Roots,Net Primary Production,and Soil Nitrogen Availability:a New Hypothesis.Ecology,1985,63:1481-1490
    [14]Hendrick,R.,K.Pregitzer.The Demography of Fine Roots in a Northern Hardwood Forest.Ecology,1992,73:1094-1104
    [15]王向荣,王政权,韩有志,等.水曲柳和落叶松不同根序之间细根直径的变异研究.植物生态学报,2005,29(6):871-877
    [16]于水强,王政权,史建伟,等.曲柳和落叶松细根寿命的估计.植物生态学报,2007, 31(1):102-109
    [17]Hishi,T.,Takeda H.Life Cycles of Individual Roots in Fine Root System of Chamaecyparis Obtuse.Journal of Forest Research,2005,10:181-187
    [18]Hishi,T.Heterogeneity of Individual Roots within the Fine Root Architecture:Causal Links between Physiological and Ecosystem Functions.Journal of Forest Research,2007,12:126-133
    [19]Marshall,J.D.,R.H.Waring.Predicting Fine Root Production and Turnover by Monitoring Root Starch and Soil Temperature.Canadian Journal of Forest Research,1985,15:791-800
    [20]Guo,D.L.,R.J.Mitchell,and J.J.Hendricks.Fine Root Branch Orders Respond differentially to Carbon Source-Sink Manipulations in a Longleaf Pine Forest.Oecologia,2004,140(3):450-457
    [21]Pregitzer,K.S.,M.J.Laskowski,A.J.Burton,et al..Variation in Sugar Maple Root Respiration with Root Diameter and Soil Depth.Tree Physiology,1998,18:665-670
    [22]Pregitzer,K.S.,J.L.Deforest,A.J.Burton,et al..Fine Root Architecture of Nine North American Trees.Ecological Monographs,2002,72:293-309
    [23]Wells,C.E.,D.M.Eissenstat.Marked Differences in Survivorship among Apple Roots of Different Diameters.Ecology,2001,82:882-892
    [24]Fitter,A.H.Morphometric Analysis of Root Systems:Application of Technique and Influence of Soil Fertility on Root System Development in Two Herbaceous Species.Plant Cell and Environment,1982,5:313-322
    [25]Fitter,A.H.Functional Significance of Root Morphology and Root System Architecture.In:Fitter A.H.,D.Atinson,D.J.Read,M.B.Usher,(eds.) Ecological Interaction in Soil Plant Microbes and Animals.Special Bullet in Number 4 of British Ecological Society.Oxford:Blackwell Scientific Publication.1985:87-106
    [26]King,J.S.,T.J.Albaugh,H.L.Allen,et al..Below Ground Carbon Input to Soil Is Controlled by Nutrient Availability and Fine Root Dynamics in Loblolly Pine.New Phytologist,2002,154:389-398
    [27]Pregitzer,K.S.,M.E.Kubiske,K.Y.Chui,et al..Relationships among Root Branch Order,Carbon,and Nitrogen in Four Temperate Species.Oecologia,1997,111:302-308
    [28]Majdi,H.Changes in Fine Root Production and Longevity in Relation to Water and Nutrient Availability in a Norway spruce Stand in Northern Sweden.Tree Physiology,2001,21:1057-1061.
    [29]温达志,魏平,孔国辉,等.鼎湖山南亚热带森林细根生产力与周转.植物生态学报,1999,23(4):361-369.
    [30]梅莉.水曲柳落叶松人工林细根周转与碳分配.东北林业大学博士论文.2006
    [31]Esau,K.Plant Anatomy,2nd edn.Wiley,New York.1964
    [32]Peterson,C.A.,D.E.Enstone,and J.H.Taylor.Pine Root Structure and Its Potential Significance for Root Function.Plant Soil,1999,217:205-213
    [33]Macfall,J.S.,GA.Johnson,and P.J.Kramer.Comparative Water Uptake by Roots of Different Ages in Seedlings of Loblolly Pine(Pinus taeda L.).New Phytologist,1991,119:551-560
    [34]Mckenzie,E.B.,C.A.Peterson.Root Browning in Pinus banksiana Lamn.and Eucalyptus pilularis Sm.1.Anatomy and Permeability of the White and Tannin Zones.Botany Acta,1995,108:127-137
    [35]Peterson,C.A.,D.E.Enstone.Functions of Passage Cells in the Endodermis and Exodermis of Roots.Physiology Plant,1997:592-598
    [36]Taylor,J.H.,C.A.,Peterson.Morphometric Analysis of Pinus banksiana Lamb.Root Anatomy during a 3-Month Field Study.Trees,2000,14:239-247
    [37]Kramer,P.J.,H.C.Bullock.Seasonal Variations in the Proportions of Suberized and Unsuberized Roots of Tree in Relation to the Absorption of Water.American Journal of Botany,1966,53:200-204
    [38]Mccrady,R.L.,N.B.Comerford.Morphological and Anatomical Relationships of Loblolly Pine Fine Roots.Trees,1998,12:431-437
    [39]Wells,C.E.,Eissenstat,D.M.Beyond the Roots of Young Seedlings:the Influence of Age and Order on Fine Root Physiology.Journal of Plant Growth Regulation,2003,21:324-334
    [40]Hishi,T.,Takeda H.Dynamics of Heterorhizic Root Systems:Protoxylem Groups within the Fine Root System of Chamaecyparis obtusa.New Phytologist,2005,167:509-521
    [41]Bouma,T.J.,R.D.Yanai,A.D.Elkin,U.Hartmond,D.E.Flores-Alva,and D.M.Eissenstat.Estimation Age-Dependent Costs and Benefits of Roots with Contrasting Lifespan:Comparing Apples and Oranges.New Phytologist,2001,150:685-695
    [42]Clarkson,D.T Root Structure and Sites of Ion Uptake.In:Waisel,Y,A.Eshel,U.Kafkafi(eds).Plant Roots-the Hidden Half,2nd edn.Marcel Dekker,New York.1996:483-510
    [43]Nissen,P.Uptake Mechanisms.In:Waisel,Y,A.Eshel,U.Kafkafi(eds).Plant Roots-the Hidden Half,2nd edn.Marcel Dekker,New York.1996:511-527
    [44]Eissenstat,D.M.,R.D.Yanai.Ecology of Root Lifespan.Advance in Ecological Research,1997,27:1-60
    [45]Yanai,R.D.,T.J.Fahey,and S.L.Miller.Efficiency of Nutrient Acquisition by Fine Roots and Mycorrhiza.In:Smith,W.K.,T.M.Hincley(eds).Resource Physiology of Conifers,Acquisition,Allocation,and Utilization.Academic,San Diego.1995
    [46]Ryan,M.G Foliage,Fine-Root,Woody-Tissue and Stand Respiration in Pinus radiata in Relation to Nitrogen Status.Tree Physiology,1996,16:333-343
    [47]Steudle,E.,C.A.Peterson.How Does Water Get Through Roots?Journal of Experimental Botany,1998,49:775-788
    [48]Enstone,D.E.,C.A.Peterson.Effects of Exposure to Humid Air on Epidermal Vitality and Suberin Deposition in Maize(Zea mays L.)Roots.Plant Cell and Environment,1998,21:837-844
    [49]Sanderson,J.Water Uptake by Different Regions of the Barley Root.Pathways for Radial Flow in Relation to Development of the Endodermis.Journal of Experimental Botany,1983,34:240-253
    [50]Mckenzie,E.B.,C.A.Peterson.Root Browning in Pinus banksiana Lamn.And Eucalyptus pilularis Sm.2.Anatomy and Permeability of the Cork Zone.Botany Acta,1995,108:138-143
    [51]Kendrick,B.The Fifth Kingdom.Focus,Newburyport.2000
    [52]Smith,S.E.,D.J.Read.Mycorrhizal Symbiosis,2nd edn.Academic,San Diego,1997
    [53]Wilcox,H.E.Mycorrhiza.In:Waisel,Y,A.Eshel,U.Kafkafi(eds).Plant Roots-the Hidden Half,2nd edn.Marcel Dekker,New York,1996,689-721
    [54]Brundrett,M.,N.Bougher,B.Dell,T.Grove,and N.Malajczuk.Working with Mycorrhizas in Forestry and Agriculture.Pirie.1996
    [55]Bouma,T.J.,K.L.Nielsen,J.Van Hal,and B.Koutstaal.Root System Topology and Diameter Distribution of Species from Habitats Differing in Inundation Frequency.Functional Ecology,2001,15:360-369
    [56]Lecompte,F.,H.Ozier-Lafontaine,and L.Pag(?)S.The Relationships between Static and Dynamic Variables in the Description of Root Growth.Consequences for Field Interpretation of Rooting Variability.Plant Soil,2001,236:19-31
    [57]Satomura,T,Nakatsubo T,and Horikoshi T.Estimation of the Biomass of Fine Roots and Mycorrhizal Fungi:a Case Study in a Japanese Red Pine(Pinus densiflora)Stand.Journal of Forest Research,2003,8:221-225
    [58]Atkinson,D.,K.E.Black,P.J.Forbes,J.E.Hooker,J.A.Baddeley,and C.A.Watson.The Influence of Arbuscular Mycorrhizal Colonization and Environment on Root Development in Soil.European Journal of Soil Science,2003,54:751-757
    [59]Hooker,J.E.,M.Munro,and D.Atkinson.Vesicular-Arbuscular Mycorrhizal Fungi Induced Alteration in Poplar Root System Morphology.Plant Soil,1992,145:207-214
    [60]Cruz,C,J.J.Green,C.A.Watson,F.Wilson,and M.A.Martins-Lou(?)(?)o.Functional Aspects of Root Architecture and Mycorrhizal Inoculation with Respect to Nutrient Uptake Capacity.Mycorrhiza,2004,14:177-184
    [61]L(?)Pez,B.,S.Sabate,C.A.Gracia.Fine-Root Longevity of Quercus Ilex.New Phytologist,2001,151:437-441
    [62]Berg,B.,C.McClaugherty.Plant Litter Decomposition,Humus Formation,Carbon Sequestration.Springer,Berlin Heidelberg New York.2003
    [63]Silver,W.L.,R.K.Miya.Global Patterns in Root Decomposition:Comparisons of Climate and Litter Quality Effects.Oecologia,2001,129:407-419
    [64]Osono,T.,Takeda H.Decomposition of Organic Chemical Components in Relation to Nitrogen Dynamics in Leaf Litter of 14 Tree Species in a Cool Temperate Forests.Ecology Research,2005,20:41-49
    [65]Ruess,R.W.,R.L.Hendrick,A.J.Burton,K.S.Pregitzer,B.Sveinbjornsson,M.F.Allen,and GE.Maurer.Coupling Fine Root Dynamics with Ecosystem Carbon Cycling in Black Spruce Forests of Interior Alaska.Ecological Monographs,2003,73:643-662
    [66]King,J.S.,H.L.Allen,P.D.Dougherty,and B.R.Strain.Decomposition of Roots in Loblolly Pine:Effects of Nutrient and Water Availability and Root Size Class on Mass Loss and Nutrient Dynamics.Plant Soil,1997,195:171-184
    [67]Eissenstat,D.M.,C.E.Wells,R.D.Yanai,and J.L.Whitbeck.Building Roots in a Changing Environment:Implications for Root Longevity.New Phytologist 2000,147:33-42
    [68]Harper,J.L.Plant Demography and Ecological theory.Oikos,1980,35:244-253
    [69]Maillet,L.Structural Dynamics of Silver Birch.1.The Fates of Buds.Journal of Applied Ecology,1982,19:203-218
    [70]White,J.The Plant as a Metapopulation.Annual Review of Ecology and Systematics,1979,10:109-145
    [71]Kawamura,K.,Takeda H.2004 Rules of Crown Development in the Clonal Shrub Vaccinium Hirtum in Low-Light Understory:a Quantitative Analysis of Architecture.Canadian Journal of Botany,82:329-339
    [72]Yagi,T.Morphology and Biomass Allocation of Current Shoot Growth and Bud Formation Related to Light Intensity.Journal of Plant Research,2000,113:171-183
    [73]Comas,L.H.,T.J Bouma.,and D.M.Eissenstat.Linking Root Traits to Potential Growth Rate in Six Temperate Tree Species.Oecologia,2002,132:34-43
    [74]Fujimaki,R.,T.P.Mcgonigle,and Takeda H.Soil Micro-Habitat Effects on Fine Roots of Chamaecyparis obtusa Endl.:a Field Experiment Using Root Ingrowth Cores.Plant Soil,2004,266:325-332
    [75]Godbold,D.L.,H.W.Fritz,G Jentschke,H.Meesenburg,and P.Rademacher.Root Turnover and Root Necromass Accumulation of Norway Spruce(Pecea abies)Are Affected by Soil Acidity.Tree Physiology,2003,23:915-921
    [76]Hishi,T.,Tateno R.,and Takeda H.Anatomical Characteristics of Individual Roots within the Fi Ne Root Architecture of Chamaecyparis obtusa(Sieb.& Zucc.) in Organic and Mineral Soil Layers.Ecology Research,2006,21:754-758
    [77]Leuschner,C.,D.Hertel,I.Schmid,O.Koch,A.Muhs,and D.H(o|¨)lscher.Stand Fine Root Biomass and Fine Root Morphology in Old-growth Beech Forests as a Function of Precipitation and Soil Fertility.Plant Soil,2004,258:43-56
    [78]Wells,C.E.,D.M.Glenn,and D.M.Eissenstat.Soil Insects Alter Fine Root Demography in Peach(Prunus persica).Plant Cell Environment,2002,25:431-439
    [79]单建平,陶大立.国外对树木细根的研究动态,生态学杂志,1992,11(4):46-49
    [80]单建平,陶大立,王淼,等.长白山阔叶红松林细根周转的研究.应用生态学报,1993,4(3):241-253
    [81]Bryant,D.M.,E.A.Holland,T.R.Seasted,et al..Analysis of Litter Decomposition in Analpine tundra.Canadian Journal of Botany,1998,76(7):1295-1304
    [82]John,B.,H.N.Pandey,and R.S.Tripathi.Decomposition of Fine Roots of Pineskesiya and Turnover of Organic Matter,N and P of Coarse and Fine Pine Roots and Herbaceous Roots and Rhizomes in Subtropical Pine Forests Stands of Different Ages.Biology Fertilization Soils,2002,35(4):238-246.
    [83]Usman,S.,S.P.Singh,Y.S.Rawat,et al..Fine Root Decomposition and Nitrogen Mineralization Patters in Quercus leucotrichphora and Pinus roxburghii Forest in Central Himalaya.Forest Ecology and Management,2000,131:191-199
    [84]Dornbush,M.E.,T.M.Isenhart,and J.W.Raich.Quantifying Fine Root Decomposition:an Alternative to Buried Litterbags.Ecology,2002,83(11):2985-2990.
    [85]ChapinIII,F.S.,P.M.Matson,and H.A.Mooney.Principles of Terrestrial Ecosystem Ecology.New York:Springer Verlag,2002,151-175
    [86]Couteaux,M.M.,P.Bottner,and B.Berg.Litter Decomposition,Climate and Litter Quality.Trends in Ecology and Evolution,1995,10:63-66
    [87]廖利平,杨跃军,汪思龙,高洪.杉木火力楠纯林及其混交林细根分布、分解及养分归还.生态学报,1999,19(3):342-346
    [88]Kirschbaum,M.U.the Temperature Dependence of Soil or Organic Matter Decomposition,and the Effect of Global Warming on Soil Organic C Storage.Soil Biology and Biochemistry,1995,2 7:753-760
    [89]Schuur,E.A.G.the Effect of Water on Decomposition Dynamics in Medic to Wet Hawaiian Montane Forests.Ecosystems,2001,4:259-273
    [90]Wieder,R.K.,S.J.Wright.Tropical Forest Litter Dynamics and Season Irrigation on Barro Colorado Island,Panama.Ecology,1995,76:1971-1979
    [91]Ostertag,R.,S.E.Hobbie.Early Stages of Root and Leaf Decomposition in Hawaiian Forest:Effect of Nutrient Availability.Oecologia,1999,121:564-573
    [92]Prescott,C.E.Does Nitrogen Availability Control Rates of Litter Decomposition in Forest?Plant and Soil,1995,168:83-88
    [93]Fahey,T.J.,J.W.Hughes,Mou P.,et al..Root Decomposition and Nutrient Flux Following Whole-Tree Harvest of Northern Hardwood Forest.Forest Science,1988,34:744-768
    [94]Scheu,S.,J.Schauermann.Decomposition of Roots and Twigs:Effects of Wood Type (Beech and Ash),Diameter,Site of Exposure and Macro Fauna Exclusion.Plant and Soil,1994,163:13-24
    [95]Wall,D.H.,G.Adams,and A.H.Parsons.Soil Biodiversity.In:ChapinIII,F.S.,Global Biodiversity in a Changing Environment:Scenarios for 21st Century.New York:Springer-Verlag,2001:47-82
    [96]张秀娟,梅莉,王政权,等.细根分解研究及其存在的问题.植物学通报,2005,22(2):246-254
    [97]黄建辉,韩兴国,陈灵芝.森林生态系统根系生物量研究进展.生态学报,1999,19(2):270-277
    [98]Liljeroth,E.Comparison of Early Root Cortical Senescence among Barley Cultivars.Tritium Species and Other Cereals.New Phytologist,1995,130:495-501
    [99]张小全,吴可红.森林细根生产和周转研究.林业科学,2001,37(3),126-138
    [100]Farrar,J.F.,D.L.Jones.The Control of Carbon Acquisition by Roots.New Phytologist,2000,147:43-53
    [101]Norby,R.J.,R.B.Jackson.Root Dynamics and Global Change:Seeking an Ecosystem Perspective.New Phytologist,2000,147:3-12
    [102]Pregitzer,K.S.,J.S.King,A.J.Burton,et al..Responses of Tree Fine Roots to Temperature.New Phytologist,2000,147:105-115
    [103]Bloomfield,J.K.,K.Vogt,and P.M.Wargo.Tree Root Turnover and Senescence.In:Waisel,Y.,A.Eshel,U.Kafkaf.(eds).Plant Roots:the Hidden Half,2nd,Edn.NY:Narcel Dekker,1996:363-381
    [104]Burton,A.J.,K.S.Pregitzer,and R.L.Hendrick.Relationships between Fine Root Dynamics and Nitrogen Availability in Michigan Northern Hardwood Forests.Oecologia,2000,125:389-399
    [105]King,J.S.,K.S.Pregitzer,and D.R.Zak.Colonel Variation in Above- and Below-Ground Growth Responses of Populous Tremuloides Michaux:Influence of Soil Warming and Nutrient Availability.Plant and Soil,1999,217:119-130
    [106]Gower,S.T.,K.A.Vogt,and C.C.Grier.Carbon Dynamics of Rocky Mountain Douglas fir:Influence of Water and Nutrient Availability.Ecological Monographs,1992,62:43-65
    [107]Pregitzer,K.S.,R.L.Hendrick,and R.Fogel.The Demography of Fine Roots in Response to Patches of Water and Nitrogen.New Phytologist,1993,125:575-580
    [108]Pregitzer,K.S.,D.R.Zak,P.S.Curtis,et al.Atmospheric CO_2,Soil Nitrogen and Turnover of Fine Roots.New Phytologist,1995,129:579-585
    [109]Vogt,K.A.,H.Persson.Measuring Growth and Development of Roots.In:Lassoie,J.P.,T.M.Hinckle.(eds).Techniques and Approaches in Forest Tree Ecophysiolgy.Boston:CRC Press.1991:477-501
    [110]Steele,S.J.,S.T.Gower,J.G Vogel,et al.Root Mass,Net Primary Production and Turnover in Aspen,Jack Pine and Black Spruce Forests in Saskatchewan and Manitoba,Canadian Tree Physiology,1997,17:577-587
    [111]Shigo,A.L.Compartmentalization:a Conceptual Framework for understanding How Trees Grow and Defend themselves.Annual Review of Phytopathology,1984,22:189-214
    [112]Vogt,K.A.,C.C.Grier,and D.J.Vogt.Production,Turnover,and Nutrient Dynamics of Above-and Belowground Detritus of World Forests.Advance in Ecological Research,1986,15:303-307
    [113]Keyes,M.R.,C.C.Grier.Above-and Below-Ground Net Productivity in 40-Year-Old Douglas Fir Stands on Low and High Productivity Sites.Canadian Journal of Forest Research,1981,11:599-605
    [114]Hendricks,J.J.,J.D.Aber,et al.Nitrogen Controls on Fine Root Substrate Quality in Temperate Forest Ecosystems.Ecosystems,2000,3:57-69
    [115]Nadelhoffer,K.J.the Potential Effects of Nitrogen Deposition on Fine Root Production in Forest Ecosystems.New Phytologist,2000,147:131-139
    [116]Ruess,R.W,K.V.Cleve,J.Yarie,et al.Contributions of Fine Root Production and Turnover to the Carbon and Nitrogen Cycling in Taiga Forests of the Alaskan Interior.Canadian Journal of Forest Research,1996,26:1326-1336
    [117]Raich,J.W.,K.J.Nadelhoffer.Below Ground Carbon Allocation in Forest Ecosystems:Global Trends.Ecology,1989,70(5):1346-1354
    [118]Meier,C.E.,C.C.Grier,and D.W.Cole.Below-and Above-Ground N and P Use by Abies amabilis Stands.Ecology,1985,66:1928-1942.
    [119]Aber,J.D.,J.M.Melillo,K.J.Nadelhoffer,et al.Fine Root Turnover in Forest Ecosystems in Relation to Quality and Form of Nitrogen Availability:a Comparison of Two Methods.Oecologia,1985,66:317-321
    [120]Grier,C.C,K.A.Vogt,M.R.Keyes,et al.Biomass Distribution and Above-and Belowground Production in Young and Mature Abies Amabilis Zone Ecosystems of the Washington Cascades.Canadian Journal of Forest Research,1981,11:155-167
    [121]孙启祥,张建锋.林木根系衰老研究评述.水土保持研究,2007,14(1):72-75
    [122]吴楚,王政权,范志强.树木根系衰老研究的意义与现状.应用生态学报,2004,15(7):1276-1280
    [123]张建锋,周金星.林木根系衰老研究方法与机制.生态环境,2006,15(2):405-410
    [124]Hendrick,R.L.,K.S.Pregitzer.Parterns of Fine Root Mortality in Two Sugar Maple Forests.Nature,1993,361:59-61
    [125]Lijeroth,E.,T.Bryngelsson.Dna Fragmentation in Cereal Roots Indicative of Programmed Root Cortical Cell Death.Physiological Plant,2001,111:365-372
    [126]徐文静,王政权,范志强,等.遮荫对水曲柳幼苗细根衰老的影.植物生态学报,2006,30(1):104-111
    [127]Molisch,H.Die Lebensdauer Der Pflanzen,Trans.in ENG,1928.
    [128]Lancaster.The Longevity of Plants.The Science Press.1938
    [129]武维华.植物生理学.北京:科学出版社.2002:401-402
    [130]沈成国.植物衰老生理与分子生物学.北京:中国农业出版社.2002:3-4
    [131]Gan,S.,R.M.Amasino.Making Sense of Senescence.Molecular Genetic Regulation and Manipulation of Leaf Senescence.Plant Physiology,1997,113:313-319
    [132]Scott,N.S.,J.V.Possingham.Chloroplast DNA in Expanding Spinach Leaves.Journal of Experimental Botany,1980,31:1081-1092
    [133]Lawrence,M.E.,J.V.Possingham.Microspectrofluorometer Measurement of Chloroplast DNA in Dividing and Expanding Leaf Cells of Spinacia Loeracea.Plant Physiology,1986,81:708-710
    [134]Sodergen,S.Kawano,S.Tano,and T.Kuroiwa.Degradation of Chloroplast DNA in Second Leaves of Rice before Leaf Yellowing.Protoplasma.1991,160:89-98
    [135]Simconovae,Sikora,M.Charzynska,and A.Mostowska.Aspects of Programmed Cell Death during Leaf Senescence of Mono-and Dicot-Yledonous Plants.Protoplasma,2000,214:93-101
    [136]Jing,C.,Feng J.et al..Time-Course of Programmed Cell Death during Leaf Senescence in Eucommia ulmoides.2003,116:7-12
    [137]Vicky Buchanan-Wollaston,Simon Earl,Elizabeth Harrison,et al..The Molecular Analysis of Leaf Senescence-a Genomics Approach.Plant Biotechnology Journal,2003,1:3-22
    [138]李金才,等.孕穗期渍水对冬小麦根系衰老的影响.应用生态学报,2000,11(5):723-726
    [139]Vogt,K.A.,R.L.Edmonds,and C.C.Grier.Seasonal Changes in Biomass and Vertical Distribution of Mycorrhizal and Fibrous-Textured Conifer Fine Roots in 23 and 180years Old Subalpine Abies Amabilis Stands.Canadian Journal of Forest Research,1981, 11:223-229
    [140]Vogt,K.A.,C.C.Grier,C.E.Meier,and R.L.Edmonds.Mycorrhizal Role in Net Primary Production and Nutrient Cycling in Abies amabilis Ecosystems in Western Washington.Ecology.1982,63:370-380
    [141]Vogt,K.A.,R.Dahlgren,F.Ugolini,et al..Fe,Ca,Mg,K,Mn,Zn and P in Above and Below Ground Biomass.Ⅰ.Abies amabilis and Tsuga mertensiana.Biogeochemistry,1987,4:277-294
    [142]Krasny,M.Establishment of Four Salicacease Species on River Bars Along the Tanana River,Alaska.Ph.D.Dissertation,University of Washington,Seattle,WA.1986
    [143]Raynal,D.J.,J.D.Joslin,F.C.Thornton,et al..Sensitivity of Tree Seedlings to Aluminum:Ⅲ.Red Spruce and Loblolly Pine.Journal of Environment Quality,1990,19:180-187
    [144]杨宏顺,冯国平,李云飞.嫩茎花椰菜在不同气调贮藏下叶绿素和维生素C的降解及活化能研究.农业工程学报,2004,20(4):172-175
    [145]H(o|¨)rtensteiner,S.,and U.Feller.Nitrogen Metabolism and Remobilization during Senescence.Journal of Experimental Botany,2002,53,927-937
    [146]杨长明,杨林章.不同养分模式对水稻叶片衰老的影响研究.中国生态农业学报,2003,1:14-16
    [147]华春,王仁雷.杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化.西北植物学报,2003,23(3):406-409
    [148]李植林,梅慧生.燕麦叶片衰老与活性氧代谢的关系.植物生理学报,1989,15(1):6-12
    [149]陈少裕.甘蔗叶片衰老与膜脂过氧化.作物学报,1992,18(2):111-115
    [150]Takamiya,K.I.,Tsuchiya T.,and Ohta H.Degradation Pathway(s) of Chlorophyll:What Has Gene Cloning Revealed? Trends of Plant Science.2000,10,426-431
    [151]Majeran,W.,F.A.Wollmann,and O.Vallon.Evidence for a Role of CLpP in the Degradation of the Chloroplast Cytochrome b6f Complex.Plant Cell,2000,12,137-149
    [152]Shikanai,T.,Shimizu K.,Ueda K.,Nishimura Y.,Kuroiwaa T.,and Hashimoto T.The Chloroplast Clpp Gene,Encoding for a Proteolytic Subunit of ATP-Dependent Protease,Is Indispensable for Chloroplast Development in tobacco.Plant Cell Physiology,2001,42:264-273
    [153]Yamada,K.,Matsushima R.,Nishimura M.,and Hara-Nishimura I.A Slow Maturation of a Cysteine Protease with a Granulin Domain in the Vacuoles of Senescing Arabidopsis Leaves.Plant Physiology.2001,127:1626-1634
    [154]Woo,H.R.,Chung,K.M.,J.H.Park,Oh S.A.,Ahn T.,Hong S.H.,Jang S.K.and Nam H.G.ORE9,an F-Box ProteinThat Regulates Leaf Senescence in Arabidopsis.Plant Cell,2001,13:1779-1790
    [155]姜冬,等.渍水对小麦扬麦5号旗叶及根系衰老的影响.应用生态学报,2002,13(11):1519-1521
    [156]朱云集,马元喜,王晨阳.土壤水分胁迫下小麦根系的形态解剖学和超微结构观察.河南农业大学学报,1994,28(3):224-229
    [157]严建民,等.渍水对小麦叶片RUBP酶活性的影响.江苏农业学报,1993,9(2):17-21
    [158]朱旭彤,胡业正,马平福,等.小麦渍水抗性研究Ⅰ:渍水对小麦影响的重要时期.湖北农业科学,1993,(9):3-7
    [159]Eugenio,L.,Coelho,Dr.Dan.Root Distribution and Water Uptake Patterns of Corn under Surface and Subsurface Drip Irrigation.Plant and Soil,1999,206:123-126.
    [160]Goodman,A.M.,A.P.Eends.The Effects of Soil Bulk Density on the Morphology and Anchorage Mechanics of the Root Systems of Sunflower and Maize.Annals of Botany,1999,83:293-302.
    [161]Laboski,C.A.M.Soil Strength and Water Content Influences on Corn Root Distribution in a Sandy Soil.Plant and Soil,1998,203:239-247.
    [162]Fraitas P.L.,De Zobel R.W.,Snyder V.A..Corn Root Growth in Soil Columns with Artificially Constructed Aggregates.Crop Science,1999,39:725-730.
    [163]李潮海,李胜利,王群,等.不同质地土壤对玉米根系生长动态的影响,中国农业科学,2004,37(9):134-1341
    [164]宁顺斌,宋运淳,王玲,刘立华.低温胁迫诱导玉米根尖细胞凋亡的形态和生化证据.植物生理学报,2000,26(3):189-194
    [165]Schmidt,A.,K.J.Kunert.Lipid Peroxidation in Higher Plants.Plant Physiology,1986,82:700-702
    [166]Kunert,K.J.,P.Boger.The Diphenyl Ether Oxyfluorfen:Action of Antioxidants.Journal of Agricultural Food Chemestry,1984,32:725-728
    [167]Kunert,K.J.,C.Homrighausen,H.Bohme,and P.Boger.Oxyfluorfen and Lipid Peroxidation:Protein Damager as a Phytotoxic Consequence.Weed Science,1985,33:766-770
    [168]Summerfield,F.W.,A.L.Tappel.VitaminEprotects Against Methyl Ethyl Ketone Peroxide-induced Peroxoddative Damage to Rat BrainDNA.Mutation Research,1984,126:113-120
    [169]Borochov,A.,W.R.Woodson.Physiology and Biochemistry of Flower Petal Senescence.Horticultural Reviews,1989,11:15-43
    [170]Woltering,E,J.,W.G.Van Doorn.Role of Ethylene in Senescence of Petals Morphological and Taxonomical Relationships.Journal of Experimental Botany,1988,39:1605-1616
    [171]Van Doorn,W.G.,A.Vojinovic.Petal Zbscission in Rose Flowers:Effects of Water Potential,Light Intensity and Light Quality.American Journal of Botany,1996,78:619-623
    [172]Paulin,A.New Strategies to Control Cut Flowers Senescence Evolution.Acta Horticulturae,1992,307:189-202
    [173]高勇,吴绍锦.月季切花瓶插期生理变化与衰老关系的研究.园艺学报,1990,(1):71-75
    [174]刘雅莉,王飞.百合花不同发育期生理变化与衰老关系的研究.西北农业大学学报,2000,28(1):109-112
    [175]Woodson,W.R.Changes in Protein and mRNA Populations during the Senescence of Carnation Petals.Plant Physiology,1987,71:495-502
    [176]Kelly,M.O.,P.J.Davies.The Control of Whole Plant Senescence.CRC Critical Reviews in Plant Sciences,1988,7:139-173
    [177]Nooden,L.D.,J.J.Guiamet,and I.John.Senescence Mechanisms.Plant Physiology,1997,101:746-753
    [178]Delorme,V.G.R.,P.F.Mccabe,D.J.Kim,and C.J.Leaver.A Matrix Metaloproteinases Gene Is Expressed at the Boundary of Senescence and Programmed Cell Death in Cucumber.Plant Physiology,2000,123:917-927
    [179]Buchanan-Wollaston,V.,S.Earl,E.Harrison,E.Mathas,S.Navabpour,T.Page,and D.Pink.The Molecular Analysis of Leaf Senescence-a Genomics Approach.Plant Biotechnology Journal,2003,1:3-22
    [180]Richberg,M.H.,D.H.Aviv,J.L.Dangl.Dead Cells Do Tell Tales.Current Opinion in Plant Biology,1998,1:480-485
    [181]Yen,C.H.,Yang C.H.Evidence for Programmed Cell Death during Leaf Senescence in Plants.Plant Cell Physiology,1998,39:922-927
    [182]Simeonova,E.,Sikora A.,M.Charzynska,and A.Mostowska.Aspects of Programmed Cell Death during Leaf Senescence of Mono-and Dico-Tyledonous Plants.Protoplasma,2000,214:93-101
    [183]Callard,D.,M.Alexos,L.Mazzolini,C.O.Ostberg,and R.J.Rodriguez.Novel Molecular Markers for Late Phases of the Growth Cycle of Arabidopsis Thaliana Cell-Suspension Cultures Are Expressed during Organ Senescence.Plant Physiology,1996,112:705-715
    [184]Swidzinski,J.A.,L.J.Sweetlove,and C.J.Leaver.A Custom Microarray Analysis of Gene Expression during Programmed Cell Death in Arabidopsis Thaliana.The Plant Journal,2002,30:431-446
    [185]Cheng,W.,D.C.Coleman,and J.E.Box.Root Dynamics,Production and Distribution in Agroecosystems on the Geogia Piedmont Using Minirhizotrons.Journal of Applied Ecology,1990,27:592-604
    [186]Box,J.E.,E.L.Ramseur.Minirhizotron Wheat Root Data:Comparisons to Soil Core Data.Agronomy Journal,1993,85:1058-1060
    [187]Fisher,M.C.T.,D.M.Eissenstat,and J.P.Lynch.Lack of Evidence for Programmed Root Senescence in Common Bean(Phaseolus vulgaris) Grown at Different Levels of Phosphorus Supply.New Phytologist,2002,153:63-71
    [188]Loeffier,M.,G.Kroemer.The Mitochondrion in Cell Death Control:Certainties and Incognita.Experimental Cell Research,2000,256(1):19-26
    [189]Zamzami,N.,S.A.Susin,and P.Marchetti,et al..Mitochondrial Control of Nuclear Apoptosis.The Journal of Experimental Medicine,1996,183(4):1533-1544.
    [190]Martin,P.H.,G.J.Nabuurs,M.Aubinet,T Karjalainen,E.I.Vine,J.Kinsman,and L.S.Heath.Carbon Sinks in Temperate Forests.Annual Review of Energy and the Environment,2001,26:435-465
    [191]Evans,J.R.Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants.Oecologiea,1989,78:9-19
    [192]Parry,M.A.J.,J.E.Loveland,and P.J.Andralojc.Regulation of Rubisco.In:Plant Carbohydrate Biochemistry.Bryant,J.A.,M.M.Burrell,N.J.Kruger(eds).BIOS Scientific Publishers,Oxford.1999:127-145
    [193]Caldwell,M.M.Plant Architecture and Resource Competition.Potential and Limintations of Ecosystem Analysis(eds.Schulze E.DI and Zwolfer H.).New York:Springer-Verlag.1987:164-179
    [194]Lambers,H.,F.S.ChapinⅢ,and T.Pons.Plant Physiological Ecology.Berlin:Pringer Verlag.1998
    [195]廖利平,陈楚莹,张家武,等.杉木、火力楠纯林及混交林细根周转的研究.应用生态学报,1995,6(1):7-10
    [196]李培芝,范世华,王力华,许思明.杨树细根及草根的生产力与周转的研究.应用生态学报,2001,12(6):829-832
    [197]Kaetterer,T.,A.Fabiao,M.Madeira and C.Ribeiro.Fine Root Dynamics,Soil Moisture and Soil Carbon Content in Eucalyptus Globules Plantation under Different Irrigation and Fertilization Regimes.Forest Ecology and Management,1995,74:1-12.
    [198]Haynes,B.E.,S.T.Gower.Belowground Carbon Allocation in Unfertilized and Fertilized Red Pine Plantations in Northern Wisconsin.Tree Physiology,1995,15:317-325
    [199]Hendricks,J.J.,K.J.Nadelhoffer,and J.D.Aber.Assessing the Role of Fine Roots in Carbon and Nutrient Cycling.Trends in Ecology and Evolution,1993,8:174-178
    [200]Hendrick,R.L.,K.S.Pregitzer.Temporal and Depth related Patterns of Fine root Dynamics in Northern Hardwood Forests.Journal of Ecology,1996,84:167-176
    [201]孙玥,全先奎,贾淑霞,等.施用氮肥对落叶松人工林一级根外生菌根侵染及形态的影响.应用生态学报,2007,18(8):1727-1732
    [202]刘穆,种子植物形态解剖学导论.北京:科学出版社.2001
    [203]Eissenstat,D.M.,D.S.Achor.Anatomical Characteristics of Roots of Citrus Rootstocks That Vary in Specific Root Length.New Phytologist,1999,141,309-321
    [204]Tierney,G.L.,T.J.Fahey.Fine Root Turnover in a Northern Hardwood Forest:a Direct Comparison of the Radiocarbon and Minirhizotron Methods.Canadian Journal of Forest Research,2002,32,1692-1697
    [205]Schiefelbein,J.W.,P.N.Benfey.The Development of Plant Root:New Approaches to Underground Problem.Plant Cell,1991,3:1147-1154
    [206]Hodge,A.The Plastic Plant:Root Responses to Heterogeneous Supplies of Nutrients.New Phytologist,2004,162:9-24
    [207]Hutchings,M.J.Foraging in Plants:the Role of Morphological Plasticity in Resource Acquisition.Advance Ecology Research,1994,25:159-238
    [208]Williamson,L.C.,S.P.Ribrioux,A.H.Fitter,et al..Phosphate Availability Regulates Root System Architecture in Arabidopsis.Plat Physiology,2001,126:875-882
    [209]Sharp R.E.,W.J.Davies.Root Growth and Water Uptake Maize Plants in Drying Soil.Journal of Experimental Botany,1985,36:1441-1456
    [210]Richards,D.,J.A.Considine.Suberization and Browning of Grapevine Roots.In:Brouwer,R.,Editor.Structure and Function of Plant Root.1981:111-115
    [211]Bartsch,N.Responses of Root Systems of Young Pinus sylvestris and Picea abies Plants to Water Deficits and Soil Acidity.Canadian Journal of Forest Research,1987,17:829-834
    [212]Konopka Bohdan,Noguchi Kyotaro,Sakata Tadashi et al..Fine Root Dynamics in a Japanese Cedar(Cryptomeria japonica)Plantation Throughout the Growing Season Forest Ecology and Management,2006,225(1-3):278-286
    [213]王娟,李德全,谷令坤.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应.西北植物学报,2002,22(2):285-290
    [214]魏道智,宁书菊,林文雄.小麦根系活力变化与叶片衰老的研究.应用生态学报,2004,15(9):1565-1569
    [215]Hendricks,J.J.,R.L.Hendrick,C.A.Wilson,et al..Assessing the Patterns and Controls of Fine Root Dynamics:an Empirical Test and Methodological Review.Journal of Ecology,2006(94):40-57
    [216]Bryla,D.R.,T.J.Bouma,and D.M.Eissenstat.Root Respiration in Citrus Acclimates to Temperature and Slows during Drought.Plant,Cell and Environment,1997,20(11):1411-1420
    [217]袁晓华,杨中汉.植物生理生化实验.北京:高等教育出版社.1983
    [218]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2001
    [219]Giannopolitis,C.N.,S.K.Ries.Superoxide Dismutase Ⅱ.Purification and Quantitative Relationship with Water Soluble Protein in Seedlings.Plant Physiology,1977(59):315-316
    [220]Cakmak,I.,H.Marschner.Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase Ascorbate Peroxides,and Glutathione Reductase in Bean Leaves.Plant Physiology,1992(98):1222-1227
    [221]石岩,位东斌,于振文.施肥深度对旱地小麦花后根系衰老的影响.应用生态学报,2001,12(4):573-575
    [222]陈明,沈文飚,阮海华,等.一氧化氮对盐胁迫下小麦幼苗根生长和氧化损伤的影响.植物生理与分子生物学报,2004,30(5):569-576
    [223]Hartung,W.,A.Sauter,and E.Hose.Abscisic Acid in the Xylem:Where Does It Come from and Where Does It Go? Journal of Experimental Botany,2002,(27):27-32
    [224]李清芳,马成仓,尚启亮.干旱胁迫下硅对玉米光合作用和保护酶的影响.应用生态学报,2007,18(3):531-536
    [225]孙国荣,张睿,姜丽芬,等.干旱胁迫下白桦幼苗叶片的水分代谢与部分渗透调节物质的变化.植物研究,2001,21(3):413-415
    [226]韩蕊莲,李丽霞,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究.西北植物学报,2003,23(1):23-27
    [227]宋纯鹏.植物衰老生物学.北京:北京大学出版社,1998
    [228]Katsuhara M,Kawasaki T.Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots.Plant Cell Physiology,1996,37(2):169-173
    [229]Pan JW,Zhu MY,Chen H.Aluminum-induced cell death in root-tip cells of barley.Environmental Experiment Botony,2001(46):71-79
    [230]Brundrett,M.C.Coevolution of Roots and Mycorrhizas of Land Plants.New Phytologist,2002,154:275-304
    [231]杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,8(1):8-15
    [232]Nanda-Kumar,P.B.A.,V.Dushenkov,H.Motto,and I.Raskin.Phytoextraction:the Use of Plants to Remove Heavy Metals from Soils.Environmental Science and Technology,1995,29(5):1232-1238
    [233]Kossiak,R.M.,M.A.Chamberlin,R.G.Palmer,B.A.Bowen.Programmed Cell Death in the Root Cortex of Soybean Root.Necrosis Mutants.The Plant Journal,1997,11:729-745
    [234]Colombo,L.,C.Burani.The Influence of Age of Acquisition,Root Frequency,and Context Availability in Processing Nouns and Verbs.Brainand Language,2002,81(1-3):398-411
    [235]Chiatante,D.,M.Levi and E.Sparvoli.Arrest of the Cell Cycle Induced by Dibutyryl-Camp and Sodium Butyrate in Root Meristems of Lettuce.Caryologia,1986,39,143-150.
    [236]Halestrap A.P.,J.P.Gillespie,A.O'toole,E.Doran Mitochondria and Cell Death:a Pore Way to Die? In:Bryant,J.A.,S.G.Hughes,J.M.Garland(eds).Programmed Cell Death in Animals and Plants.Oxford:BIOS Scientific Publishers.2000:149-162
    [237]Reed,J.C.,Green D.R.Remodeling for Demolition:Changes in Mitochondrial Ultrastructure during Apoptosis.Molecular Cell,2002,9:1-9
    [238]徐建兴.呼吸链电子漏在细胞凋亡中的作用.生物化学与生物物理进展,2003,30(4):655-657
    [239]Elstner,E.F.Oxygen Activation and Oxygen toxicity.Annual Review of Plant Physiology,1982,33:73-96
    [240]Wang,X.D.the Expanding Role of Mitochondria in Apoptosis.Genes and Development,2001,15:2922-2933
    [241]Puntarulo,S.,R.Ksanchez.,and Akboveris.Hydrogen Peroxide Metabolism in Soybean Embryonic Axes at the onset of Germination.Plant Physiology.1988,86:626-630.
    [242]Smith,M.M.,M.J.Hodson,H.(O|¨)pik,and S.J.Wainwright.Salt Induced Ultrastructural Damage to Mitochondria in Root Tips of a Salt-Sensitive Ecotype of Agrostis stolonifera.Journal of Experimental Botany,1982,33(136):886-895
    [243]Yamamoto,Y.,Kobayashi Y.,S.R.Devi,Rikiishi S.,and Matsumoto H.Aluminum toxicity Is Associated with Mitochondrial Dysfunction and the Production of Reactive Oxygen Species in Plant Cells.Plant Physiology,2002,128:63-72
    [244]罗银玲,宋松泉.植物线粒体、活性氧与信号转导.西北植物学报,2004,(24):737-747
    [245]马怀宇,杨洪强.外源H_2O_2对湖北海棠根系线粒体膜透性和细胞核DNA的影响.植物生理与分子生物学学报,2006,32(5):551-556
    [246]Pirtro a,S.(北京农业大学植物生理学教研组译).植物生理学研究法.北京:科学出版社,1981:191-204
    [247]金超芳,沈生荣,赵保路.EGCG对线粒体PT孔开放及Ca~(2+)转运的影响.茶叶科学,2002,22(1):14-18
    [248]Cakmak,I.,H.Marschner.Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase,Ascrobate Peroxidase,and Glutathione Reductase in Bean Leaves.Plant Physiology,1992,98:1222-1227
    [249]Patterson,B.D.,E.A.Mackae,and I.B.Ferguson.Estimation of Hydrogen Peroxide in Plant Extracts Using Titanium(Ⅳ).Analatical Biochemistry,1984,139:487-492
    [250]Sun,Y.,Zhao Y.,Hong X.,and Zhai Z.Cytochromec Release and Caspase Activation during Menadione-induced Apoptosis in Plants.FEBS Lett 1999,462:317-321
    [251]Halestrap,A.P.,J.P.Gillespie,A.O'toole,and E.Doran.Mitochondria and Cell Death:a Pore Way to Die? In:Bryant,J.A.,S.G.Hughes,J.M.Garland(eds).Programmed Cell Death in Animals and Plants.Oxford:BIOS Scientific Publishers,2000149-162
    [252]Halestrap,A.P.,E.Doran,J.P.Gillespie,et al..Mitochondria and Cell Death.Biochemical Society Transactions,2000,28(2):170-177.
    [253]何虎翼,何龙飞,黎晓峰,顾明华.硝普钠对铝胁迫下黑麦和小麦根尖线粒体功能的影响.植物生理与分子生物学学报,2006,32(2):239-244
    [254]Boscolo,P.R.S.,M.Menossi,and R.A.Jorge.Aluminum-induced Oxidative Stress in Maize.Phytochemistry,2003,62:181-189.
    [255]苏金为,王湘平.镉诱导的茶苗膜脂过氧化和细胞程序性死亡.植物生理与分子生物学学报,2002,28(4):292-298.
    [256]章静波,黄东阳,方瑾.细胞生物学实验技术.北京:化学工业出版社.2006
    [257]Doyle,J.J.a Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue.Phytochem Bull,1987,19:11-15.
    [258]翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社.2002
    [259]谭冬梅,许雪锋,李天忠,王忆,韩振海.干旱胁迫诱导新疆野苹果细胞程序性死亡的细胞形态学研究.华北农学报,2007,22(1):50-55
    [260]Gavrieli,Y.,Y.Sherman,and S.A.Ben Sasson.Identification of Programmed Cell Death in situ Via Specific Labeling of Nuclear DNA Fragmentation.Journal of Cell Biology,1992,119:493-501
    [261]Gorczyca,W.,J.P.Gong,and Z.Darzynkiewicz.Detection of DNA Strand Breaks in Individual Apoptotic Cells by the in situ Terminal Deoxynucleotidyl Transferase and Nick Translation Assay.Cancer Research,1993:53-55
    [262]Tornusciolo,D.R.Z.,R.E.Schmidt,and K.A.Roth.Simultaneous Detection of TDT-Mediated Dutp-Biotin Nick End-Labeling(TUNEL)-Positive Cells and Multiple Immunohistochemical Markers in Single Tissue Sections.Biotechniques,1995,19:800-805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700