用户名: 密码: 验证码:
高胆固醇血症大鼠心肌组织易损性增加的机制——心肌细胞膜流动性,髓过氧化物酶和部分G蛋白偶联受体自身抗体的可能作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     高胆固醇血症(hypercholesterolemia, HC)及其随后发生的动脉粥样硬化,是冠心病(coronary atherosclerotic heart disease, CAHD)时引起心肌缺血的始动因素之一,是缺血性心脏病(ischemic heart disease, IHD)最重要的危险因素之一,通过促进脂质堆积并进一步形成动脉粥样斑块、促进粥样硬化病变环绕造成冠脉痉挛、以及增加活性氧和活性氮产物并导致内皮机能障碍等机制在心肌缺血早期和缺血损伤的发展过程中发挥重要作用。目前,针对HC诱发的CAHD和心肌缺血损伤,临床治疗措施主要在于恢复缺血心肌血液灌流(再灌注)的同时降低血浆胆固醇,但是治疗效果明显低于无高胆固醇血症的心肌缺血患者。同时,临床流行病学研究提示,HC并发心肌缺血患者治疗过程中再灌注(心肌缺血/再灌注, myocardial ischemia/reperfusion, MI/R)损伤程度明显高于无HC心肌缺血患者,提示HC提高了心肌细胞对缺血/再灌注损伤的易感性,但具体机制复杂,仍有许多基本问题未被解决。
     膜流动性是细胞膜脂质双分子层重要的动力学特征,在细胞的信号转导、物质运输、离子交换、能量传递以及酶活动性大小等方面起着重要的作用。稳定的膜流动性对于细胞内环境的维持和正常细胞功能的发挥至关重要,因此膜流动性的变化影响着许多疾病的发生和发展。在病理状态下,往往在细胞的一般形态学和生物学改变之前就能检测出膜流动性的改变;在治疗过程中,膜流动性趋向于正常的变化是反映细胞早期损伤、研究疾病过程的高灵敏度的分析指标。有研究发现,HC时红细胞膜的流动性降低,进而导致红细胞的功能改变。这些研究提示,HC时,由于脂代谢紊乱,有可能通过影响细胞膜脂类物质的比例,进而影响细胞膜的流动性。由于心肌细胞膜与红细胞膜具有同样的结构基础,那么当HC发生时,是否也会影响心肌细胞膜的流动性,进而影响心肌细胞跨膜信号的转导呢?如果这一可能存在,那么心肌细胞膜流动性的变化是否与HC致心肌细胞易损性增加有关呢?有关这些内容的研究,有助于我们从膜流动性的角度,分析HC致心肌对缺血/再灌注损伤易感性增加的机制。
     髓过氧化物酶(myeloperoxidase, MPO)主要表达于中性粒细胞的过氧化物酶,是一种重要的炎性介质,也是CAHD发生发展的独立危险因子。MPO可以通过刺激血管内皮细胞凋亡,降解内皮源性舒张因子NO,降低NO生物学活性,引起内皮机能障碍,并增加粥样硬化斑块的易损性等作用促进心肌缺血的发展;活化和渗出的中性粒细胞释放的MPO催化同时由中性粒细胞和损伤组织释放的H2O2生成毒剂次氯酸和其他氧化剂(如3-氯化酪氨酸、硝基酪氨酸等),也可以导致心血管系统的氧化损伤;此外,有研究发现,在MI/R时,MPO大量聚集在血管内皮细胞与血管平滑肌之间的基底膜。我们的前期研究也发现,在MI/R时,渗出到心肌细胞的中性粒细胞发生了脱颗粒,将其中的MPO释放到心肌细胞浆中。以上研究强烈提示在MI/R时,MPO发生了游走和位移,但对其意义的解释还缺乏足够的证据。因此,MI/R时,释放入心肌细胞的MPO是否可以直接导致心肌细胞的损伤作用,是否参与HC所致的缺血/再灌注心肌易损性增加?如果是,又是如何发挥作用的,都有待于深入探究。而对这些问题的研究有助于我们进一步揭示HC缺血/再灌注心肌易损性增加的机制。
     上世纪90年代以来,在心血管疾病的患者血清中检测到多种G蛋白偶联受体自身抗体,包括α1-肾上腺素受体自身抗体(α1- AA)、β1-肾上腺素受体自身抗体(β1-AA)、β3-肾上腺素受体自身抗体(β3-AA)、M2-胆碱受体自身抗体(M2-AA)和血管紧张素Ⅱ1型受体自身抗体(AT1-AA)等。研究证实,这些自身抗体都具有类激动剂样的作用,如:α1-AA长期存在可引起外周阻力升高,并导致心肌重构;β1-AA使心脏跳动频率增加,心肌收缩力增强,长期作用可发生肌原纤维的灶状溶解,诱导心肌重构发生,最终造成心功能下降;M2-AA使线粒体发生空泡样变性,导致心肌收缩力降低。这些研究提示,G蛋白偶联受体自身抗体在心血管疾病的发生发展过程中可能发挥重要作用。而HC病理发展过程中心肌超微结构有所改变并伴有血清补体升高等免疫反应,提示HC有可能诱发免疫系统功能紊乱。那么,这种免疫系统的功能紊乱,是否也会诱导G蛋白偶联受体自身抗体的产生?如果可以,这些自身抗体极有可能促使HC心肌易损性增加,进而加重心脏结构和功能的进一步恶化。因此,探查HC是否诱发G蛋白偶联受体自身抗体的产生,在心血管疾病的研究中是不容忽视的。
     综上所述,本研究拟在食源性HC大鼠模型的基础上,探讨心肌细胞膜流动性、MPO和部分G蛋白偶联受体自身抗体在HC心肌易损性增加中的作用及其部分相关机制。
     第一部分高胆固醇血症诱发大鼠心肌细胞膜流动性降低
     目的
     本部分实验在食源性HC大鼠模型上,给予吡格列酮(Pioglitazone, PIO)干预,观察并分析HC大鼠心肌细胞膜流动性和心肌损伤的变化,探讨心肌细胞膜流动性在HC大鼠心肌易损性增加中的作用及其病理机制。
     材料与方法
     1.材料
     健康Wistar远交群大鼠,4~5 weeks,体重110±10 g,雄性。
     2.实验分组
     (1)食源性HC大鼠模型分组
     ①普通饮食大鼠组:普通饲料饲养10周;②Vehicle +高胆固醇饮食组:高胆固醇饮食饲养10周,后4周同时用色拉油(溶剂Vehicle: 0.5 ml/只)灌胃;③PIO +高胆固醇饮食组:高胆固醇饮食饲养10周,后4周同时用PIO(溶于色拉油: 10.00mg/kg?d)灌胃。
     (2)在体大鼠心脏局部缺血/再灌注后心肌梗塞面积测定的实验分组
     ①伪手术组:仅在冠状动脉左前降支(Left Anterior Descending, LAD)下穿线,不结扎,持续24 h;②缺血/再灌注+普通饮食大鼠组:可逆性结扎LAD,心肌缺血30 min,再灌注24 h;③缺血/再灌注+ Vehicle+高胆固醇饮食组:可逆性结扎LAD,心肌缺血30 min,再灌注24 h;④缺血/再灌注+ PIO+高胆固醇饮食组:可逆性结扎LAD,心肌缺血30 min,再灌注24 h。
     3.方法
     (1)实验模型的建立及标本的留取
     ①食源性HC大鼠模型的建立及标本留取;②大鼠在体颈总动脉插管及标本留取;③单个心肌细胞的分离及标本留取;④大鼠在体心脏局部缺血/再灌注模型的建立及标本留取。
     (2)检测指标的测定
     ①大鼠空腹血清总胆固醇(Total Cholesterol, TC)、甘油三酯(Triglyceride, TG)和低密度脂蛋白-胆固醇(Low Density Lipoprotein Cholesterol, LDL-cho)的测定;②心功能测定;③心肌细胞膜Na+-K+-ATPase活性的测定;④心肌细胞膜胆固醇含量、磷脂含量和胆固醇/磷脂比值(C/P)的测定;⑤心肌细胞膜流动性的测定;⑥心肌组织cAMP含量的测定;⑦大鼠心肌梗塞面积的测定;⑧心肌细胞膜流动性与心功能和缺血/再灌注后心肌梗塞面积的相关性分析。
     结果
     1.高胆固醇饮食后大鼠血脂变化和PIO对HC模型大鼠血脂的影响
     1.1食源性HC大鼠模型的建立
     给予高胆固醇饲料前,大鼠血脂水平无明显差异。高胆固醇饮食6周后,大鼠血脂水平明显升高,且高胆固醇饮食大鼠血清TC,TG和LDL-cho水平明显高于同期普通饮食饲养的大鼠(P<0.01);与0周大鼠血脂水平相比,高胆固醇饮食饲养10周后,大鼠血清血脂水平显著升高(TC: 3.44±0.86 mmol/l vs 1.24±0.26 mmol/l, P<0.01; TG: 1.13±0.34 mmol/l vs. 0.26±0.05 mmol/l, P<0.010; LDL-cho: 1.66±0.55 mmol/l vs 0.45±0.14 mmol/l, P<0.01),且较同期普通饮食大鼠显著升高(P<0.01)。说明食源性高胆固醇血症大鼠模型建立成功。
     1.2 PIO干预后,HC大鼠血脂变化
     高胆固醇饮食6周后,给予PIO干预,继续喂以高胆固醇饮食4周,大鼠血清TC,TG和LDL-cho水平较Vehicle高胆固醇饮食大鼠明显下降(TC: 2.16±0.33 mmol/l, P<0.01; TG: 0.59±0.18 mmol/l, P<0.05; LDL-cho: 1.24±0.28 mmol/l, P<0.05)。提示,PIO可以有效的改善HC大鼠血脂水平,纠正脂质紊乱。
     2. HC大鼠心功能恶化,缺血/再灌注后心肌损伤增加
     2.1 HC大鼠心功能障碍
     与普通饮食大鼠相比,高胆固醇饮食大鼠LVSP,+dp/dtmax和-dp/dtmax显著降低(LVSP: 13.64±1.37 Kpa vs. 20.79±2.87 Kpa, P<0.01; +dp/dtmax: 537.43±102.24 Kpa/s vs. 953.38±171.12 Kpa/s, P<0.01; -dp/dtmax: 452.19±88.34 Kpa/s vs. 793.10±112.82 Kpa/s, P<0.01)。
     2.2 HC大鼠缺血/再灌注后心肌梗塞面积增大
     2.2.1危险区面积占左心室面积的百分比(AAR/LV比值)
     以危险区面积占左心室面积的百分比(即AAR/LV比值)作为判别心肌缺血程度的指标,发现各实验组间的AAR/LV均无显著差异(P>0.05),表明各组动物模型的缺血程度大体相同,因而在此实验模型基础之上的实验结果具有可比性
     2.2.2心肌梗塞面积占危险区面积的百分比(AN/AAR比值)
     心肌梗塞面积不同程度的反应了心肌损伤状况以及心肌损伤易感性。高胆固醇血症大鼠心肌梗塞面积占危险区面积的百分比显著高于普通饮食大鼠缺血/再灌注组(56.81±6.45% vs. 35.25±2.52%, P<0.01)。
     以上结果提示,HC可能引起大鼠心功能障碍,尤其是收缩功能受损,并可能进一步导致HC大鼠心肌易损性的升高。
     3. HC对心肌细胞膜的影响
     3.1 HC降低心肌细胞膜Na+-K+-ATPase活性
     Na+-K+-ATPase仅存在于细胞膜,而不存在于细胞器膜,其活性通常作为细胞膜的标志。与普通饮食大鼠相比,HC大鼠Na+-K+-ATPase活性明显降低(5.99±1.69μmol Pi/mgprotein/hour vs. 7.88±1.25μmol Pi/mg protein/hour, P<0.01)。
     3.2 HC大鼠心肌细胞膜流动性降低
     与普通饮食大鼠相比,HC大鼠心肌细胞膜DPH荧光偏振度(P)和微粘度(η)明显升高(P: 0.34±0.07 vs. 0.24±0.05, P<0.01;η: 7.99±1.37 vs. 2.41±0.59, P<0.01),说明HC大鼠心肌细胞膜流动性下降。
     3.3 HC大鼠心肌细胞膜C/P升高
     与普通饮食大鼠相比,HC大鼠心肌细胞膜C/P升高(0.44±0.04 vs. 0.33±0.03, P<0.01)。
     上述结果首先通过Na+-K+-ATPase活性的检测说明了心肌组织提取物为心肌细胞膜,其次发现HC大鼠心肌细胞膜流动性降低以及某些膜蛋白功能活性改变,而这种变化可能是由于HC大鼠心肌细胞膜脂质比例的失调而造成的。
     4. HC降低心肌组织cAMP含量
     为了进一步的阐述HC对心肌细胞易损性的影响,本实验检测了心肌组织cAMP含量,一种膜受体信号通路的下游产物。与普通饮食大鼠相比,HC大鼠心肌组织cAMP含量明显减少(53.77±22.17 pmol/mg protein vs. 127.50±19.72 pmol/mg protein, P<0.01)。进一步提示,HC可能导致心肌功能障碍,并引起心肌易损性升高。
     5. PIO干预HC大鼠后,减轻HC大鼠心肌损伤,改善HC引起的大鼠心肌细胞膜的变化,恢复心肌组织cAMP含量
     5.1 PIO改善HC大鼠心功能
     与单纯的高胆固醇饮食大鼠相比,PIO干预HC大鼠后发挥显著的心血管保护效应,改善大鼠心功能,大鼠心肌收缩功能(LVSP: 20.40±2.83 Kpa, P<0.01; +dp/dtmax : 827.56±172.49 Kpa/s, P<0.01;–dp/dtmax: 684.01±113.43 Kpa/s, P<0.01)有所恢复。
     5.2 PIO减小HC大鼠缺血/再灌注后心肌梗塞面积
     AAR/LV %在各实验组大鼠无统计学差异(P>0.05)。与单纯的高胆固醇饮食大鼠相比,PIO干预HC大鼠后,大鼠缺血/再灌注后心肌梗塞面积明显减小(39.82±2.74, P<0.01)。
     以上结果证实,PIO干预HC大鼠可以改善大鼠心功能,减小大鼠心肌梗塞面积;提示,PIO干预可能减小HC大鼠心肌对损伤的敏感性。
     5.3 PIO增加HC大鼠心肌细胞膜Na+-K+-ATPase活性
     与单纯高胆固醇饮食大鼠相比,PIO干预HC大鼠后,大鼠心肌细胞膜Na+-K+-ATPase活性明显增加(7.03±1.42μmol Pi/mg protein/hour, P<0.01)。
     5.4 PIO改善HC大鼠心肌细胞膜流动性
     与单纯高胆固醇饮食大鼠相比,PIO干预HC大鼠后,大鼠心肌细胞膜荧光偏振度(0.26±0.06, P<0.01)和微粘度(3.29±0.63, P<0.01)显著降低。说明PIO干预后HC大鼠心肌细胞膜流动性明显增加。
     5.5 PIO降低HC大鼠心肌细胞膜C/P
     与单纯高胆固醇饮食大鼠相比,PIO干预HC大鼠后,大鼠心肌细胞膜C/P明显降低(0.40±0.04, P<0.05)。
     以上结果提示,PIO有可能通过改善HC大鼠心肌细胞膜脂质成分来恢复心肌细胞膜流动性,从而改善HC大鼠心肌细胞膜蛋白功能活性和心功能,降低HC大鼠心肌对损伤的敏感性。
     5.6 PIO增加HC大鼠心肌组织cAMP含量
     与单纯高胆固醇饮食大鼠相比,PIO干预HC大鼠后,大鼠心肌组织cAMP含量显著增加(102.05±25.51, P<0.05)。进一步说明,PIO可能在HC大鼠发挥心脏保护作用,减轻HC大鼠心肌对损伤的敏感性。
     6.心肌细胞膜流动性与心功能和缺血/再灌注后心肌梗塞面积具有相关性
     为了更深入的探讨心肌细胞膜流动性的改变在HC大鼠心功能下降和心肌损伤敏感性增加中的作用,以及PIO对HC大鼠心脏的保护效应是否涉及心肌细胞膜流动性,本实验对心肌细胞膜流动性和心功能、缺血/再灌注后心肌梗塞面积进行了相关性分析。
     6.1心肌细胞膜流动性与心肌收缩功能呈正相关
     通过对心肌细胞膜DPH荧光偏振度和心功能(LVSP,+dp/dtmax, -dp/dtmax)之间的直线相关分析,本实验发现心肌收缩功能与心肌细胞膜DPH荧光偏振度之间呈负相关(r=-0.191, P<0.05; r=-0.323, P<0.01; r=- 0.322, P<0.01),说明心肌细胞膜流动性与心肌收缩功能呈正相关。
     6.2心肌细胞膜流动性与缺血/再灌注后心肌梗塞面积呈负相关
     心肌细胞膜DPH荧光偏振度与缺血/再灌注后心肌梗塞面积直线相关分析显示,DPH荧光偏振度和心肌梗塞面积呈正相关(r=0.599, P<0.01)。说明心肌细胞膜流动性与缺血/再灌注后心肌梗塞面积呈负相关。
     以上结果提示,HC诱发的大鼠心功能障碍和心肌损伤易感性增加可能与HC大鼠心肌细胞膜流动性下降有光,而PIO干预也可能通过或部分通过改善和恢复HC大鼠心肌细胞膜流动性来防御HC引起的大鼠心脏机能障碍。
     小结
     1. HC引起大鼠心功能下降,缺血/再灌注后心梗面积明显增大,提示在HC时心肌损伤易感性增加;
     2. HC导致心肌细胞膜Na+-K+-ATPase活性降低,膜流动性下降,膜C/P比值升高,心肌细胞cAMP含量降低,而且膜流动性与心功能和心梗面积具有相关性,提示HC可能通过膜流动性降低,进而心肌细胞跨膜信号转导功能受阻,最终导致HC情况下心功能受神经体液调控能力下降而恶化心肌损伤;
     3. PIO干预显著抑制HC诱导的心肌细胞膜C/P升高和膜流动性的下降以及膜Na+-K+-ATPase活性降低,以及细胞cAMP含量的减少,恢复心功能和减小缺血/再灌注后心梗面积。进一步提示HC大鼠心肌细胞膜流动性改变可能是HC大鼠心肌易损性增加的原因之一。
     第二部分髓过氧化物酶对高胆固醇血症大鼠缺血/再灌注心肌易损性增加的作用
     目的
     本部分实验通过观察HC大鼠缺血/再灌注心肌组织MPO分布和活性的变化,以及这一变化与HC大鼠MI/R损伤之间的关系,说明MPO在HC大鼠缺血/再灌注心肌易损性增加中所发挥的作用并探讨其所涉及的部分损伤机制(如:NO有效利用率的下降等)。
     材料和方法
     1.材料
     (1)健康Wistar远交群大鼠,4~5 weeks体重110±10 g,雄性;(2)H9c2(2-1)细胞株。
     2.实验分组
     (1)食源性HC大鼠模型分组
     ①普通饮食大鼠组:普通饲料饲养10周;②Vehicle +高胆固醇饮食组:高胆固醇饮食饲养10周,第9周开始10% DMSO(0.5 ml/只?d)腹腔注射一周;③ABAH+高胆固醇饮食组:高胆固醇饮食饲养10周,第9周开始ABAH(特异性MPO抑制剂,25.00mg/kg?d)腹腔注射一周。
     (2)在体大鼠心脏局部缺血/再灌注后心肌梗塞面积测定的实验分组
     ①伪手术组:仅在冠状动脉左前降支(Left Anterior Descending, LAD)下穿线,不结扎,持续3/24 h;②缺血/再灌注+普通饮食大鼠组:普通饮食10周末,可逆性结扎LAD,心肌缺血30 min,再灌注3/24 h;③缺血/再灌注+ Vehicle+高胆固醇饮食组:高胆固醇饮食10周末,Vehicle大鼠可逆性结扎LAD,心肌缺血30 min,再灌注3/24 h;④缺血/再灌注+ ABAH +高胆固醇饮食组:高胆固醇饮食10周末,ABAH干预大鼠可逆性结扎LAD,心肌缺血30 min,再灌注3/24 h。
     (3)H9c2(2-1)细胞株实验分组
     ①常氧组(Control):置于95%空气,5%CO2持续培养5 h;②ABAH+常氧组:加入100μΜABAH,摇匀后将细胞置于95%空气,5%CO2持续培养5 h;③缺氧/复氧组(H/R):置于充满95% N2和5% CO2的三气培养箱内缺氧培养3 h,然后再放入充满95%空气、5% CO2的常氧培养箱内复氧2 h;④MPO+缺氧/复氧组:加入0.1 u/ml MPO,摇匀后将细胞置于充满95% N2和5% CO2的三气培养箱内缺氧培养3 h,然后再放入充满95%空气、5% CO2的常氧培养箱内复氧2 h;⑤ABAH+缺氧/复氧组:加入100μΜABAH,摇匀后将细胞置于充满95% N2和5% CO2的三气培养箱内缺氧培养3 h,然后再放入充满95%空气、5% CO2的常氧培养箱内复氧2 h;⑥ABAH+MPO+缺氧/复氧组:先加入100μΜABAH摇匀后将细胞置于95%空气,5%CO2培养30 min后,再加入0.1 u/ml MPO,摇匀后将细胞置于充满95% N2和5% CO2的三气培养箱内缺氧培养3 h,然后再放入充满95%空气、5% CO2的常氧培养箱内复氧2 h。
     3.方法
     (1)实验模型的建立及标本的留取
     ①食源性HC大鼠模型的建立及标本的留取;②大鼠在体心脏局部缺血/再灌注模型的建立及标本的留取;③H9c2(2-1)细胞缺氧/复氧模型的建立及标本的留取。
     (2)检测指标的测定
     ①大鼠空腹血清总胆固醇(Total Cholesterol, TC)、甘油三酯(Triglyceride, TG)和低密度脂蛋白-胆固醇(Low Density Lipoprotein Cholesterol, LDL-cho)的测定;②血清和培养液上清肌酸激酶(Creatine Kinase, CK)含量的测定;③血清和培养液上清乳酸脱氢酶(Lactate Dehydrogenase, LDH)含量的测定;④DNA原位末端缺口标记法(TUNEL)检测心肌细胞凋亡;⑤心肌细胞caspase-3相对活性检测;⑥大鼠缺血/再灌注后心肌梗塞面积的测定;⑦大鼠心功能监测;⑧免疫组织化学染色检测心肌组织MPO分布;⑨心肌组织MPO活性检测;⑩心肌组织MPO活性与血清CK含量、LDH含量、凋亡指数、caspase-3活性、心肌梗塞面积和心功能的相关性分析;○11心肌组织一氧化氮(nitric oxide, NO)含量测定;○12放射性免疫试剂盒测定心肌组织cGMP含量;○13Western-blot检测心肌组织一氧化氮合酶(nitric oxide synthase, NOS)的蛋白表达;○14实时定量PCR法检测心肌组织NOS的mRNA表达;○15细胞计数Kit-8检测H9c2(2-1)细胞增殖。
     结果
     1.食源性HC大鼠模型的建立
     给予高胆固醇饮食饲养前(0周),各组大鼠的血脂水平无明显差异。高胆固醇饮食饲养10周后,与0周(TC: 1.30±0.32 mmol/L、TG: 0.29±0.16 mmol/L和LDL-cho: 0.39±0.12 mmol/L)和同期普通饮食饲养大鼠(TC; 1.44±0.14 mmol/L、TG: 0.26±0.05 mmol/L和LDL-cho: 0.45±0.14 mmol/L)相比,HC大鼠血脂水平显著升高(TC; 3.01±0.75 mmol/L、P<0.01; TG: 0.88±0.35 mmol/L, P<0.01和LDL-cho: 1.53±0.65 mmol/L, P<0.01),说明食源性HC大鼠模型建立成功。ABAH干预后,与Vehicle组相比血脂水平未发生明显改变。
     2. HC大鼠缺血/再灌注心肌易损性增加
     2.1 HC大鼠MI/R后心肌损伤加重
     2.1.1 HC大鼠MI/R后血清CK含量增加
     与伪手术组相比,MI/R组大鼠血清CK含量明显增高(0.17±0.01 U/ml vs. 0.05±0.02 U/ml, P<0.01)。与普通饮食大鼠MI/R组相比,HC大鼠MI/R组血清CK含量显著升高(0.70±0.08 U/ml, P<0.01)。
     2.1.2 HC大鼠MI/R后血清LDH含量增加
     与伪手术组相比,普通饮食MI/R组大鼠血清LDH含量明显增高(3091.59±33.69 U/L vs. 1854.45±422.97 U/L, P<0.01)。与普通饮食大鼠MI/R组相比,HC大鼠MI/R组血清LDH含量显著升高(3596.18±99.81 U/L, P<0.01)。
     2.2 HC大鼠缺血/再灌注后心肌细胞凋亡增加
     2.2.1 TUNEL检测
     普通饮食大鼠缺血/再灌注危险区心肌组织凋亡阳性核显著增多,凋亡指数较伪手术组显著升高(16.07±1.02% vs. 1.44±0.14%,P<0.01)。与普通饮食缺血/再灌注大鼠相比,HC大鼠缺血/再灌注危险区心肌组织凋亡指数明显升高(22.63±1.02%, P<0.01)。
     2.2.2 caspase-3活性分析
     与伪手术组大鼠相比,普通饮食大鼠缺血/再灌注危险区心肌组织caspase-3活性显著升高(6.66±0.61 vs. 1.00±0.08,P<0.01);HC大鼠缺血/再灌注危险区心肌组织caspase-3活性较普通饮食大鼠明显升高(12.29±0.92,P<0.01)。
     2.3 HC大鼠缺血/再灌注后心肌梗塞面积增加
     各组大鼠危险区面积占左心室面积的百分比(AAR/LV比值)无统计学差异(P>0.05),表明在进行缺血/再灌注实验过程中,各组动物模型的缺血程度大致相当,排除了由此而造成的误差。实验结果显示,与普通饮食大鼠缺血/再灌注组相比,HC大鼠缺血/再灌注后心肌梗塞面积显著增大(56.05±3.91% vs 34.90±2.52%, P<0.01)。
     2.4 HC大鼠MI/R心功能恶化
     大鼠MI/R 3 h末,与伪手术组相比,普通饮食大鼠MI/R组LVSP、±dP/dtmax显著下降(LVSP: 15.12±1.38 Kpa vs. 18.28±3.02 Kpa, P<0.05; +dp/dtmax: 610.43±110.26 Kpa/s vs. 785.22±162.22 Kpa/s, P<0.01; -dp/dtmax: 500.57±116.20 Kpa/s vs. 667.00±234.83 Kpa/s, P<0.05);HC大鼠MI/R组LVSP、±dP/dtmax较普通饮食大鼠降低明显(LVSP: 9.95±1.85 Kpa, P<0.01; +dp/dtmax: 386.43±100.76 Kpa/s, P<0.01; -dp/dtmax: 264.53±98.76 Kpa/s, P<0.01)。
     以上的结果显示,给予MI/R实验干预后,与普通饮食大鼠相比,HC大鼠血清CK含量和LDH含量增加,危险区心肌组织凋亡指数和caspase-3活性升高,心肌梗塞面积增大,心功能(LVSP和±dP/dtmax)降低。这些结果说明,HC大鼠MI/R损伤加重,提示HC大鼠缺血/再灌注心肌易损性增加。
     3. HC大鼠缺血/再灌注心肌组织MPO的变化
     3.1 HC大鼠缺血/再灌注心肌组织MPO活性分析
     与伪手术组相比,MI/R引起普通饮食大鼠缺血/再灌注心肌组织MPO活性显著增加(13.48±4.58 U/g protein vs. 8.29±2.80 U/g protein, P<0.05);HC大鼠缺血/再灌注心肌组织MPO活性进一步升高(19.44±2.35 U/g protein, P<0.05)。
     3.2 HC大鼠缺血/再灌注心肌组织MPO的分布
     大鼠心肌组织MPO免疫组化观察结果显示,心脏局部缺血/再灌注后,大鼠非缺血区心肌组织仅可见少量散在的MPO免疫染色,而在缺血/再灌注区血管组织和心肌组织内可见大量密集的MPO染色。这一结果提示,缺血/再灌注心脏浸润的中性粒细胞释放大量MPO,这些MPO可能通过主动或被动的方式侵入缺血/再灌注心肌细胞,进而通过多种机制引起心肌细胞损伤。
     而且,与普通饮食大鼠相比,HC大鼠缺血/再灌注区心肌组织MPO免疫染色显著增强,这与上述结果显示的HC进一步增加缺血/再灌注心肌组织MPO活性相一致。
     以上结果说明,HC大鼠缺血/再灌注区心肌组织中MPO含量和活性升高,提示MPO可能参与了HC大鼠缺血/再灌注心肌损伤易感性的增加。
     4.缺血/再灌注心肌组织MPO活性与缺血/再灌注心肌损伤之间的相关性分析
     为了探讨MPO是否参与了HC大鼠缺血/再灌注心肌损伤易感性的增加,本实验采用SPSS 13.0软件对有关实验数据进行了以下相关性分析。
     4.1缺血/再灌注心肌组织MPO活性与缺血/再灌注后大鼠血清CK含量和LDH含量呈正相关(CK: r = 0.618 , P<0.01; LDH: r = 0.64, P<0.01)。
     4.2缺血/再灌注心肌组织MPO活性与缺血/再灌注心肌组织凋亡指数和caspase-3活性呈正相关(凋亡指数:r = 0.651, P<0.01; caspase-3: r = 0.619, P<0.01)。
     4.3缺血/再灌注心肌组织MPO活性与缺血/再灌注后心肌梗塞面积呈正相关(r = 0.663, P< 0.01)。
     4.4缺血/再灌注心肌组织MPO活性与大鼠缺血/再灌注后心肌收缩功能(LVSP和±dP/dtmax)呈负相关(LVSP: r = -0.555, P<0.01; +dP/dtmax: r = -0.794, P< 0.01; -dP/dtmax: r =-0.748, P<0.01)。
     以上结果说明,大鼠缺血/再灌注心肌组织MPO活性与HC大鼠缺血/再灌注心脏损伤加重密切相关;提示,HC大鼠缺血/再灌注心肌组织MPO的变化可能与HC大鼠缺血/再灌注心肌易损性的增加有直接关系。
     5. MPO抑制剂干预后,HC大鼠缺血/再灌注心肌组织MPO和心脏损伤的变化
     为了进一步探讨MPO是否参与了HC大鼠MI/R心肌易损性的增加,二者之间是否存在直接作用,本实验应用MPO抑制剂ABAH在体干预HC大鼠,观察相应变化。
     5.1 ABAH对H9c2(2-1)细胞的影响
     ABAH干预后,H9c2(2-1)细胞常氧培养细胞存活率与常氧对照组组相比(0.98±0.01 vs. 1.01±0.05),无统计学差异;给予缺氧/复氧干预后,ABAH组H9c2(2-1)细胞存活率与缺氧/复氧组相比(0.63±0.06 vs. 0.60±0.09),也无统计学意义。说明,ABAH本身对心肌细胞以及给予缺氧/复氧干预后心肌细胞无影响,排除了由药物干预而形成的实验误差。
     5.2 ABAH干预后,HC大鼠缺血/再灌注心肌组织MPO分布和活性的变化
     与HC大鼠MI/R组相比,ABAH干预HC大鼠后,缺血/再灌注心肌组织MPO免疫染色明显减少,MPO活性显著降低(13.66±2.63 U/g protein, P<0.05)。
     5.3 ABAH干预后,HC大鼠缺血/再灌注心肌损伤减轻
     与HC大鼠MI/R组相比,ABAH干预HC大鼠后,缺血/再灌注后血清CK含量(0.31±0.06 U/ml, P<0.01)和LDH含量(3286.65±40.04 U/L, P<0.01)明显减少。
     5.4 ABAH干预后,HC大鼠缺血/再灌注心肌细胞凋亡减轻
     与HC大鼠MI/R组相比,ABAH干预HC大鼠后,缺血/再灌注心肌组织细胞凋亡指数(18.55±1.29%, P<0.01)和caspase-3活性(7.97±0.29, P<0.01)明显降低。
     5.5 ABAH干预后,HC大鼠缺血/再灌注后心肌梗塞面积减小
     经测定,各组大鼠危险区面积占左心室面积的百分比(AAR/LV比值)无统计学差异(P>0.05)。与HC大鼠MI/R组相比,ABAH干预HC大鼠后,缺血/再灌注后心肌梗塞面积明显减小(38.89±2.47%, P<0.01)。
     5.6 ABAH干预后,HC大鼠缺血/再灌注心功能障碍减轻
     与HC大鼠MI/R组相比,ABAH干预HC大鼠后,缺血/再灌注3 h末LVSP、±dP/dtmax有所恢复(LVSP: 13.73±2.20 Kpa, P<0.05; +dP/dtmax: 564.00±128.56 Kpa/s, P<0.05; -dP/dtmax: 444.00±96.08 Kpa/s, P<0.05)。
     以上结果显示:首先,ABAH药物本身对心肌细胞基本无影响;其次,ABAH干预HC大鼠后,大鼠缺血/再灌注区心肌组织MPO分布和活性均减少;而且,ABAH干预HC大鼠后,HC大鼠MI/R损伤减轻。进一步提示,HC大鼠缺血/再灌注区心肌组织MPO分布与活性可能与HC大鼠缺血/再灌注心肌损伤易感性的增加有密切关系,但二者之间是否具有直接关系仍有待于进一步证实。
     6. MPO对H9c2(2-1)细胞的影响
     为了排除在体神经、体液调节等因素对实验结果的多方面的影响,本实验利用H9c2(2-1)细胞来观察MPO对心肌细胞的直接效应。
     6.1 H9c2(2-1)细胞缺氧/复氧模型建立成功
     与常氧对照组(Control)相比(CK: 0.02±0.01 U/ml; LDH: 33.11±21.18 U/L),缺氧/复氧(H/R)组细胞培养液上清中CK含量和LDH含量显著升高(0.08±0.03 U/ml, P<0.01; 856.22±28.91 U/L, P<0.01)。说明,成功地建立了H9c2(2-1)细胞缺氧/复氧损伤模型
     6.2 MPO加重H9c2(2-1)细胞缺氧/复氧损伤
     与H/R组相比,0.1 u/ml MPO+H/R组培养液上清CK含量和LDH含量均明显升高(0.42±0.11 U/ml, P<0.01; 1362.78±106.89 U/L, P<0.01)。说明,MPO不仅可以引起心肌细胞的损伤,而且可以进一步加重心肌细胞缺氧/复氧损失。提示, MPO分布与活性可能直接参与了心肌细胞的损伤,并进一步加重了缺氧/复氧心肌细胞损伤。
     6.3 ABAH干预后,H9c2(2-1)细胞缺氧/复氧损伤的变化
     与0.1 u/ml MPO+H/R组相比,ABAH+0.1 u/ml MPO+H/R组培养液上清CK含量和LDH含量均明显减少(0.13±0.07 U/ml, P<0.01; 880.81±80.86 U/L, P<0.01)。更进一步提示,MPO的分布和活性可能直接参与了心肌细胞的损伤,而且可能与HC大鼠缺血/再灌注心肌易损性的增加有直接关系。
     7. HC大鼠缺血/再灌注心肌组织NO-cGMP信号通路受损
     7.1 HC大鼠缺血/再灌注心肌组织NOx含量增加
     与普通饮食大鼠MI/R组相比,HC大鼠缺血/再灌注心肌组织NOx含量显著增加(972.78±77.45μmol/g protein vs. 421.44±58.96μmol/g protein, P<0.01)。ABAH干预后,可以有效的减少HC大鼠缺血/再灌注心肌组织NOx含量(615.76±50.54μmol/g protein, P<0.01),但未完全恢复至正常生理状态。
     7.2 HC大鼠缺血/再灌注心肌组织cGMP含量降低
     经测定,与伪手术组大鼠相比,普通饮食大鼠缺血/再灌注心肌组织cGMP含量明显减少(31.53±11.37 pmol/mg protein vs. 74.22±22.23 pmol/mg protein, P<0.01);与普通饮食MI/R组大鼠相比,HC大鼠缺血/再灌注心肌组织cGMP含量明显减少(7.35±2.47 pmol/mg protein, P<0.05);ABAH干预后,与HC + MI/R组大鼠相比,HC大鼠缺血/再灌注心肌组织cGMP含量有所恢复(28.84±9.08 pmol/mg protein, P<0.01)。
     7.3 HC大鼠缺血/再灌注心肌组织NOS mRNA表达和蛋白表达的变化
     7.3.1 HC大鼠缺血/再灌注心肌组织NOS mRNA表达的变化
     与伪手术组相比,普通饮食大鼠MI/R组危险区心肌组织iNOS mRNA表达明显升高(4.80±1.73 vs. 1±0.70, P<0.01);与普通饮食大鼠MI/R组相比,HC大鼠MI/R组危险区心肌组织心肌组织iNOS mRNA表达明显升高(10.09±2.15, P<0.01);ABAH干预后,HC大鼠MI/R危险区心肌组织iNOS mRNA表达较HC大鼠MI/R组降低(3.41±1.50, P<0.01)。
     与普通饮食未手术大鼠相比,HC未手术大鼠心肌eNOS mRNA表达明显降低(0.87±0.02 vs. 1.00±0.04, P<0.01)。
     各组大鼠心肌组织nNOS mRNA表达无统计学差异。
     7.3.2 HC大鼠缺血/再灌注心肌组织NOS蛋白表达的变化
     与伪手术组相比,普通饮食大鼠MI/R组危险区心肌组织iNOS蛋白表达明显升高(2.22±0.44 vs.1.00±0.26, P<0.05);与普通饮食大鼠MI/R组相比,HC大鼠MI/R组危险区心肌组织心肌组织iNOS蛋白表达明显升高(3.17±0.93, P<0.05);ABAH干预后,HC大鼠MI/R危险区心肌组织iNOS蛋白表达较HC大鼠MI/R组降低(2.28±0.46, P<0.05)。
     与普通饮食未手术大鼠相比,HC未手术大鼠心肌eNOS蛋白表达明显降低(0.36±0.14vs. 1.00±0.37, P<0.05)。
     各组大鼠心肌组织nNOS蛋白表达无统计学差异。
     以上结果显示,普通饮食大鼠缺血/再灌注心肌组织NOx含量增加,HC大鼠缺血/再灌注后危险区心肌组织NOx含量进一步增加;普通饮食大鼠缺血/再灌注心肌组织cGMP含量减少,HC大鼠缺血/再灌注后危险区心肌组织cGMP含量进一步减少;普通饮食大鼠缺血/再灌注心肌组织iNOS mRNA表达和蛋白表达均升高,HC大鼠缺血/再灌注后危险区心肌组织iNOS mRNA表达和蛋白表达均进一步升高;HC大鼠心肌组织eNOS mRNA表达和蛋白表达均降低;各组nNOS mRNA表达和蛋白表达无统计学差异。提示,HC大鼠MI/R后,虽然危险区心肌组织NOx含量大量增加,但NO生物利用度降低,NO/cGMP信号通路可能受损,应用MPO抑制剂干预后,NO/cGMP信号通路损伤有所减轻;MPO可能通过降低心肌组织NO的生物利用度、损伤NO/cGMP信号通路,从而部分参与大鼠缺血/再灌注心肌损伤,以及在HC大鼠缺血/再灌注心肌易损性增加中发挥作用。而且,HC大鼠缺血/再灌注心肌组织大量生成的NO可能来自于iNOS催化生成。
     小结
     1. HC大鼠心肌组织MPO含量和活性明显升高,提示MPO活性的改变可能是HC使缺血/再灌注后心肌损伤恶化的原因之一;
     2. HC大鼠缺血/再灌注后心肌组织MPO含量和活性显著升高的同时NO/cGMP通路受损,NO生物利用率下降,进一步提示我们HC缺血/再灌注后心肌损伤易感性增加可能部分是通过MPO活性的改变影响NO-cGMP信号通路来实现。
     第三部分高胆固醇血症诱导大鼠血清α1-、β1-肾上腺素受体和M2-胆碱受体自身抗体的产生
     目的
     本部分实验首先选择α1 -AA、β1 -AA、β3 -AA、M2 -AA和AT1-AA阴性的健康雄性大鼠建立食源性HC大鼠模型;进而观察食源性HC是否会诱发G蛋白偶联受体自身抗体的产生;如果会,则进一步了解自身抗体的产生情况及其作用。
     材料和方法
     1.材料
     健康Wistar远交群大鼠,4~5 weeks体重110±10 g,雄性。
     2.实验分组
     食源性HC大鼠模型分组
     ①普通饮食大鼠组:普通饲料饲养10周;②高胆固醇饮食6周组:高胆固醇饮食饲养6周;③高胆固醇饮食10周组:高胆固醇饮食饲养10周。
     3.方法
     (1)实验模型的建立及标本的留取
     食源性HC大鼠模型的建立及标本的留取
     (2)检测指标的测定
     ①大鼠空腹血清总胆固醇(Total Cholesterol, TC)、甘油三酯(Triglyceride, TG)和低密度脂蛋白-胆固醇(Low Density Lipoprotein Cholesterol, LDL-cho)的测定;②心肌组织石蜡切片的HE染色;③心肌组织超微结构电镜观察;④血清受体自身抗体(α1- AA、β1- AA、β3 -AA、M2- AA和AT1-AA)的测定;⑤流式细胞仪检测大鼠脾脏淋巴细胞CD4+/CD8+和淋巴细胞含量。
     (3)肽段合成及自身抗体的测定:
     5种抗原肽段由吉尔生化上海有限公司合成,分别相当于α1- AR、β1- AR、β3 -AR、M2- AR和AT1-AR细胞外第二环氨基酸序列的特异性抗原决定簇,合成肽段纯度为90%~95%。用ELISA法检测血清中各自身抗体的含量。
     结果
     1食源性HC大鼠模型建立成功
     高胆固醇饮食饲养前,各组大鼠血脂水平无明显差异。高胆固醇饮食6周后,大鼠血脂水平显著升高(TC: 2.64±0.22, P<0.01; TG: 0.89±0.33, P<0.01; LDL-cho: 1.06±0.23, P<0.01)。高胆固醇饮食10周后血脂水平进一步升高(TC: 3.46±0.68 mmol/l, P<0.01; TG: 1.17±0.39 mmol/l, P<0.01; LDL-cho: 1.67±0.35 mmol/l, P<0.01)。说明食源性HC大鼠模型建立成功。
     2. HC大鼠血清α1-AA、β1-AA和M2-AA的OD值升高
     与正常饮食大鼠相比,高胆固醇饮食6周大鼠血清α1-AA(0.60±0.05 vs 0.27±0.06,P<0.01)、β1-AA(0.57±0.06 vs 0.18±0.02,P<0.01)和M2-AA(0.53±0.07 vs 0.16±0.04,P<0.01)的OD值明显升高,高胆固醇饮食10周大鼠血清抗体OD值有略有下降的趋势。HC大鼠血清β3-AA和AT1-AA与正常饮食大鼠相比无明显改变。提示,HC可能诱发部分G蛋白偶联受体自身抗体的产生。
     3. HC大鼠心肌组织形态学观察
     3.1 HC大鼠心肌组织病理形态学观察
     普通饮食大鼠,心肌纤维完整,排列整齐,呈束状,结构清楚,着色均匀,细胞核形态正常,细胞膜完整,细胞没有水肿,无变性坏死,心肌间质未见炎性细胞浸润。高胆固醇饮食6周和10周的HC大鼠心肌形态发生了改变,同时伴随程度不同的炎性细胞浸润。
     3.2 HC大鼠心肌组织超微结构观察
     普通饮食大鼠,心肌肌原纤维排列整齐,肌节长短一致,明带、暗带清晰可见;线粒体丰富,结构清晰完整,大小形态正常,无肿胀,嵴无断裂,嵴排列整齐,线粒体间糖原颗粒丰富;毛细血管内皮细胞结构正常,细胞膜完整。
     高胆固醇饮食6周HC大鼠心肌细胞间质微血管官腔狭窄,内皮细胞水肿,胞质中胞饮泡增多、散在较多的脂泡,肌浆网扩张,可见等电子密度云絮状物质,个别细胞可见肌丝溶解。高胆固醇饮食10周HC大鼠心肌细胞核染色质小灶性溶解,胞质内脂泡增多,可见大面积脂质区域,部分细胞肌丝溶解面积较大,肌丝疏松散在,肌浆网明显扩张,个别心肌细胞膜溶解,心肌细胞间质中微血管内皮细胞胞饮泡增生,血管腔内散在血小板和红细胞。
     以上结果说明HC大鼠心肌细胞结构受损,超微结构发生改变,提示HC可能造成大鼠心肌组织超微结构改变,并可能引起大鼠心肌组织重构,激活HC大鼠免疫系统,从而诱发HC大鼠G蛋白偶联受体自身抗体的产生。
     4. HC大鼠脾脏淋巴细胞CD4~+/CD8~+升高,淋巴细胞含量升高
     脾脏是人体免疫系统最重要的免疫器官之一。流式细胞技术检测大鼠脾脏淋巴细胞结果显示,HC大鼠与同期普通饮食大鼠相比,CD4~+/CD8~+(2.34±0.157 vs 1.61±0.21,P<0.05)明显升高,淋巴细胞(DC45R~+细胞)含量(25.34±3.18 vs 7.64±3.47,P<0.01)升高。进一步提示,血脂水平升高可能激活HC大鼠免疫系统,从而诱发HC大鼠G蛋白偶联受体自身抗体的产生。
     小结
     1.本研究首次在HC大鼠血清中发现了α1-AA、β1-AA和M2-AA等G蛋白偶联受体自身抗体。
     2. HC大鼠心肌超微结构和脾脏免疫系统功能发生改变,提示HC有可能通过引起心肌重构并激活机体免疫系统,从而诱发部分G蛋白偶联受体自身抗体产生,并进一步影响HC大鼠心脏功能。
     结论
     1. HC可以诱发心肌细胞膜脂质比例失调,降低心肌细胞膜流动性,引起心肌细胞功能障碍,从而导致心肌损伤加重;有效的改善心肌细胞膜流动性可以减轻心肌细胞损伤。提示心肌细胞膜流动性可能是HC大鼠心肌易损性增加的影响因素之一。
     2. MPO可能通过降低心肌组织NO生物利用率,损伤NO/cGMP/cGK信号通路,参与HC大鼠缺血/再灌注心肌易损性增加,导致HC大鼠MI/R损伤加重。
     3.本研究首次在HC大鼠血清中发现了α1-、β1-和M2-受体的自身抗体,提示部分G蛋白偶联受体自身抗体的产生可能也是HC大鼠心肌易损性增加的病理生理机制之一。
Background
     Hypercholesterolemia and the corresponding artherosclerosis are the pathological foundation of coronary atherosclerotic heart disease (CAHD) and heart muscle ischemia, and are critical risk factors of ischemic heart disease. Hypercholesterolemia plays an important role in both the beginning of ischemia and the development of the injury. We and other researchers have found the myocardium has increased susceptibility to ischemia/reperfusion injury in hypercholesterolemia, but the mechanisms are not clear. We know that lipid can accumulate and later form artherosclerosis plaques. When such plaque covers the coronary, it will cause spasm. So do the increase of active oxygen production and reactive nitrogen production, which induce dysfunction of endothelium. However, these initial factors can not explain the phenomenon of increased susceptibility. There are still lots of questions.
     Membrane fluidity is the dynamical character of lipid bilayer, which is important in signal transduction, chemical transportation, ion exchange, energy transmission and activity of enzymes. Stable membrane fluidity is so significant to the maintenance of internal environment and normal function of cells that it affects the development of many diseases. The change of membrane fluidity comes earlier than the morphological and biological changes of cells in a disease. The changes of membrane fluidity can also reflect the early cell injury and the development of disease. Some studies found that membrane fluidity of red blood cell decreases in hypercholesterolemia. This indicates that the disorder of lipid metabolism may change the lipid proportion of the membrane and further affect its fluidity. Will hypercholesterolemia change the fluidity of myocardium and affect its signal transduction? If so, is there any relationship between the changes of myocardium membrane fluidity and heart muscle increased that susceptibility caused by hypercholesterolemia? Study considering these questions will help us to investigate the mechanism of increased susceptibility of myocardium to ischemia/reperfusion injury caused by hypercholesterolemia.
     Myeloperoxidase (MPO), which expresses in neutrophil, is an important cytokine and an independent risk factor of CAHD. MPO stimulates the apoptosis of endothelium, degrades the relaxing factor NO, lowers its biological activity, causes endothelium dysfunction and increases the vulnerability of atherosclerotic plaque, which enhances the development of heart muscle ischemia. Moreover, MPO released by activated and effused neutrophils could catalyze H2O2 produced by neutrophils and injured tissue forms hypochloric acid and other oxidants, which are toxic and will cause cardiovascular injury. However, inflammation reaction plays an important role in myocardium ischemic/reperfusion injury. So, whether MPO plays a direct function of injury to myocardium? Does it take part in the increased susceptibility of ischemia/reperfusion injury heart muscle in hypercholesterolemia? And how does it work?
     From 1990, researchers detected many G protein-coupled receptor autoantibodies from serum of patients with cardiovascular diseases, includingα1-AA、β1-AA、β3-AA、M2-AA and AT1-AA etc. Some study indicatesα1-AA existence would cause increased peripheral resistance and myocardium remodel.β1-AA induces heart rate and later exacerbates heart burden and then results in injury. M2-AA destroys mitochondria, which would lead to myofibrilla dissolve and heart injury. These results suggest that G protein-coupled Receptors autoantibody may play an important role in the development of cardiovascular diseases. Evidence proved that hypercholesterolemia causes ultrastructure changes of myocardium and inflammation response in cardiovascular diseases. These indicate that hypercholesterolemia probably induce the production of G protein-coupled receptors autoantibody by the dysfunction of immune system. If this hypothesis is true, these autoantibodies have high probability to increase the susceptibility of myocardium in hypercholesterolemia and aggravate heart injury. As a result, investigation of the production of G protein-coupled receptors autoantibody in hypercholesterolemia is critical in cardiovascular diseases.
     Overall, basing on a dietetic hypercholesterolemia rat model, current research aim to discuss the functions and some related mechanisms of cardiac muscle cell fluidity, myeloperoxidase and certain portion of G protein-coupled receptors autoantibody in hypercholesterolemia increased susceptibility of heart muscle.
     PART 1 Hypercholesterolemia-induced myocardial cell membrane fluidity decline in rats
     Objective:
     To determine whether decreased membrane fluidity of myocardial cells may contribute to enhanced myocardial injury in hypercholesterolemia.
     Materials and Methods:
     1.1 Materials:
     Male Wistar rats (4-5 weeks) weighing110±10g, provided by Shanxi Medical University Laboratory Animal Center.
     1.2 Experimental groups
     1.2.1 The groups of diet-derived HC rats
     (1) Control group: Rats were given a normal diet for 10 weeks;
     (2) Vehicle + high cholesterol group: Rats were given a HC diet for 10 weeks and receive vehicle for 4 week in the 6th week;
     (3) PIO + high cholesterol group: Rats were given a HC diet for 10 weeks and receive PIO (10 mg/kg/day, oral gavage) for 4 week in the 6th week.
     1.2.2 The groups of rats’regional myocardial ischemia/ reperfusion (MI/R) in vivo
     (1) Sham group: Left Anterior Descending (LAD) without occlusion, total time course is 24 hours;
     (2) MI/R+ normal diet group: LAD with reversible occlusion, 30min ischemia followed by 24 hours reperfusion;
     (3) MI/R+ Vehicle + HC diet group: LAD with reversible occlusion, 30min ischemia followed by 24 hours reperfusion;
     (4) MI/R+ PIO + HC diet group: LAD with reversible occlusion, 30min ischemia followed by 24 hours reperfusion.
     1.3 Methods
     1.3.1 Establishment of experimental model and sample collection:
     (1) The establishment of diet-derived HC rat model and tissue collection;
     (2) The establishment of rat via a polyethylene catheter inserted into the left ventricular cavity through the right carotid artery in vivo and tissue collection;
     (3) Isolation of cardiac myocyte and sample collection;
     (4) The establishment of rat regional MI/R model in vivo and tissue collection
     1.3.2 Index determination
     (1) Measurement of Total Cholesterol (TC), Triglyceride (TG) and Low Density Lipoprotein Cholesterol (LDL-cho) in serum of rat on an empty stomach;
     (2) Determination of myocardial function;
     (3) Detection of membrane Na~+-K~+-ATPase activity;
     (4) Detection of cholesterol and phospholipid content in myocardial cell membrane;
     (5) Membrane fluidity measurements
     (6) Determination of cAMP with radioimmunoassay
     (7) Determination of myocardial infarct size
     (8) Correlation analysis between membrane fluidity and myocardial contractile function or cardiac infarct size
     Results:
     2.1 PIO had effects on plasma lipid profiles after high cholesterol diet
     Ten weeks of HC diet resulted in a dramatic increase in plasma cholesterol (TC) (3.44±0.86 mmol/l vs. 1.24±0.26 mmol/l, P<0.01), triglyerde (TG) (1.13±0.34 mmol/l vs. 0.26±0.05 mmol/l, P<0.01) and low-density lipoprotein (LDL-cho) (1.66±0.55 mmol/l vs. 0.45±0.14 mmol/l, P<0.01). There were no significant differences between groups in plasma lipid profiles before the onset of the study (time 0) or after 6 weeks of a HC diet (before PIO treatment). After an additional 4 weeks of high cholesterol diet and treated with vehicle, plasma TC, TG and LDL levels further increased. At all these post-cholesterol times, PIO-treated rats on the HC diet exhibited significantly lower plasma TC (2.16±0.33 mmol/l, P<0.01), TG (0.59±0.18 mmol/l, P<0.05) and LDL-cho (1.24±0.28 mmol/l, P<0.05) than the vehicle group. These results indicate that PIO improved plasma lipid profiles in this diet-induced HC model, and therefore, any cardiovascular effects observed could be attributed to this mechanism.
     2.2 Hypercholesterolemia worsens cardiac functional and increases post-ischemic myocardial injury
     HC diet markedly aggravated myocardial contractile function. The values of LVSP, +dp/dtmax and–dp/dtmax were significantly decreased in the HC diet group compared with the normal diet group (LVSP: 13.64±1.37 Kpa vs. 20.79±2.87 Kpa, P<0.01; +dp/dtmax: 537.43±102.24 Kpa/s vs. 953.38±171.12 Kpa/s, P<0.01; -dp/dtmax: 452.19±88.34 Kpa/s vs. 793.10±112.82 Kpa/s, P<0.01). Additionally, ischemia/reperfusion-induced myocardial infarct size in the HC rats (i.e. vehicle) was significantly larger than the normal rats (56.81±6.45% vs 35.25±2.52%, P<0.01). There was no difference in ischemic area (AAR) expressed as percent of left ventricle, indicating a comparable degree of ischemic insult between sham-, normal diet-, vehicle- and PIO-treated groups after left anterior descending artery occlusion.
     2.3 Hypercholesterolemia decreased membrane Na~+-K~+-ATPase activity, increased C/P and reduced the membrane fluidity of cardiac myocytes
     Na~+-K~+-ATPase reside in cell membrane nullity of the organelle membrane, which activity is usually to identify the cell membrane. A clear decrease in Na~+-K~+-ATPase activity was observed in HC rats compared with that in normal diet rats (5.99±1.69μmol Pi/mg protein/hour vs. 7.88±1.25μmol Pi/mg protein/hour, P<0.01). The C/P of cardiac myocytes membrane was largely higher in rats with HC diet than normal diet (0.44±0.04 vs. 0.33±0.03, P<0.01). Most importantly, in myocardial cells from HC rats, the DPH fluorescence polarization (P) and microviscosity (η) were markedly higher than that seen in the normal diet group (0.34±0.07 vs 0.24±0.05, P<0.01; 7.99±1.37 vs 2.41±0.59, P<0.01, respectively), indicating that hypercholesterolemia decreased cardiac myocytes membrane fluidity.
     2.4 Hypercholesterolemia decreased myocardial cAMP content
     To further elucidate the effect by which hypercholesterolemia may disturb myocardial function, myocardial cAMP content, a downstream product in signal transduction pathway of membrane receptor, was determined. Hypercholesterolemia markedly decreased myocardial cAMP content (53.77±22.17 pmol/mg protein vs. 127.50±19.72 pmol/mg protein, P<0.01). The result demonstrated that hypercholesterolemia may cause myocardial function injury and thus contribute to increased myocardial vulnerability after ischemia and reperfusion.
     2.5 PIO treatment improved myocardial contractile function, attenuated myocardial infarct size, increased Na~+-K~+-ATPase activity and cAMP content, reduced C/P, and restored membrane fluidity
     Previous studies have demonstrated that PPARγagonists, such as rosiglitazone (RSG), exert beneficial cardiovascular effects in diabetic patients. In recent studies, researchers have demonstrated that treatment with RSG significantly improved endothelial and myocardial function in hypercholesterolemic rabbits. To determine whether the PPARγsignaling pathway may improve cardiac function by restoring membrane fluidity in a non-diabetic model, 18 rats fed with a high cholesterol diet were treated with PIO for 4 weeks. Treatment with PIO in hypercholesterolemic rats exerted significant protective effects as evidenced by markedly improveded cardiac contractile dysfunction (LVSP: 20.40±2.83 Kpa, P<0.01; +dp/dtmax : 827.56±172.49 Kpa/s, P<0.01;–dp/dtmax: 684.01±113.43 Kpa/s, P<0.01) and attenuated myocardial infarct size (39.82±2.74, P<0.01). PIO treatment tended to significantly increase Na+-K+-ATPase activity (7.43±1.42μmol Pi/mg protein/hour, P<0.01) and decrease C/P (0.40±0.04, P<0.05) in cardiac myocytes membrane. In addition, treatment with PIO markedly decreased both DPH fluorescence polarization (0.26±0.06, P<0.01) and microviscosity (3.29±0.63, P<0.01), a parameter that primarily reflects membrane fluidity. To further determine the effect by which PIO may exert its cardiac protective properties, the cAMP content in myocardial cell of PIO treatment was determined. Treatment with PIO in hypercholesterolemia significantly increased myocardial cAMP content (102.05±25.51, P<0.05).
     2.6 Negative correlation between myocardial contractile function and DPH fluorescence polarization, positive correlation between cardiac infarct size and DPH fluorescence polarization
     To determine the direct relation between membrane fluidity and myocardial function or cardiac injury, correlation between DPH fluorescence polarization and LVSP, +dp/dt_(max), -dp/dt_(max) and infarct size were analyzed. LVSP, +dp/dt_(max) and -dp/dt_(max) negatively correlated to DPH fluorescence polarization respectively (r=-0.191, P<0.05; r=-0.323, P<0.01; r=- 0.322, P<0.01, respectively.). Cardiac infarct size positively correlated to DPH fluorescence polarization (r=0.599, P<0.01). In other words, membrane fluidity positively correlated to myocardial contractile function and negatively correlated to cardiac infarct size. These results suggest that hypercholesterolemia-induced cardiac impairment may be associated with membrane fluidity decrease, and PIO treatment protects hypercholesterolemia-induced myocardial dysfunction by preserving the integrity of membrane fluidity.
     Summary
     1. Hypercholesterolemia impairs cardiac function, and increases myocardial infarct size after ischemic/reperfusion, suggesting that hypercholesterolemia may enhance cardiac vulnerability.
     2. Hypercholesterolemia increases C/P in the myocardial cell membrane, decreases membrane fluidity and myocardial cAMP content, as well as membrane fluidity positively correlates to myocardial contractile function and negatively correlates to cardiac infarct size, suggesting that hypercholesterolemia may exacerbate cardiac injury by decreased membrane fluidity-induced myocardial dysfunction.
     3. PIO treatment markedly inhibited hypercholesterolemia-induced C/P increase, membrane fluidity decrease of cardiac myocyte membrane, and myocardial cAMP content decrease, thus recovered cardiac function and decreased infarct size after myocardial ischemia/reperfusion.
     PART 2 The role of MPO in the increased susceptibility of ischemic-reperfusion injury in hypercholesterolemia rats
     Objective:
     To confirm the role of MPO in the increased susceptibility of ischemic-reperfusion injury in hypercholesterolemia rats and to explore the mechanism (such as the reduction in the effective utilization of NO etc.) by observing the changes of MPO activity and distribution in myocardial tissue of ischemia/reperfusion HC rats.
     Materials and Methods:
     1.1 Materials:
     (1) Male Wistar rats (4-5 weeks) weighing110±10g, provided by Shanxi Medical University Laboratory Animal Center.
     (2) H9c2 (2-1) cell line
     1.2 Experimental groups
     1.2.1 The groups of diet-derived HC rats
     (1) Control group: Rats were given a normal diet for 10 weeks;
     (2) Vehicle + high cholesterol group: Rats were given a HC diet for 10 weeks and intraperitoneal injection of 10% DMSO for 1 week in the 9th week;
     (3) ABAH (MPO inhibitor) + high cholesterol group: Rats were given a HC diet for 10 weeks and intraperitoneal injection of ABAH (25.00mg/kg?d) for 1 week in the 9th week.
     1.2.2 The groups of rats’regional myocardial ischemia/ reperfusion (MI/R) in vivo
     (1) Sham group: Left Anterior Descending (LAD) without occlusion, total time course is 3 or 24 hours;
     (2) MI/R+ normal diet group: LAD with reversible occlusion, 30min ischemia followed by 3 or 24 hours reperfusion;
     (3) MI/R+ Vehicle + HC diet group: LAD with reversible occlusion, 30min ischemia followed by 3 or 24 hours reperfusion;
     (4) MI/R+ ABAH + HC diet group: LAD with reversible occlusion, 30min ischemia followed by 3 or 24 hours reperfusion.
     1.2.3 The groups of H9c2 (2-1) cell lines
     (1) Normoxia group: cultured in atmosphere of 5%CO2, 95% air for 5h;
     (2) ABAH+ Normoxia group: added 100μM ABAH into the cultured medium then cultured in atmosphere of 5%CO_2, 95% air for 5h;
     (3) H/R group: hypoxia with 95% N_2 and 5% CO_2 for 3h then followed by 2h reoxygenation in 5% CO_2 and 95% air;
     (4) MPO+H/R group: added 0.1 u/ml MPO into the cultured medium then operated as H/R group;
     (5) ABAH+H/R group: added 100μM ABAH into the cultured medium then operated as H/R group;
     (6) ABAH+MPO+ H/R group: added 100 mΜABAH into the cultured medium for 30 min before adding 0.1 u/ml MPO then operated as H/R group.
     1.3 Methods
     1.3.1 Establishment of experimental model and sample collection
     (1) The establishment of diet-derived HC rat model and tissue collection;
     (2) The establishment of rat regional MI/R model in vivo and tissue collection;
     (3) The establishment of H9c2 (2-1) H/R model and cell collection.
     1.3.2 Index determination
     (1) Measurement of Total Cholesterol (TC), Triglyceride (TG) and Low Density Lipoprotein Cholesterol (LDL-cho) in serum of rat on an empty stomach;
     (2) Measurement of Creatine Kinase (CK) content in serum and culture medium supernatant;
     (3) Measurement of Lactate Dehydrogenase (LDH) content in serum and culture medium supernatant;
     (4) Myocardial apoptosis is detected by TdT-mediated dUTP nick end labeling (TUNEL);
     (5) Caspase-3 relative activity assay;
     (6) Determination of myocardial infarct size;
     (7) Measurement of cardiac function;
     (8) Determination of myocardial tissue MPO distribution by immunohistochemistry;
     (9) Myocardial tissue MPO activity assay;
     (10) Correlation analysis of myocardial tissue MPO activity , serum CK concentration, LDH leakage, apoptotic index, caspase-3 activity , myocardial infarction size and cardiac function;
     (11) Measurement of nitric oxide (NO) content in myocardial tissue;
     (12) Determination of myocardial cGMP content by Radioimmunoassay kit;
     (13) Detection of myocardial nitric oxide synthase (NOS) protein expression by Western-blot;
     (14) Detection of the mRNA expression of NOS in myocardial tissue by real time PCR;
     (15) Detected H9c2 (2-1) cell proliferation by Cell counting Kit-8.
     Results:
     2.1 The establishment of Diet-derived HC rat model
     The lipid levels (TC, TG and LDL-cho) in rats of each group had no significant difference before given HC diet feeding (0 week). The lipid levels of vehicle + high cholesterol group was significantly higher than control group after feeding with high-cholesterol diet for 10 weeks (TC: 3.01±0.75 mmol/L vs. 1.44±0.14 mmol/L, P<0.01; TG: 0.88±0.35 mmol/L vs. 0.26±0.05 mmol/L, P<0.01; LDL-cho: 1.53±0.65 mmol/L vs. 0.45±0.14 mmol/L, P<0.01, respectively.). All these demonstrated that diet-derived HC rat model was set up successfully.
     2.2 HC rats had increased vulnerability of MI/R
     2.2.1 A significantly exacerbated myocardial MI/R injury was found of HC rats
     2.2.1.1 CK content in serum of HC rats were increased
     Compared with sham group, the CK content in MI/R group increased significantly (0.17±0.01 U/ml vs. 0.05±0.02 U/ml, P<0.01); Compared with normal diet MI/R group, the CK content in HC MI/R group increased significantly (0.70±0.08 U/ml, P<0.01).
     2.2.1.2 LDH content in serum of HC rats were increased
     Compared with sham group, the LDH content in MI/R group increased significantly (3091.59±33.69 U/L vs. 1854.45±422.97 U/L, P<0.01); Compared with normal diet MI/R group, the LDH content in HC MI/R group increased significantly (3596.18±99.81 U/L, P<0.01).
     2.2.2 Increased myocardial apoptosis in HC rats with ischemia/reperfusion
     2.2.2.1 TUNEL detection
     The apoptotic index in MI/R group was significantly higher than that in sham group (16.07±1.02% vs. 1.44±0.14%,P<0.01); the apoptotic index in HC MI/R group was significantly higher than that in normal diet MI/R group (22.63±1.02%, P<0.01).
     2.2.2.2 Caspase3 activity assay:
     Caspase3 activity in MI/R group was also significantly increased compared with sham group (6.66±0.61 vs. 1.00±0.08,P<0.01); caspase3 activity in HC MI/R group was also significantly increased compared with normal diet MI/R group (12.29±0.92,P<0.01).
     2.2.3 Myocardial infarct size in HC group enhanced after MI/R
     The ratio of area at risk to left ventricular area (AAR/LV): no significant differences were observed among these groups (P>0.05), which indicated that the ischemic area induced by coronary ligation is roughly identical among each experimental group, so that these groups are comparable. The myocardial infarct size of HC MI/R group was significantly enhanced as compared with normal diet MI/R group (56.05±3.91% vs. 34.90±2.52%, P<0.01).
     2.2.4 The cardiac function in HC MI/R group were aggravated
     At the end of 3 h reperfusion, compared with the sham group, the LVSP and±dP/dtmax in MI/R group decreased obviously (LVSP: 15.12±1.38 Kpa vs. 18.28±3.02 Kpa, P<0.05; +dp/dtmax: 610.43±110.26 Kpa/s vs. 785.22±162.22 Kpa/s, P<0.01; -dp/dtmax: 500.57±116.20 Kpa/s vs. 667.00±234.83 Kpa/s, P<0.05, respectively.);compared with the normal diet MI/R group,the LVSP and±dP/dtmax in HC MI/R group decreased obviously (LVSP: 9.95±1.85 Kpa, P<0.01; +dp/dtmax: 386.43±100.76 Kpa/s, P<0.01; -dp/dtmax: 264.53±98.76 Kpa/s, P<0.01, respectively.).
     These results confirmed that, compared with the normal diet group, the MI/R injury in HC group increased, which indicated the increased susceptibility of ischemic-reperfusion injury in hypercholesterolemia rats.
     2.3 Myocardial tissue MPO changes in HC rats with ischemia/reperfusion
     2.3.1 Myocardial tissue MPO activity assay in HC rats with ischemia/reperfusion
     Compared with the sham group, the myocardial tissue MPO activity in MI/R group increased obviously (13.48±4.58 U/g protein vs. 8.29±2.80 U/g protein, P<0.05), and further increased in HC MI/R group (19.44±2.35 U/g protein, P<0.05).
     2.3.2 Myocardial tissue MPO distribution of HC rats with ischemia/reperfusion
     The result of immunohistochemistry indicated that rare MPO was detected in the area not at risk (ANAR) of myocardial tissue from normal diet rats, but clear staining was observed in the vascular tissue and cardiac myocytes from ischemia/reperfusion area. The results suggested that infiltrating neutrophils in ischemia/reperfusion heart release a large number of MPO, these MPO possibly invasive ischemia/reperfusion myocardial cells through active or passive manner then cause myocardial cell injury through a variety of mechanisms. Moreover, the MPO immunostaining further enhanced in HC MI/R group than the normal diet MI/R group.This is consistent with the above-mentioned results that MPO activity increased in HC MI/R group.
     Prompted MPO may be involved in the increased susceptibility of ischemia/reperfusion myocardial injury in HC rats.
     2.4 Correlation analysis of myocardial tissue MPO activity with MI/R injury.
     2.4.1 Positive correlation between MPO activity in ischemia/reperfusion myocardial tissue and serum CK and LDH levels (CK: r = 0.618, P<0.01; LDH: r = 0.64, P<0.01, respectively.).
     2.4.2 Positive correlation between MPO activity and apoptotic index and caspase-3 activity in ischemia/reperfusion myocardial tissue (apoptotic index: r = 0.651, P<0.01; caspase-3: r = 0.619, P<0.01, respectively.).
     2.4.3 Positive correlation between MPO activity and myocardial infarct size in ischemia/reperfusion myocardial tissue (r = 0.663, P< 0.01).
     2.4.4 Negative correlation between MPO activity in ischemia/reperfusion myocardial tissue and myocardial contractile function (LVSP and±dP/dtmax) of ischemia/reperfusion heart (LVSP: r = -0.555, P<0.01; +dP/dtmax: r = -0.794, P< 0.01; -dP/dtmax: r =-0.748, P<0.01, respectively.).
     These results confirmed the closely correlation between MPO activity in ischemia/reperfusion myocardial tissue and increased susceptibility of ischemia/reperfusion injury in hypercholesterolemic rats. Changes of MPO in myocardial tissue of HC rats with ischemia/reperfusion were directly related to ischemia/reperfusion myocardial vulnerability of HC rats.
     2.5 MI/R HC rats’myocardial tissue MPO and cardiac injury changed after the intervention with MPO inhibitors
     In order to further explore whether or not MPO participate in and directly affect the HC rat MI / R myocardial vulnerability increased, ABAH was applicated to HC rats in vivo to observe the corresponding changes.
     2.5.1 Effect of ABAH on the H9c2 (2-1) cell
     There was no statistical difference of cell survival rate between ABAH + normoxia group and normoxia group (0.98±0.01 vs. 1.01±0.05); there was no statistical difference of cell survival rate between ABAH+H/R group and H/R group too (0.63±0.06 vs. 0.60±0.09). The results above showed that ABAH itself had no effect on myocardial cells and removed the experimental error which forms by the medicine intervention.
     2.5.2 The change of MPO activity and distribution in myocardial tissue, after ABAH intervention
     Compared with the MI/R+ Vehicle + HC diet group, the MPO immunostaining and MPO activity (13.66±2.63 U/g protein, P<0.05) in MI/R+ ABAH + HC diet group significantly decreased.
     2.5.3 After ABAH intervention, the myocardial ischemia/reperfusion injury of HC rats mitigated.
     Compared with the MI/R+ Vehicle + HC diet group CK (0.31±0.06 U/ml, P<0.01) and LDH (3286.65±40.04 U/L, P<0.01) content in MI/R+ ABAH + HC diet group significantly decreased.
     2.5.4 After ABAH intervention, cardiomyocyte apoptosis of HC rats with ischemia/reperfusion mitigated.
     Compared with the MI/R + Vehicle + HC diet group, apoptotic index (18.55±1.29%, P<0.01) and Caspase3 activity (7.97±0.29, P<0.01) in MI/R+ ABAH + HC diet group significantly decreased.
     2.5.5 After ABAH intervention, the myocardial infarct size of HC rats decreased
     The ratio of AAR/LV: no significant differences were observed among these groups (P>0.05). The myocardial infarct size of MI/R+ ABAH + HC diet group was significantly decreased as compared with MI/R+ Vehicle + HC diet group (38.89±2.47%, P<0.01).
     2.5.6 After ABAH intervention, HC rats with ischemia/reperfusion cardiac dysfunction mitigated Compared with the MI/R + Vehicle + HC diet group, the cardiac dysfunction in MI/R+ ABAH + HC diet group had some degrees recovery (LVSP: 13.73±2.20 Kpa, P<0.05; +dP/dtmax: 564.00±128.56 Kpa/s, P<0.05; -dP/dt_(max): 444.00±96.08 Kpa/s, P<0.05, respectively.).
     These results indicated: First, ABAH itself had no effect on myocardial cells. Second, after ABAH intervention, MPO activity and distribution in myocardial tissue of HC rats with ischemia/reperfusion decreased and ischemia/reperfusion injury mitigated. Third, MPO changes in myocardial tissue of HC rats with ischemia/reperfusion had close related to ischemia/reperfusion myocardial vulnerability of HC rats. Howerve, it needs to be further confirmed that whether there is direct relation between them.
     2.6 Effect of MPO on the H9c2 (2-1) cell
     In order to remove various influence of neural and humoral regulation to experimental result in vivo, the experimental use of H9c2 (2-1) cells to observe the MPO on the direct effects of myocardial cells.
     2.6.1 H9c2 (2-1) H/R model was established successfully
     Compared with the normoxia group (control group), the CK and LDH content in culture medium supernatant in H/R group significantly increased (CK: 0.08±0.03 U/ml vs. 0.02±0.01 U/ml, P<0.01; LDH: 856.22±28.91 U/L vs. 33.11±21.18 U/L, P<0.01, respectively.), showing that H9c2 (2-1) H/R model had been established successfully.
     2.6.2 MPO aggravated hypoxia/reoxygenation injury in H9c2 (2-1) cells
     Compared with H/R group, the CK and LDH content in culture medium supernatant in 0.1u/ml MPO+H/R group significantly increased (0.42±0.11 U/ml, P<0.01; 1362.78±106.89 U/L, P<0.01, respectively.), showing that MPO could not only cause myocardial cells' damage but also further aggravate the myocardial cell hypoxia/reoxygenation injury, which prompted that the MPO distribution and activity possibly directly participated in myocardial cell's damage, and further aggravated the myocardial cell hypoxia/reoxygenation injury.
     2.6.3 After ABAH intervention, H9c2 (2-1) cell H/R damage change
     Compared with 0.1 u/ml MPO+H/R group, the CK and LDH content in ABAH+0.1 u/ml MPO+H/R group significantly decreased (0.13±0.07 U/ml, P<0.01; 880.81±80.86 U/L, P<0.01, respectively.), further prompted that MPO distribution and activity possibly directly participated in myocardial cells’damage, and had directly relationship with ischemia/reperfusion myocardial vulnerability of HC rat.
     2.7 HC rats with ischemia/reperfusion myocardial tissue NO-cGMP signaling pathway impaired
     2.7.1 NOx content increased in myocardial tissue of HC rats with ischemia/reperfusion
     Compared with MI/R + normal diet group, the NOx content in MI/R + Vehicle + HC diet group significantly increased (972.78±77.45μmol/g protein vs. 421.44±58.96μmol/g protein, P<0.01). ABAH could effectively reduce the NOx content in HC rat ischemia/reperfusion myocardial tissue (615.76±50.54μmol/g protein, P<0.01), but had not restored completely to the normal physiological condition.
     2.7.2 The cGMP content in myocardial tissue of HC rats with ischemia/reperfusion decreased
     Compared to sham group the cGMP content in MI/R+ normal diet group decreased (31.53±11.37 pmol/mg protein vs. 74.22±22.23 pmol/mg protein, P<0.01); compared to MI/R+ normal diet group, the cGMP content in MI/R+ Vehicle + HC diet group decreased (7.35±2.47 pmol/mg protein, P<0.01); compared to MI/R+ Vehicle + HC diet group, the cGMP content in MI/R+ ABAH + HC diet group restored partly (28.84±9.08 pmol/mg protein, P<0.01).
     2.7.3 The changes of mRNA and protein expression of NOS in myocardial tissue of HC rats with ischemia/reperfusion
     2.7.3.1 The change of mRNA expression of NOS in myocardial tissue of HC rats with ischemia/reperfusion
     Compared with sham group, the mRNA expression of iNOS in MI/R+ normal diet group increased (4.80±1.73 vs. 1±0.70, P<0.01); compared with MI/R+ normal diet group, the mRNA expression of iNOS in MI/R+ Vehicle + HC diet group increased (10.09±2.15, P<0.01); compared with MI/R+ Vehicle + HC diet group the mRNA expression of iNOS in I/R+ ABAH + HC diet group decreased (3.41±1.50, P<0.01).
     Compared with control group the mRNA expression of eNOS in vehicle + high cholesterol group decreased significantly (0.87±0.02 vs. 1.00±0.04, P<0.01). No significant differences of nNOS mRNA expression were observed among these groups.
     2.7.3.2 The change of protein expression of NOS in myocardial tissue of HC rats with ischemia/reperfusion
     Compared with sham group, the protein expression of iNOS in MI/R+ normal diet group increased (2.22±0.44 vs.1.00±0.26, P<0.05); compared with MI/R+ normal diet group, the protein expression of iNOS in MI/R+ Vehicle + HC diet group increased (3.17±0.93, P<0.05); compared with I/R+ Vehicle + HC diet group, the protein expression of iNOS in MI/R+ ABAH + HC diet group decreased (2.28±0.46, P<0.05).
     Compared with control group, the protein expression of eNOS in vehicle + high cholesterol group decreased significantly (0.36±0.14 vs. 1.00±0.37, P<0.05). No significant differences of nNOS protein expression were observed among these groups.
     These results indicated that NOx content increased in myocardial tissue of HC rats and it further increased in AAR of HC rats with ischemia/reperfusion; cGMP content decreased in myocardial tissue of HC rats and it further decreased in AAR of HC rats with ischemia/reperfusion; both mRNA and protein expression of iNOS increased in myocardial tissue of HC rats and it further increased in AAR of HC rats with ischemia/reperfusion; both mRNA and protein expression of eNOS decreased significantly among control group and vehicle + high cholesterol group; both mRNA and protein expression of nNOS had no significant differences among these groups. These data demonstrated that although NOx content in AAR of HC rats with ischemia/reperfusion increased significantly, nitric oxide bioavailability decreased and NO-cGMP signaling pathway maybe impaired; MPO may impaired NO-cGMP signaling pathway in myocardial tissue by reduced nitric oxide bioavailability, and so to participate in the rat ischemia/rep
引文
1. WHO. World Health Statistic 2008.
    2. Jennings SA. A history of the therapy of angina pectoris. J Ark Med Soc. 1996, 62(10): 407-412.
    3. Eisenberg DA. Cholesterol lowering in the management of coronary artery disease: the clinical implications of recent trials. Am J Med 1998;104:2 S–5 S.
    4. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87:840–844.
    5. Tilton RP, Cole PA, Zions JD, et al. Increased ischemia-reperfusion injury to the heart associated with short-term, diet-induced hypercholesterolemia in rabbits. Circ Res. 1987;60:551-559.
    6.杨光华.病理学[M] .第五版.北京:人民卫生出版社,2001:122 -126.
    7. Wang TD, Chen WJ, Su SS, et al. Increased cardiomyocyte apoptosis following ischemia and reperfusion in diet-induced hypercholesterolemia: relation to Bcl-2 and Bax proteins and caspase-3 activity. Lipids. 2002;37:385– 394.
    8. Rao DS, Goldin JG, Fishbein MC. Determinants of plaque instability in atherosclerotic vascular disease. Cardiovasc Pathol. 2005 Nov-Dec;14(6):285-93.
    9. Stokes KY, Cooper D, Tailor A, et al. Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radic Biol Med 2002;33:1026– 36.
    10. Bauer G. Reactive oxygen and nitrogen species: efficient, selective, and interactive signals during intercellular induction of apoptosis. Anticancer Res 2000;20:4115– 39.
    11. Wang DJ,Dai XJ, Xu F, et al.. Effect of sodium ferulate on fluidity and morphology of cell membrane in ozone induced lung injury. Chin J Integr Med. 2006 Dec;12(4):297-300.
    12. Broncel M, Balcerak M, Bala A, et al. The erythrocyte membrane structure in patients with mixed hyperlipidemia. Wiad Lek. 2007;60:4-9.
    13. Kempaiah RK, Srinivasan K. Integrity of erythrocytes of hypercholesterolemic rats during spices treatment. Mol Cell Biochem. 2002;236:155-161.
    14. Lurie KG, Chin JH, Hoffman BB. Decreased membrane fluidity and beta-adrenergicresponsiveness in atherosclerotic quail. Am J Physiol Heart Circ Physiol. 1985;249:H380-385.
    15. Bagchi D, Wetscher GJ, Bagchi M, et al. Interrelationship between cellular calcium homeostasis and free radical generation in myocardial reperfusion injury. Chem Biol Interact. 1997 May 2;104(2-3):65-85.
    16. Surh J, Kwon H. Simultaneous determination of 4-hydroxy-2-alkenals, lipid peroxidation toxic products. Food Addit Contam. 2003 Apr;20(4):325-30.
    17. Paradies G, Petrosillo G, Pistolese M, et al. Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med. 1999 Jul;27(1-2):42-50.
    18. Naruko T, UedaM, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation, 2002, 106 (23) : 2894-2900.
    19. Daugherty A, Dunn JL, RateriDL, et al. Myeloperoxidase, a catalyst for lipoprotein oxidation, is exp ressed in human atherosclerotic lesions. J Clin Invest, 1994, 94 ( 1 ) : 437-444.
    20. Sugiyama S, Okada Y, Sukhova GK, et al. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosisi and implications in acute coronary syndromes. Am J Pathol. 2001; 158:879-891.
    21. Zhang R, Brennan ML, Fu X, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 2001 Nov 7;286(17):2136-42.
    22. Baldus S, Heeschen C, Meinertz T, et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation, 2003; 108: 1 440-1 445.
    23. Brennan ML, Penn MS, Lente FV, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med, 2003; 349: 1 595-1 604.
    24. Podrez EA, Poliakov E, Shen Z, et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem, 2002, 277: 38517- 38523.
    25. Breckwoldt MO, Chen JW, Stangenberg L, et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A. 2008 Nov 14. [Epub ahead of print] PNAS 2008 105:18584-18589.
    26. Nicholls SJ, Hazen SL. The role of myeloperoxidase in the pathogenesis of coronary arterydisease. Jpn J Infect Dis 2004;57:S21–S22.
    27. Sugiyama S, Kugiyama K, Aikawa M, et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler Thromb Vasc Biol 2004;24:1309–1314.
    28. Eiserich JP, Baldus S, Brennan ML, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002; 296:2391–2394.
    29. Vita JA, Brennan ML, Gokce N, et al. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation 2004;110:1134–1139.
    30. Hazen SL. Myeloperoxidase and plaque vulnerability. Arterioscler Thromb Vasc Biol 2004;24:1143–1146.
    31. Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005 May;77(5):598-625.
    32. Meuwese MC, Stroes ES, Hazen SL, et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol. 2007 Jul 10;50(2):159-65.
    33. Williams FM. Neutrophils and myocardial reperfusion injury. Pharmacol Ther 1996;72:1–12.
    34. Liu HR, Tao L, Gao E, et al. Rosiglitazone inhibits hypercholesterolaemia-induced myeloperoxidase upregulation--a novel mechanism for the cardioprotective effects of PPAR agonists. Cardiovasc Res. 2009 Feb 1;81(2):344-52.
    35. Liu HR, Zhao RR, Zhi JM, et al. Screening of serum autoantibodies to diacβ1-adrenoceptors and M2-muscarinic acetylcholine receptors in 408 lthy subjects of varying ages.Autoimmunity.1999,29:43-51.
    36. Magnusson Y, Marullo S, Hoyer S, et al. Mapping of a functional oimmune epitope on theβ1-adrenergic receptor in patients with idiopathic ted cardiomyopathy. J Clin Invest.1990,86:1658-1663.
    37.孟宪敏,张麟.李莉,等.风湿性心脏病心力衰竭患者抗心脏β1和M 2受体自身抗体的研究[J]临床心血管病杂忠.1999.15(1I);499—501.
    38. Elies R, Ferrari I, Wallukat G, et al. Structural and functional analysis the B cell epitopes recognized by anti-receptor autoantibodies in patients with agas’disease.J Immunol.1996,157:4203-4211.
    39.张麟,吴雅峰,缪国斌,等.心力衰竭患者与心脏β2、α1肾上腺素能受体和血管紧张素Ⅱl型受体的自身抗体.中华心血管病杂志. 2003,31(1):17-20.
    40. Chiale PA, Rosenbaum M, Elizari V, et al. High prevalence of ibodies againstβ1-andβ2-adrenergic receptors in patients with primary ctrical cardiac disturbances. J Am Coll Cardiol. 1995,26:864–869.
    41. Liu H R. Efects of long—term immunization with synthesized receptor peptide on in vivo cardiac activity in rats. J Shanxi Med Univ, 2001;32(supp1):93-99.
    42. Staudt Y, Mobini R, Fu M, et al.βl-Adrenoceptor antibodies induce apoptosis in adult isolated cardiomyocytes. European J Pharmacology, 2003;466:1-6.
    43. Tsujimoto I, Hikoso S, Yamaguchi O, et al. The antioxidant edaravone attenuates pressure overload-induced left veniricular hypertrophy. Hypertension.2005;45(5):921-926.
    44. Nourooz-Zadeh J,Simth CC,Betteridge DJ. Measures of oxidative stress in heterozygous familial hypercholesterolaemia. Atherosclerosis,2001;156:435- 441.
    45. du Toit EF, Nabben M, Lochner A. A potential role for angiotensinⅡin obesity induced cardiac hypertrophy and ischemic/reperfusion injury. Basic Res Cardial, 2005;100(4):346-354.
    46. Lee TM, Lin MS, Chou TF, et al. Effect of simvastatin on left ventricular mass in hypercholesterolemic rabbits. Am J Physiol Heart Circ Physiol, 2005;288:H1352-H1358.
    47. Ylitalo K, Porkka KV, Meri S, et al. Serum complement and familial combined hyperlipidemia. Atherosclerosis, 1997, 129 (2) :271 -277.
    48. Blann AD, Seigneur M, Steiner M, et al. Circulating ICAM-1 and VCAM-1 in peripheral artery disease and hypercholesterolaemia: relationship to the location of atherosclerotic disease, smoking, and in the prediction of adverse events. Thromb Haemost. 1998 Jun;79(6):1080-5.
    49. Hansson GK, Libby P, Sch?nbeck U, et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res. 2002 Aug 23;91(4):281-91.
    50. Binder CJ, Hartvigsen K, Chang MK, et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest. 2004 Aug;114(3):427-37.
    51. Ehara S, Ueda M, Naruko T, et al. Elevated levels of oxidized low density lipoprotein show a positive correlation with the severity of acute coronary syndromes. Circulation. 2001 Apr17;103(15):1955-60.
    52. Kearney J F. Immune regulation of OxLDL in atherosclerosis. J Clin Invest 2000 ,105 (12) :1683-1685.
    53. Ross R. Atherosclerosis:an inflammatory disease. N Engl J Med. 1999,340 (2) :115 -126.
    54.谢振家,郭瑞尧.乌龙减肥茶降脂作用的实验研究.中药新药与临床.1992, 3(1): 36
    55. Ding YF, He RR. Role of KATP channels in the cardioprotection provided by ischemic preconditioning in anesthetized rabbits. Sheng Li Xue Bao. 1997, 49(1): 105-9.
    56. Jean-Yves Dupuis, Kai Li, Angelino Calderone, et al.β-Adrenergic signal transduction and contractility in the canine heart after cardiopulmonary bypass. Cardiovasc Res. 1997;36:223-235.
    57. Thomas A. Langworthy, Paul F. Smith, William R. Mayberry. Lipids of thermoplasma acidophilum. J Bacteriol. 1972;112:1193-1200.
    58. Earl Judson King. The colorimetric determination of phosphorus. Biochem J. 1932;26:292-297.
    59. By David A. Saint, Yue-kun Ju and Peter W. Gage. A persistent sodium current in rat ventricular myocytes. J Physiol. 1992;453:219-231.
    60. E Beccerica, G Piergiacomi, G Curatola, et al. Changes of lymphocyte membrane fluidity in rheumatoid arthritis: a fluorescence polarization study. Ann Rheum Dis. 1988;47:472-477.
    61. Alton L. Steiner, Charles W. Parker, David M. Kipnis. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972;247:1106-1113.
    62. Caballero AE, Saouaf R, Lim SC, et al. The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metabolism. 2003;52:173– 180.
    63. Liu HR, Tao L, Gao E, et al. Anti-apoptotic effects of rosiglitazone in hyercholesterolemic rabbits subjected to myocardial ischemia and reperfusion. Cardiovasc Res. 2004;62:135-144.
    64. Tao L, Liu HR, Gao E, et al. Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-gamma agonist in hypercholesterolemia. Circulation, 2003; 108:2805-2811.
    65. Ledbetter TK, Paape MJ, Douglass LW. Cytotoxic effects of peroxynitrite, polymorphonuclear neutrophils, free-radical scavengers, inhibitors of myeloperoxidase, and inhibitors of nitric oxide synthase on bovine mammary secretory epithelial cells. Am J Vet Res 2001;62:286–293.
    66. Kettle AJ, Gedye CA, Hampton MB, et al. Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochem J 1995;308(Pt 2): 559–563.
    67. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993;91:2546–2551.
    68. Osborne JA, Lento PH, Siegfried MR, et al. Cardiovascular effects of acute hypercholesterolemia in rabbits. Reversal with lovastatin treatment. J Clin Invest. 1989;83:465–473.
    69. Jung O, Jung W, Malinski T, et al. Ischemic preconditioning and infarct mass: the effect of hypercholesterolemia and endothelial dysfunction. Clin Exp Hypertens .2000;22:165–179.
    70. Sakamoto S, Kashiki M, Imai N, et al. Effects of short-term, diet-induced hypercholesterolemia on systemic hemodynamics, myocardial blood flow, and infarct size in awake dogs with acute myocardial infarction. Circulation. 1991;84:378–386.
    71. Vlasic N, Medow MS, Schwarz SM, et al. Lipid fluidity modulates platelet aggregation and agglutination in vitro. Life Sci. 1993;53:1053-1060.
    72. Bhalla P, Agrawa D. Alterations in rat erythrocyte membrane due to hexachlorocyclohexane exposure. Hum Ex p Toxicol. 1998;17:638-642.
    73. Vareesangthip K, Tong P, Wilkinson R, et al. Insulin resistance in adult polycystic kidney diesease . Kidney Int. 1997;52: 503-508.
    74. Plutzky J. Peroxisome proliferator-activated receptors in vascular biology and atherosclerosis: emerging insights for evolving paradigms. Curr Atheroscler Rep. 2000;2:327–335.
    75. Bishop-Bailey D. Peroxisome proliferator-activated receptors in the cardiovascular system. Br J Pharmacol. 2000;129:823–834.
    76. Goldberg RB, Kendall DM, Deeg MA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28:1547-1554.
    77. de Dios ST, Hannan KM, Dilley RJ, et al. Troglitazone, but not rosiglitazone, inhibits Na/Hexchange activity and proliferation of macrovascular endothelial cells. J Diabetes Complications. 2001;15:120-7.
    78. Romson JL, Hook BG, Kunkel SL, et al. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation,1983,67: 1016-1023.
    79. Ma XL, Tsao PS, Lefer AM. Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. J Clin Invest 1991;88:1237–1243.
    80. Eiserich JP, Baldus S, Brennan ML, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 2002;296:2391–2394.
    81. Schulz E, Anter E, Keaney JF Jr. Oxidative stress, antioxidants, and endothelial function. Curr Med Chem. 2004; 24:2028-2033.
    82. Thomas SR, Chen K, Keaney JG Jr. Oxidative stress and endothelial nitric oxide bioactivity. Antioxid Redox Signal. 2003; 5:181-194.
    83. Vita JA, Treasure CB, Nabel EG, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990; 81:491-497.
    84. Moncada S, Rees DD, Schulz R, et al. Development and mechanism of a specific supersensitivity to nitrovasodilators following inhibition of vascular nitric oxide synthesis in vivo. Proc. Natl. Acad. Sci. 1991; 88:2166-2170.
    85. Harrison JE, Schultz J. Studies on the chlorinating activity of myeloperoxidase . J Biol Chem. 1976; 251:1371-1374.
    86. Xu J, Xie ZL, Reece R, et al. Uncoupling of Endothelial Nitric Oxidase Synthase by Hypochlorous Acid: Role of NAD(P)H Oxidase-Derived Superoxide and Peroxynitrite. Arterioscler Thromb Vasc Biol. 2006; 26:2688-2695.
    87. Sessa WC, Garcia-Cardena G, Liu J, et al. The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J Biol Chem. 1995; 270:17641-17644.
    88. Shaul PW. Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol. 2002; 64:749-774.
    89. Nuszkowski A, Grabner R, Marsche G, et al. Hypochlorite-modified low density lipoprotein inhibits nitric oxide synthesis in endothelial cells via an intracellular dislocalization of endothelial nitric-oxide synthase. J Biol Chem. 2001; 276:14212–14221.
    90. Marsche G, Heller R, Fauler G, et al. Chlorohexadecanal derived from hypochloritemodified high-density lipoprotein-associated plasmalogen is a natural inhibitor of endothelial nitric oxide biosynthesis. Arterioscler Thromb Vasc Biol. 2004; 24:2302–2306.
    91. Zhang C, Reiter C, Eiserich JP, et al. L-arginine chlorination products inhibit endothelial nitric oxide production. J Biol Chem. 2001; 276:27159–27165.
    92. Zhang C, Patel R, Eiserich JP, et al. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid. Am J Physiol Heart Circ Physiol. 2001; 281:H1469–H1475.
    93. Zhang C, Yang J, Jacobs JD, et al. Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: implications for vascular diseases. Am J Phusiol Heart Circ Physiol. 2003; 285:2563-2572.
    94. Baldus S, Rudolph V, Roiss M, et al. Heparins Increase Endothelial Nitric Oxide Bioavailability by Liberating Vessel-Immobilized Myeloperoxidase. Circulation. 2006; 113:1871-1878.
    95. Abu-Soud HM, Hazen SL. Nitric oxide modulates the catalytic activity of myeloperoxidase. J Biol Chem. 2000; 275:5425–5430.
    96. Noctor G, Gomez L, Vanacker H, et al. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 2002;53:1283–1304.
    97. Hazen SL, Zhang R, Shen Z, et al. Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes: pathways for monocyte-mediated protein nitration and lipid peroxidation in vivo. Circ Res 1999;85:950–958.
    98. Robinson AJ, Dickenson JM. Regulation of p42/p44 MAPK and p38 MAPK by the adenosine A(1) receptor in DDT(1)MF-2 cells. Eur J Pharmacol 2001; 413:151–161.
    99. Greenacre SA, Rocha FA, Rawlingson A, et al. Protein nitration in cutaneous inflammation in the rat: essential role of inducible nitric oxide synthase and polymorphonuclear leukocytes. Br J Pharmacol 2002;136:985–994.
    100.Gaut JP, Byun J, Tran HD, et al. Myeloperoxidase produces nitrating oxidants in vivo. J Clin Invest 2002; 109:1311–1319.
    101.Eiserich JP, Hristova M, Cross CE, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 1998;391:393–397.
    102.Myzak MC, Carr AC. Myeloperoxidase-dependent caspase-3 activation and apoptosis inHL-60 cells: protection by the antioxidants ascorbate and (dihydro)lipoic acid. Redox Rep 2002;7:47–53.
    103.Wagner BA, Buettner GR, Oberley LW, et al. Myeloperoxidase is involved in H2O2-induced apoptosis of HL-60 human leukemia cells. J Biol Chem 2000;275:22461–22469.
    104.Malsui s, Fu LX, Shimizu M, et a1. Dilated cardiomyopathy defines serum autoantibodies against G-protein-coupled cardiovascular receptors.] Autoimmunity. 1995, 21(2):85-88.
    105.Hao XJ, Li SJ, Liu HR, et al. Immunization withβ1-adrenoreceptor peptide induces cardiomyopathy-like changes in rabbit hearts[J]. Chin Med J. 2002,115(2):170一l74.
    106.Hansson GK. Cell-mediated immunity in atherosclerosis. Curr opin LIPIDOL. 1997,8(5) :301 - 11.
    107.Fu ML, Herlitz H, Wallukat G, et al. Non-desensitized positive chronotropic effect of anti-angiotensionⅡreceptor autoantibodies in patient with malignant hypertension[J ] . Ci rculation ,1996 ,94 :4046a (abstr) .
    108.Dechend R ,Homuth V ,Wallukat G, et al. AT1 receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factors[J ] .Circulation. 2000 ,100 :2382 - 2387.
    109.Iwata M, Yoshikawa T, Baba A, et al. Autoimmunity against the second extracellular loop ofβ1-adrenergic receptor desensitization and myocardial hypertrophy in vivo. Ci rc Res ,2001 ,88 :578 - 586.
    110.Liao Yu-hua, Cheng Long-xian, Tu Yuan-shu, et al. Mechanism of anti -β1 adrenoceptor antibody mediated myocardial damage in dilated cardiomyopathy. J Tongji Med Univ ,1997 ,17 (1) :5 - 8.
    111.krause EG, Bartel S, Beyerclorfer, et al. Activation of cyclic AMP-dependent protein kinase in cardiomyocytes by anti-beta 1-adrenocepter autoantibodies from patients with idiopathic dilated cardiomyopathy. Blood Press Suppl,1996,3:37 - 40.
    112.Jahns R, Boivin V, Siegmund C, et al. Activativy beta-1-adrenoceptor antibodies are not associated with cardiomyopathies secondary to valvular or hypertensive heart disease. J A m Coll Cardiol ,1999 ,34(5) :1545 - 1551.
    113.Wallukat G, Fu MM, Matsui S, et al. Autoantibodies against M2-muscarinic receptors in patients with cardiomyopathy display non - desensitized agonist - like effect. L if eSci ,1999 ,64 (6 - 7) : 465 -469.
    114.Matsui S, Fu ML, Katsuda S, et al. Peptide derived from cardiovascular G-protein-coupled receptors induce morphological cardiomyopathic changes in immunized rabbits. J Mol CellCardiol ,1997 ,29 (2) :645-655.
    115.Gottlieb RA, Engler RL. Apoptosis in myocardial ischemia-reperfusion. Ann N Y Acad Sci. 1999;874:412-26.
    116.Anversa P, Cheng W, Liu Y, et al. Apoptosis and myocardial infarction. Basic Res Cardiol. 1998;93:8-12.
    117.Bialik S, Geenen DL, Bennett MR, et al. Cardiac myocyte apoptosis: a new therapeutic target? In: Frishman WH, Sonnenblick EH, editors. Cardiovascular Pharmacotherapeutics. New York: McGraw-Hill, 1997: 955-72.
    118.Zhi-Qing Zhao, Cullen D. Morris, Jason M. Budde et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovascular Research 2003;59:132-42.
    119.Wang HC, Zhang HF, Guo WY, et al. Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis. 2006, 11(8):1453-1460.
    1. Seymour J. Klebanoff. Myeloperoxidase: friend and foe. Journal of Leukocyte Biology, 77:598-625.
    2. Agner, K. (1941) Verdoperoxidase. A ferment isolated from leucocytes. Acta Chem. Scand. A 2 (Suppl. 8), 1–62.
    3. Schultz J, Kaminker K. (1962) Myeloperoxidase of the leucocyte of normal human blood. Content and localization Arch Biochem Biophys. 96, 465–467.
    4. Morrison M, Hultquist D E. (1963) Lactoperoxidase II Isolation. J Biol Chem. 238, 2843–2849.
    5. Hirsch J G. (1956) Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 103, 589–611.
    6. Hirsch J G, Cohn Z A. (1960) Degranulation of polymorphonuclear leucocytes following phagocytosis of microorganisms. J Exp Med. 112, 1005–1014.
    7. Cohn Z A, Hirsch J G. (1960) The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leukocytes. J Exp Med. 112, 1015–1022.
    8. Klebanoff S J. (1970) Myeloperoxidase-mediated antimicrobial systems and their role in leukocyte function. In Biochemistry of the Phagocytic Process (J. Schultz, ed.) Amsterdam North Holland. 89–110.
    9. Bainton D F, Ullyot J L, Farquhar, M G. (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. Origin and content of azurophil and specific granules. J Exp Med. 134, 907–934.
    10. Nichols B A, Bainton D F. (1973) Differentiation of human monocytes in bone marrow and blood. Sequential formation of two granule populations. Lab Invest. 29, 27–40.
    11. Bainton D F, Farquhar M G. (1970) Segregation and packaging of granule enzymes in eosinophilic leukocytes. J Cell Biol. 45, 54–73.
    12. Klebanoff S J. (1999) Oxygen metabolites from phagocytes. In Inflammation: Basic Principles and Clinical Correlates (J I Gallin and R Snyderman, eds.), Philadelphia, PA, Lippincott Williams & Wilkins, 721–768.
    13. Chang K S, Trujillo J M, Cook R G, Stass S A. (1986) Human myeloperoxidase gene: molecular cloning and expression in leukemic cells. Blood. 68, 1411–1414.
    14. Yamada M, Hur SJ, Hashinaka K, Tsuneoka K, Saeki T, Nishio C, Sakiyama F, Tsunasawa S. (1987) Isolation and characterization of a cDNA coding for human myeloperoxidase. Arch Biochem Biophys. 255, 147–155.
    15. Morishita K, Kubota N, Asano S, Kaziro Y, Nagata S. (1987) Molecular cloning and characterization of cDNA for human myeloperoxidase. J Biol Chem. 262, 3844–3851.
    16. Johnson K R, Nauseef W M, Care A, Wheelock M J, Shane S, Hudson S, Koeffler H P, Selsted M, Miller C, Rovera G. (1987) Characterization of cDNA clones for human myeloperoxidase: predicted amino acid sequence and evidence for multiple mRNA species. Nucleic Acids Res. 15, 2013–2028.
    17. Weil S C, Rosner G L, Reid M S, Chisholm R L, Farber N M, Spitznagel J K, Swanson M S. (1987) cDNA cloning of human myeloperoxidase: decrease in myeloperoxidase mRNA upon induction of HL-60 cells. Proc Natl Acad Sci. USA. 84, 2057–2061.
    18. Venturelli D, Bittenbender S, Rovera G. (1989) Sequence of the murine myeloperoxidase (MPO) gene. Nucleic Acids Res. 17, 7987–7988.
    19. Hosokawa Y, Kawaguchi R, Hikiji K, Yamada M, Suzuki K, Nakagawa T, Yoshihara T, Yamaguchi K. (1993) Cloning and characterization of four types of cDNA encoding myeloperoxidase from human monocytic leukemia cell line, SKM-1. Leukemia. 7, 441–445.
    20. Johnson K R, Nauseef W M. (1991) Molecular biology of MPO. In Peroxidases in Chemistry and Biology, vol. I (J. Everse, K. E. Everse, and M. B. Grisham, eds.), Boca Raton, FL, CRC, 63–81.
    21. Chang K S, Schroeder W, Siciliano M J, Thompson L H, Mc-Credie K, Beran M, Freireich E J, Liang J C, Trujillo J M, Stass S A. (1987) The localization of the human myeloperoxidase gene is in close proximity to the translocation breakpoint in acute promyelocytic leukemia. Leukemia. 1, 458–462.
    22. Inazawa J, Inoue K, Nishigaki H, Tsuda S, Taniwaki M, Misawa S, Abe T. (1989) Assignment of the human myeloperoxidase gene (MPO) to bands q21.3 3 q23 of chromosome 17. Cytogenet Cell Genet. 50, 135–136.
    23. Zaki S R, Austin G E, Chan W C, Conaty A L, Trusler S, Trappier S, Lindsey R B, Swan D C. (1990) Chromosomal localization of the human myeloperoxidase gene by in situ hybridization using oligonucleotide probes. Genes Chromosomes Cancer. 2, 266–270.
    24. Nauseef W M, Olsson I, Arnljots K. (1988) Biosynthesis and processing of myeloperoxidase—a marker for myeloid cell differentiation. Eur J Haematol. 40, 97–110.
    25. Stromberg J, Persson A-M, Olsson I. (1986) The processing and intracellular transport of myeloperoxidase. Modulation by lysosomotropic agents and monensin. Eur J Cell Biol. 39, 424–431.
    26. Nauseef W M. (1986) Myeloperoxidase biosynthesis by a human promyelocytic leukemia cell line: insight into myeloperoxidase deficiency. Blood. 67, 865–872.
    27. Nauseef W M, McCormick S J, Clark R A. (1995) Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J Biol Chem. 270, 4741–4747.
    28. Nauseef W M, McCormick S J, Goedken M. (1998) Coordinated participation of calreticulin and calnexin in the biosynthesis of myeloperoxidase. J Biol Chem. 273, 7107–7111.
    29. Nauseef W M, McCormick S, Yi H. (1992) Roles of heme insertion and the mannose-6-phosphate receptor in processing of the human myeloid lysosomal enzyme, myeloperoxidase. Blood. 80, 2622–2633.
    30. Pinnix I B, Guzman G S, Bonkovsky H L, Zaki S R, Kinkade Jr J M. (1994) The post-translational processing of myeloperoxidase is regulated by the availability of heme. Arch Biochem Biophys. 312, 447–458.
    31. Nauseef W M, Cogley M, McCormick S. (1996) Effect of the R569W missense mutation on the biosynthesis of myeloperoxidase. J Biol Chem. 271, 9546–9549.
    32. Andrews P C, Krinsky N I. (1981) The reductive cleavage of myeloperoxidase in half, producing enzymatically active hemi-myeloperoxidase. J Biol Chem. 256, 4211–4218.
    33. Harrison J E, Pabalan S, Schultz J. (1977) The subunit structure of crystalline canine myeloperoxidase. Biochim Biophys Acta. 493, 247– 259.
    34. Olsen R L., Little C. (1984) Studies on the subunits of human myeloperoxidase. Biochem J. 222, 701–709.
    35. Atkin C L., Andersen M R., Eyre H J. (1982) Abnormal neutrophil myeloperoxidase from a patient with chronic myelocytic leukemia. Arch. Biochem Biophys. 214, 284–292.
    36. Andrews P C, Parnes C, Krinsky N I. (1984) Comparison of myeloperoxidase and hemi-myeloperoxidase with respect to catalysis, regulation, and bactericidal activity. Arch Biochem Biophys. 228, 439–442.
    37. Nauseef W M, Malech H L. (1986) Analysis of the peptide subunits of human neutrophil myeloperoxidase. Blood. 67, 1504–1507.
    38. Taylor K L, Guzman G S, Pohl J, Kinkade Jr J M. (1990) Distinct chromatographic forms of human hemi-myeloperoxidase obtained by reductive cleavage of the dimeric enzyme. J Biol Chem. 265, 15938–15946.
    39. Edwards S W, Nurcombe H L, Hart C A. (1987) Oxidative inactivation of myeloperoxidase released from human neutrophils. Biochem J. 245, 925–928.
    40. King C C, Jefferson M M, Thomas E L. (1997) Secretion and inactivation of myeloperoxidase by isolated neutrophils. J Leukoc Biol. 61, 293–302.
    41. Schmekel B, Hornblad Y, Linden M, Sundstrom C, Venge P. (1990) Myeloperoxidase in human lung lavage II Internalization of myeloperoxidase by alveolar macrophages. Inflammation. 14, 455–461.
    42. Shepherd V L, Hoidal J R. (1990) Clearance of neutrophil-derived myeloperoxidase by the macrophage mannose receptor. Am J Respir Cell Mol Biol. 2, 335–340.
    43. Selvaraj R J, Zgliczynski J M, Sbarra A J. (1978) Enhanced killing of myeloperoxidase-coated bacteria in the myeloperoxidase-H2O2-Cl– system. J Infect Dis. 137, 481–485.
    44. Ramsey P G, Martin T, Chi E, Klebanoff S J. (1982) Arming of mononuclear phagocytes by eosinophil peroxidase bound to Staphylococcus aureus. J Immunol. 128, 415–420.
    45. Noqueira N M, Klebanoff S J, Cohn Z A. (1982) T. cruzi: sensitization to macrophage killing by eosinophil peroxidase. J Immunol. 128, 1705–1708.
    46. Locksley R M, Wilson C B, Klebanoff S J. (1982) Role for endogenous and acquired peroxidase in the toxoplasmacidal activity of murine and human mononuclear phagocytes. J Clin Invest. 69, 1099–1111.
    47. Kojima S. (1931) Studies on peroxidase II The effect of peroxidase on the bactericidal action of phenols. J Biochem. 14, 95–109.
    48. Klebanoff S J. (1959) An effect of thyroxine and related compounds on the oxidation of certain hydrogen donors by the peroxidase system. J Biol Chem. 234, 2437–2442.
    49. Klebanoff S J. (1959) An effect of thyroxine on the oxidation of reduced pyridine nucleotides by the peroxidase system. J Biol Chem. 234, 2480–2485.
    50. Morrison M, Hultquist D E. (1963) Lactoperoxidase II Isolation. J Biol Chem. 238, 2843–2849.
    51. Agner K. (1958) Crystalline myeloperoxidase. Acta Chem Scand A. 12, 89–94.
    52. Sbarra A J, Karnovsky M L. (1959) The biochemical basis of phagocytosis1 Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 234, 1355–1362.
    53. Sbarra A J, Karnovsky M L. (1960) The biochemical basis of phagocytosis 2 Incorporation of C14-labeled building blocks into lipid, protein, and glycogen of leukocytes during phagocytosis. J Biol Chem. 235, 2224–2229.
    54. Iyer G Y N, Islam D M F, Quastel J H. (1961) Biochemical aspects of phagocytosis. Nature. 192, 535–541.
    55. Zeldow B J. (1959) Studies on the antibacterial activity of human saliva I A bactericidin for lactobacilli. J Dent Res. 38, 798–804.
    56. Dogon I L, Kerr A C, Amdur B H. (1962) Characterization of an antibacterial factor in human parotid secretions, active against Lactobacillus casei. Arch Oral Biol. 7, 81–90.
    57. Klebanoff S J, Luebke R G. (1965) The antilactobacillus system of saliva. Role of salivary peroxidase. Proc Soc Exp Biol Med. 118, 483–486.
    58. Klebanoff S J, Clem W H, Luebke R G. (1966) The peroxidasethiocyanate-hydrogen peroxide antimicrobial system. Biochim Biophys Acta. 117, 63–72.
    59. Reiter B, Pickering A, Oram J D. (1964) An inhibitory system- lactoperoxidase/thiocyanate/peroxide-in raw milk. 4th Inernationaional Symposium on Food Microbiology SIK, Goteborg, Sweden, 297–305.
    60. Klebanoff S J. (1967) A peroxidase-mediated antimicrobial system in leukocytes. J Clin Invest. 46, 1078A.
    61. Klebanoff S J. (1967) Iodination of bacteria: a bactericidal mechanism. J Exp Med. 126, 1063–1078.
    62. Klebanoff S J. (1968) Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol. 95, 2131–2138.
    63. Klebanoff S J. (1999) Myeloperoxidase. Proc Assoc Am Physicians. 111, 383–389.
    64. McRipley R J, Sbarra A J. (1967) Role of the phagocyte in hostparasite interactions XII Hydrogenperoxide-myeloperoxidase bactericidal system in the phagocyte. J Bacteriol. 94, 1425–1430.
    65. Paul B B, Jacob A A, Strauss R R, Sbarra A J. (1970) Role of the phagocyte in host-parasite interactions. XXIV Aldehyde formation by the myeloperoxidase-H2O2-chloride anti-microbial system: A possible in vivo mechanism of action. Infect Immun. 2, 414–418.
    66. Hampton M B, Kettle A J, Winterbourn C C. (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 92, 3007–3017.
    67. Winterbourn C C, Vissers M C, Kettle A J. (2000) Myeloperoxidase. Curr Opin Hematol. 7, 53–58.
    68. Klebanoff S J. (1970) Myeloperoxidase: contribution to the microbicidal activity of intact leukocytes. Science. 169, 1095–1097.
    69. Koch C. (1974) Effect of sodium azide upon normal and pathological granulocyte function. Acta Pathol Microbiol Scand B. 82, 136–142.
    70. Lehrer R I. (1971) Inhibition by sulfonamides of the candidacidal activity of human neutrophils. J Clin Invest. 50, 2498–2505.
    71. Korchak H M, Roos D, Giedd K N, Wynkoop E M, Vienne K,Rutherford L E, Buyon J P, Rich A M, Weissmann G. (1983) Granulocytes without degranulation: neutrophil function in granule-depleted cytoplasts. Proc Natl Acad Sci. USA. 80, 4968–4972.
    72. Roos, D., Voetman, A. A., Meerhof, L. J. (1983) Functional activity of enucleated human polymorphonuclear leukocytes. J. Cell Biol. 97,368–377.
    73. Odell E W, Segal A W. (1988) The bactericidal effects of the respiratory burst and the myeloperoxidase system isolated in neutrophil cytoplasts. Biochim Biophys Acta. 971, 266–274.
    74. Schock L, Vercellotti G, Stroncek D, Jacob H S. (1984) Use of lysosome-free PMN cytoplasts (“neutroplasts”) uncovers the critical role of myeloperoxidase for target cell lysis. Clin Res. 32, 753A.
    75. Stroncek D F, Vercellotti G M, Huh P W, Jacob H S. (1986) Neutrophil oxidants inactivate _-1-protease inhibitor and promote PMN mediated detachment of cultured endothelium. Protection by free methionine Arteriosclerosis. 6, 332–340.
    76. Lehrer R I, Cline M J. (1969) Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest. 48, 1478–1488.
    77. Lehrer R I, Hanifin J, Cline M J. (1969) Defective bactericidal activity in myeloperoxidase-deficient human neutrophils. Nature. 223, 78–79.
    78. Parry M F, Root R K, Metcalf J A, Delaney K K, Kaplow L S, Richar W J. (1981) Myeloperoxidase deficiency. Prevalence and clinical significance. Ann Intern Med. 95, 293–301.
    79. Kutter D. (1998) Prevalence of myeloperoxidase deficiency: population studies using Bayer- Technicon automated hematology. J Mol Med. 76,669–675.
    80. Suzuki K, Nunoi H, Miyazaki M, Koi F. (2000) Prevalence of inherited myeloperoxidase deficiency in Japan. In The Peroxidase Multigene Family of Enzymes. Biochemical Basis and Clinical Applications (P. E. Petrides and W. M. Nauseef, eds.), Berlin, Springer, 145–149.
    81. Cramer R, Soranzo M R, Dri P, Rottini G D, Bramezza M, Cirielli S, Patriarca P. (1982) Incidence of myeloperoxidase deficiency in an area of northern Italy: histochemical, biochemical and functional studies. Br J Haematol. 51, 81–87.
    82. Hoy A, Leininger-Muller B, Kutter D, Siest G, Visvikis S. (2002) Growing significance of myeloperoxidase in non-infectious diseases.Clin Chem Lab Med. 40, 2–8.
    83. Kutter D, Devaquet P, Vanderstocken G, Paulus J M, Marchal V, Gothot A. (2000) Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit? Acta Haematol. 104, 10–15.
    84. Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F, Maeda N. (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun. 67, 1828–1836.
    85. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, Maeda N, Koyama H. (2000) Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. J Infect Dis. 182, 1276–1279.
    86. Gaut J P, Yeh G C, Tran H D, Byun J, Henderson J P, Richter G M, Brennan M L, Lusis A J, Belaaouaj A, Hotchkiss R S, Heinecke J W. (2001) Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc Natl Acad Sci. USA. 98,11961–11966.
    87. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, Dinauer M C, Maeda N, Koyama H. (2002) Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J Infect Dis. 185, 1833–1837.
    88. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, Dinauer M C, Maeda N, Koyama H. (2002) Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med Mycol. 40, 557–563.
    89. Rosen H, Michel B R. (1997) Redundant contribution of myeloperoxidase-dependent systems to neutrophil-mediated killing of Escherichia coli. Infect Immun. 65, 4173–4178.
    90. Klebanoff S J. (1993) Reactive nitrogen intermediates and antimicrobial activity: role of nitrite. Free Radic Biol Med. 14, 351–360.
    91. Gaut J P, Byun J, Tran H D, Lauber W M, Carroll J A, Hotchkiss R S, Belaaouaj A, Heinecke J W. (2002) Myeloperoxidase produces nitrating oxidants in vivo. J Clin Invest. 109, 1311–1319.
    92. Klebanoff S J, Green W L. (1973) Degradation of thyroid hormones by phagocytosing human leukocytes. J Clin Invest. 52, 60–72.
    93. Woeber K A, Ingbar S H. (1973) Metabolism of L-thyroxine by phagocytosing human leukocytes. J Clin Invest. 52, 1796–1803.
    94. Thomas E L, Fishman M. (1986) Oxidation of chloride and thiocyanate by isolated leukocytes. J Biol Chem. 261, 9694–9702.
    95. van Dalen C J, Whitehouse M W, Winterbourn C C, Kettle A J. (1997) Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J. 327, 487–492.
    96. Furtmuller P G, Burner U, Obinger C. (1998) Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate. Biochemistry. 37, 17923–17930.
    97. Briggs R T, Karnovsky M L, Karnovsky M J. (1975) Cytochemical demonstration of hydrogen peroxide in the polymorphonuclear leukocyte phagosomes. J Cell Biol. 64, 254–260.
    98. Briggs R T, Drath D B, Karnovsky M L, Karnovsky M J. (1975) Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method. J Cell Biol. 67,566–586.
    99. Briggs R T, Robinson J M, Karnovsky M L, Karnovsky M J. (1986) Superoxide production by polymorphonuclear leukocytes A cytochemical approach. Histochemistry. 84, 371–378.
    100. Amin V M, Olson N F. (1968) Selective increase in hydrogen peroxide resistance of a coagulase-positive staphylococcus. J Bacteriol. 95, 1604–1607.
    101. Amin V M, Olson N F. (1968) Influence of catalase activity on resistance of coagulase- positive staphylococci to hydrogen peroxide. Appl Microbiol. 16, 267–270.
    102. Mandell G L. (1975) Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal-leukocyte interaction. J Clin Invest. 55, 561–566.
    103. Root R K. (1974) Correction of the function of chronic granulomatous disease (CGD) granulocytes (PMN) with extracellular H2O2. Clin Res. 22, 452A.
    104. Johnston Jr R B, Baehner R L. (1970) Improvement of leukocyte bactericidal activity in chronic granulomatous disease. Blood. 35, 350–355.
    105. smail G, Boxer L A, Baehner R L. (1979) Utilization of liposomes for correction of the metabolic and bactericidal deficiencies in chronic granulomatous disease. Pediatr Res. 13, 769–773.
    106. Gerber C E, Bruchelt G, Falk U B, Kimpfler A, Hauschild O, Kuci S, Bachi T, Niethammer D, Schubert R. (2001) Reconstitution of bactericidal activity in chronic granulomatous disease cells by glucose-oxidase-containing liposomes. Blood. 98, 3097–3105.
    107. Kaplan E L, Laxdal T, Quie P G. (1968) Studies of polymorphonuclear leukocytes from patients with chronic granulomatous disease of childhood: bactericidal capacity for streptococci. Pediatrics. 41, 591–599.
    108. Klebanoff S J, White L R. (1969) Iodination defect in the leukocytes of a patient with chronic granulomatous disease of childhood. N Engl J Med. 280, 460–466.
    109. Mandell G L, Hook E W. (1969) Leukocyte bactericidal activity in chronic granulomatous disease:correlation of bacterial hydrogen peroxide production and susceptibility to intracellular killing. J Bacteriol.100, 531–532.
    110. Holmes B, Good R A. (1972) Laboratory models of chronic granulomatous disease. J Reticuloendothel Soc. 12, 216–237.
    111. Pitt J, Bernheimer H P. (1974) Role of peroxide in phagocytic killing of pneumococci. Infect Immun. 9, 48–52.
    112. Shohet S B, Pitt J, Baehner R L, Poplack D G. (1974) Lipid peroxidation in the killing of phagocytized pneumococci. Infect Immun.10, 1321–1328.
    113. Rossi F, Zatti M. (1964) Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia. 20, 21–23.
    114. Babior B M, Kipnes R S, Curnutte J T. (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 52, 741–744.
    115. Babior B M, Lambeth J D, Nauseef W. (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys. 397, 342–344.
    116. Babior B M. (2004) NADPH oxidase. Curr Opin Immunol. 16, 42–47.
    117. Roos D, van Bruggen R, Meischl C. (2003) Oxidative killing of microbes by neutrophils. Microbes Infect. 5, 1307–1315.
    118. Quinn M T, Gauss K A. (2004) Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol. 76, 760–781.
    119. Bromberg Y, Pick E. (1984) Unsaturated fatty acids stimulate NADPHdependent superoxide production by cell-free system derived from macrophages. Cell Immunol. 88, 213–221.
    120. Heyneman R A, Vercauteren R E. (1984) Activation of a NADPH oxidase from horse polymorphonuclear leukocytes in a cell-free system. J Leukoc Biol. 36, 751–759.
    121. Bromberg Y, Pick E. (1985) Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J Biol Chem. 260, 13539–13545.
    122. Segal A W, Jones O T. (1978) Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature. 276, 515–517.
    123. Segal A W, Garcia R, Goldstone A H, Cross A R, Jones O T G. (1981) Cytochrome b–245 of neutrophils is also present in human monocytes, macrophages and eosinophils. Biochem J. 196, 363–367.
    124. Royer-Pokora B, Kunkel L M, Monaco A P, Goff S C, Newburger P E, Baehner R L, Cole F S, Curnutte J T, Orkin S H. (1986) Cloning the gene for an inherited human disorder– chronic granulomatous disease– on the basis of its chromosomal location. Nature. 322, 32–38.
    125. Orkin S H. (1986) Reverse genetics and human disease. Cell. 47, 845–850.
    126. Abo A, Pick E, Hall A, Totty N, Teahan C G, Segal A W. (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 353, 668–670.
    127. Knaus U G, Heyworth P G, Evans T, Curnutte J T, Bokoch G M. (1991) Regulation of phagocyte oxygen radical production by the GTPbinding protein Rac 2. Science. 254, 1512–1515.
    128. Heyworth P G, Bohl B P, Bokoch G M, Curnutte J T. (1994) Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558. J Biol Chem. 269, 30749–30752.
    129. Volpp B D, Nauseef W M, Clark R A. (1988) Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science. 242, 1295–1297.
    130. Volpp B D, Nauseef W M, Donelson J E, Moser D R, Clark R A. (1989) Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci. USA. 86, 7195–7199.
    131. Leto T L, Lomax K J, Volpp B D, Nunoi H, Sechler J M, Nauseef W M, Clark R A, Gallin J I, Malech H L. (1990) Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src. Science. 248, 727–730.
    132. Bokoch, G. M., Diebold, B. A. (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100, 2692–2696.
    133. Quie P G, White J G, Holmes B, Good R A. (1967) In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest. 46, 668–679.
    134. Berendes H, Bridges R A, Good R A. (1957) A fatal granulomatosus of childhood: the clinical study of a new syndrome. Minn Med. 40, 309–312.
    135. Holmes B, Page A R, Good R A. (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 46, 1422–1432.
    136. Segal B H, Leto T L, Gallin J I, Malech H L, Holland S M. (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore). 79, 170–200.
    137. Heyworth P G, Cross A R, Curnutte J T. (2003) Chronic granulomatous disease. Curr Opin Immunol. 15, 578–584.
    138. Segal A W, Jones O T, Webster D, Allison A C. (1978) Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease. Lancet. 2, 446–449.
    139. Dinauer M C, Curnutte J T, Rosen H, Orkin S H. (1989) A missense mutation in the neutrophil cytochrome b heavy chain in cytochrome- positive X-linked chronic granulomatous disease. J Clin Invest. 84, 2012–2016.
    140. Nunoi H, Rotrosen D, Gallin J I, Malech H L. (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science. 242, 1298–1301.
    141. Ambruso D R, Knall C, Abell A N, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck R J, Oyer R, Johnson G L, Roos D. (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci. USA. 97, 4654–4659.
    142. Williams D A, Tao W, Yang F, Kim C, Gu Y, Mansfield P, Levine J E, Petryniak B, Derrow, C W, Harris C, Jia B, Zheng Y, Ambruso D R, Lowe J B, Atkinson S J, Dinauer M C, Boxer L. (2000) Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood. 96, 1646–1654.
    143. Kurkchubasche A G, Panepinto J A, Tracy Jr T F, Thurman G W, Ambruso D R. (2001) Clinical features of a human Rac2 mutation: a complex neutrophil dysfunction disease. J Pediatr. 139, 141–147.
    144. Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen J H, Skatchkov M, Heitzer T, Stasch J P, Griendling K K, Harrison D G, Bohm M, Meinertz T, Munzel T. (1999) Increased NADH oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation. 99, 2027–2033.
    145. Yokoyama M, Inoue N, Kawashima S. (2000) Role of the vascular NADH/NADPH oxidase system in atherosclerosis. Ann N Y Acad Sci. 902, 241–247.
    146. Griendling K K, Sorescu D, Ushio-Fukai M. (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 86, 494–501.
    147. Sorescu, D., Szocs, K., Griendling, K. K. (2001) NAD(P)H oxidases and their relevance to atherosclerosis. Trends Cardiovasc. Med. 11, 124–131.
    148. Souza H P, Laurindo F R, Ziegelstein R C, Berlowitz C O, Zweier J L. (2001) Vascular NAD(P)H oxidase is distinct from the phagocytic enzyme and modulates vascular reactivity control. Am. J Physiol Heart Circ Physiol. 280, H658–H667.
    149. Zhang C, Yang J, Jacobs J D, Jennings L K. (2003) Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: implications for vascular diseases. Am J Physiol Heart Circ Physiol. 285, H2563–H2572.
    150. Eiserich J P, Baldus S, Brennan M L, Ma W, Zhang C, Tousson A, Castro L, Lusis A J, Nauseef W M, White C R, Freeman B A.(2002) Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 296, 2391–2394.
    151. Bokoch G M, Knaus U G. (2003) NADPH oxidases: not just for leukocytes anymore! Trends Biochem Sci. 28, 502–508.
    152. Lambeth J D. (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 4, 181–189.
    153. Suh Y A, Arnold R S, Lassegue B, Shi J, Xu X, Sorescu D,Chung A B, Griendling K K, Lambeth J D.(1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature. 401, 79–82.
    154. Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S, Hattori M, Sakaki Y, Sumimoto H. (2001) A novel superoxideproducing NAD(P)H oxidase in kidney. J Biol Chem. 276, 1417–1423.
    155. Dupuy C, Ohayon R, Valent A, Noel-Hudson M S, Deme D, Virion A. (1999) Purification of a novel flavoprotein involved in the thyroid NADPH oxidase Cloning of the porcine and human cdnas. J Biol Chem. 274, 37265–37269.
    156. De Deken X, Wang D, Many M C, Costagliola S, Libert F, Vassart G, Dumont J E, Miot F. (2000) Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem. 275, 23227–23233.
    157. Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N, Krause K H. (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem. 276, 37594–37601.
    158. Geiszt M, Kopp J B, Varnai P, Leto T L. (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci. USA. 97, 8010–8014.
    159. Banfi B, Clark R A, Steger K, Krause K H. (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem. 278, 3510–3513.
    160. Edens W A, Sharling L, Cheng G, Shapira R, Kinkade J M, Lee T, Edens H A, Tang X, Sullards C, Flaherty D B, Benian G M, Lambeth J D. (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol. 154, 879–891.
    161. Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H. (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem. 278, 25234–25246.
    162. Cheng G, Lambeth J D. (2004) NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem. 279, 4737–4742.
    163. Banfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnar G Z,Krause K H, Cox J A. (2004) Mechanism of Ca2_ activation of the NADPH oxidase NOX5. J Biol Chem. 279, 18583–18591.
    164. De Deken X, Wang D, Dumont J E, Miot F. (2002) Characterization of ThOX proteins as components of the thyroid H(2)O(2)-generating system. Exp Cell Res. 273, 187–196.
    165. Moreno J C, Bikker H, Kempers M J, van Trotsenburg A S, Baas F, de Vijlder J J, Vulsma T, Ris-Stalpers C. (2002) Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med. 347, 95–102.
    166. Geiszt M, Witta J, Baffi J, Lekstrom K, Leto T L. (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 17, 1502–1504.
    167. Granger D N, Rutili G, McCord J M. (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology. 81, 22–29.
    168. Whittenbury R. (1964) Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J Gen Microbiol. 35, 13–26.
    169. Eschenbach D A, Davick P R, Williams B L, Klebanoff S J, Young-Smith K, Critchlow C M, Holmes K K. (1989) Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J Clin Microbiol. 27, 251–256.
    170. Gupta K, Stapleton A E, Hooton T M, Roberts P L, Fennell C L, Stamm W E. (1998) Inverse association of H2O2-producing lactobacilli and vaginal Escherichia coli colonization in women with recurrent urinary tract infections. J Infect Dis. 178, 446–450.
    171. Klebanoff S J, Hillier S L, Eschenbach D A, Waltersdorph A W. (1991) Control of the microbial flora of the vagina by H2O2-generating lactobacilli. J Infect.Dis. 164, 94–100.
    172. Klebanoff S J. (1992) Effects of the spermicidal agent nonoxynol-9 on vaginal microbial flora. J Infect Dis. 165, 19–25.
    173. Klebanoff S J, Coombs R W. (1991) Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: possible role in heterosexual transmission. J Exp Med. 174, 289–292.
    174. Herzberg M, Joel C A, Katchalsky A. (1964) The cyclic variation of sodium chloride content in the mucus of the cervix uteri. Fertil Steril. 15, 684–694.
    175. Hooton T M, Klebanoff S J. (1993) Association of urogenital infections with spermicides. Infect Med. 10, 40–47.
    176. Hooton T M, Hillier S, Johnson C, Roberts P L, Stamm W E. (1991) Escherichia coli bacteriuria and contraceptive method. JAMA. 265, 64–69.
    177. McGroarty J A, Chong S, Reid G, Bruce A W. (1990) Influence of the spermicidal compound nonoxynol-9 on the growth and adhesion of urogenital bacteria in vitro. Curr Microbiol. 21, 219–223.
    178. Agner K. (1958) Peroxidative oxidation of chloride ions. In Proceedings of the 4th International Congress on Biochemistry, Vienna, 15, 64A.
    179. Agner K. (1972) Biological effects of hypochlorous acid formed by“MPO”-peroxidation in the presence of chloride ions. In Structure and Function of Oxidation Reduction Enzymes, vol. 18 (A. Akeson and A.Ehrenberg, eds.), New York, NY, Pergamon, 329–335.
    180. Harrison J E, Schultz J. (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem. 251, 1371–1374.
    181. Odajima T, Yamazaki I. (1970) Myeloperoxidase of the leukocyte of normal blood. I. Reaction of myeloperoxidase with hydrogen peroxide. Biochim Biophys Acta 206, 71–77.
    182. Marquez L A, Huang J T, Dunford H B. (1994) Spectral and kinetic studies on the formation of myeloperoxidase compounds I and II: roles of hydrogen peroxide and superoxide. Biochemistry. 33, 1447–1454.
    183. Furtmuller P G, Burner U, Jantschko W, Regelsberger G, Obinger C. (2000) The reactivity of myeloperoxidase compound I formed with hypochlorous acid. Redox Rep. 5, 173–178.
    184. Harrison J E. (1976) The functional mechanism of myeloperoxidase. In Cancer Enzymology (J. Schultz and F. Ahmad, eds.), New York, NY,Academic, 305–317.
    185. Kettle A J, Winterbourn C C. (1988) Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid. Biochem J. 252, 529–536.
    186. Kettle A J, Winterbourn C C. (1989) Influence of superoxide on myeloperoxidase kinetics measured with a hydrogen peroxide electrode. Biochem J. 263, 823–828.
    187. Kettle A.J, Winterbourn C C. (1990) Superoxide enhances hypochlorous acid production by stimulated human neutrophils. Biochim Biophys Acta. 1052, 379–385.
    188. Bolscher B G J M, Zoutberg G R, Cuperus R A, Wever R. (1984) Vitamin C stimulates the chlorinating activity of human myeloperoxidase. Biochim Biophys Acta. 784, 189–191.
    189. Marquez L A, Dunford H B, Van Wart H. (1990) Kinetic studies on the reaction of compound II of myeloperoxidase with ascorbic acid. Role of ascorbic acid in myeloperoxidase function. J Biol Chem. 265, 5666–5670.
    190. Kettle A J, Winterbourn C C. (1991) The influence of superoxide on the production of hypochlorous acid by human neutrophils. Free Radic Res Commun. 12-13, 47–52.
    191. Marquez L A, Dunford H B. (1990) Reaction of compound III of myeloperoxidase with ascorbic acid. J Biol Chem. 265, 6074–6078.
    192. Odajima T, Yamazaki I. (1972) Myeloperoxidase of the leukocyte of normal blood. III. The reaction of ferric myeloperoxidase with superoxide anion. Biochim Biophys Acta. 284, 355–359.
    193. Winterbourn C C, Garcia R C, Segal A W. (1985) Production of the superoxide adduct of myeloperoxidase (compound III) by stimulated human neutrophils and its reactivity with hydrogen peroxide and chloride. Biochem J. 228, 583–592.
    194. Metodiewa D, Dunford H B. (1989) The reactions of horseradish peroxidase, lactoperoxidase, and myeloperoxidase with enzymatically generated superoxide. Arch Biochem Biophys. 272, 245–253.
    195. Kettle A J, Sangster D F, Gebicki J M, Winterbourn C C. (1988) A pulse radiolysis investigation of the reactions of myeloperoxidase with superoxide and hydrogen peroxide. Biochim Biophys Acta. 956, 58–62.
    196. Wittenberg J B, Noble R W, Wittenberg B A, Antonini E, Brunori M, Wyman J. (1967) Studies on the equilibria and kinetics of the reactions of peroxidase with ligands. II. The reaction of ferroperoxidase with oxygen. J Biol Chem. 242, 626–634.
    197. Yamazaki I, Yokota K N. (1973) Oxidation states of peroxidase. Mol Cell Biochem. 2, 39– 52.
    198. Phelps C F, Antonini E, Giacometti G, Brunori M. (1974) The kinetics of oxidation of ferroperoxidase by molecular oxygen. Biochem J. 141, 265–272.
    199. Tamura M, Yamazaki I. (1972) Reactions of the oxyform of horseradish peroxidase. J Biochem. (Tokyo). 71, 311–319.
    200. Yokota K, Yamazaki I. (1965) Reaction of peroxidase with reduced nicotinamide-adenine dinucleotide and reduced nicotinamide-adenine dinucleotide phosphate. Biochim Biophys Acta. 105, 301–312.
    201. Yokota K, Yamazaki I. (1965) The activity of the horseradish peroxidase compound III. Biochem Biophys Res Commun. 18, 48–53.
    202. Hazen S L, Hsu F F, Mueller D M, Crowley J R, Heinecke J W. (1996) Human neutrophils employ chlorine gas as an oxidant during phagocytosis. J Clin Invest. 98, 1283–1289.
    203. Hazen S L, Hsu F F, Duffin K, Heinecke J W. (1996) Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols. J Biol Chem. 271, 23080–23088.
    204. Henderson J P, Byun J, Heinecke J W. (1999) Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes produces 5-chlorocytosine in bacterial RNA. J Biol Chem. 274, 33440–33448.
    205. Winterbourn C C. (2002) Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid. Toxicology. 181–182, 223–227.
    206. Albrich J M, Gilbaugh J H I, Callahan K B, Hurst J K. (1986) Effects of the putative neutrophil-generating toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coli. J Clin Invest. 78, 177–184.
    207. Rakita R M, Michel B R, Rosen H. (1990) Differential inactivation of Escherichia coli membrane dehydrogenases by a myeloperoxidasemediated antimicrobial system. Biochemistry. 29, 1075–1080.
    208. Barrette Jr W C, Albrich J M, Hurst J K. (1987) Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli. Infect Immun. 55, 2518–2525.
    209. Rosen H, Orman J, Rakita R M, Michel B R, VanDevanter D R. (1990) Loss of DNA-membrane interactions and cessation of DNA synthesis in myeloperoxidase-treated Escherichia coli. Proc Natl Acad Sci. USA. 87, 10048–10052.
    210. Hazen S L, d’Avignon A, Anderson M M, Hsu F F, Heinecke J W. (1998) Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidizeα-amino acids to a family of reactive aldehydes. Mechanistic studies identifying labile intermediates along the reaction pathway. J Biol Chem. 273, 4997–5005.
    211. Hazen S L, Hsu F F, d’Avignon A, Heinecke J W. (1998) Human neutrophils employ myeloperoxidase to convert-amino acids to a battery of reactive aldehydes: a pathway for aldehyde generation at sites of inflammation. Biochemistry. 37, 6864–6873.
    212. Soupart P. (1962) Free amino acids in blood and urine in the human. In Amino Acid Pools (J. T. Holden, ed.), Amsterdam, Elsevier, 220–262.
    213. Learn D B, Fried V A, Thomas E L. (1990) Taurine and hypotaurine content of human leukocytes. J Leukoc Biol. 48, 174–182.
    214. Peskin A V, Winterbourn C C. (2003) Histamine chloramine reactivity with thiol compounds, ascorbate, and methionine and with intracellular glutathione. Free Radic Biol Med. 35, 1252–1260.
    215. Schuller-Levis G B, Park E. (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett. 226, 195–202.
    216. Domigan N M, Charlton T S, Duncan M W, Winterbourn C C, Kettle A J. (1995) Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils. J Biol Chem. 270, 16542– 16548.
    217. Heinecke J W, Li W, Daehnke III, H L, Goldstein J A. (1993) Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem. 268, 4069–4077.
    218. Savenkova M I, Mueller D M, Heinecke J W. (1994) Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein. J Biol Chem. 269, 20394–20400.
    219. Jacob J S, Cistola D P, Hsu F F, Muzaffar S, Mueller D M, Hazen S L, Heinecke J W. (1996) Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway. J Biol Chem. 271, 19950–19956.
    220. Heinecke J W, Li W, Francis G A, Goldstein J A. (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative crosslinking of proteins. J Clin Invest. 91, 2866–2872.
    221. Winterbourn C C, Pichorner H, Kettle A J. (1997) Myeloperoxidasedependent generation of a tyrosine peroxide by neutrophils. Arch Biochem Biophys. 338, 15–21.
    222. Fenton H J H. (1894) Oxidation of tartaric acid in the presence of iron. J Chem Soc. 65, 899–910.
    223. Haber F, Weiss J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A. 147, 332–351.
    224. Ramos C L, Pou S, Britigan B E, Cohen M S, Rosen G M. (1992) Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem. 267, 8307–8312.
    225. Lymar S V, Hurst J K. (1995) Role of compartmentation in promoting toxicity of leukocyte- generated strong oxidants. Chem Res Toxicol. 8, 833–840.
    226. Foote C S, Abakerli R B, Clough R L, Lehrer R I. (1980) On the question of singlet oxygen production in polymorphonuclear leucocytes. In Bioluminescence and Chemiluminescence (M. A. DeLuca and W. D.McElroy, eds.), New York, NY, Academic, 81–88.
    227. Foote C S, Abakerli R B, Clough R L, Shook F C. (1980) On the question of singlet oxygen production in leukocytes, macrophages andthe dismutation of superoxide anion. Dev Biochem. 11B, 222–230.
    228. Kanofsky J R, Wright J, Miles-Richardson G E, Tauber A I. (1984) Biochemical requirement for singlet oxygen production by purified human myeloperoxidase. J Clin Invest. 74, 1489–1495.
    229. Kanofsky J R, Tauber A I. (1983) Non-physiologic production of singlet oxygen by human neutrophils and by the myeloperoxidase-H2O2-halide system. Blood. 62, 82a.
    230. Steinbeck M J, Khan A U, Karnovsky M J. (1992) Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J Biol Chem. 267, 13425–13433.
    231. Arisawa F, Tatsuzawa H, Kambayashi Y, Kuwano H, Fujimori K, Nakano M. (2003) MCLA-dependent chemiluminescence suggests that singlet oxygen plays a pivotal role in myeloperoxidase-catalyzed bactericidal action in neutrophil phagosomes. Luminescence. 18, 229–238.
    232. Kiryu C, Makiuchi M, Miyazaki J, Fujinaga T, Kakinuma K. (1999) Physiological production of singlet molecular oxygen in the myeloperoxidase-H2O2-chloride system. FEBS Lett. 443, 154–158.
    233. Wentworth A D, Jones L H, Wentworth Jr P, Janda K D, Lerner R A. (2000) Antibodies have the intrinsic capacity to destroy antigens.Proc. Natl Acad Sci. USA. 97, 10930–10935.
    234. Wentworth Jr P, Jones L H, Wentworth A D, Zhu X, Larsen N A,Wilson I A, Xu X, Goddard III W A, Janda K D, Eschenmoser A, Lerner R A. (2001) Antibody catalysis of the oxidation of water. Science. 293, 1806–1811.
    235. Wentworth Jr P, McDunn J E, Wentworth A D, Takeuchi C,Nieva J, Jones, T, Bautista C, Ruedi J M, Gutierrez A, Janda K D, Babior B M, Eschenmoser A, Lerner R A. (2002) Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science. 298, 2195–2199.
    236. Wentworth Jr P, Wentworth A D, Zhu X, Wilson I A, Janda K D, Eschenmoser A, Lerner R A. (2003) Evidence for the production of trioxygen species during antibody-catalyzed chemical modification of antigens. Proc Natl Acad Sci. USA. 100, 1490–1493.
    237. Babior B M, Takeuchi C, Ruedi J, Gutierrez A, Wentworth Jr P.(2003) Investigating antibody-catalyzed ozone generation by human neutrophils.Proc Natl Acad Sci. USA. 100, 3031–3034.
    238. Kettle A J, Clark B M, Winterbourn C C. (2004) Superoxide converts indigo carmine to isatin sulfonic acid: implications for the hypothesis that neutrophils produce ozone. J Biol Chem. 279, 18521–18525.
    239. Foote C S, Goyne T E, Lehrer R I. (1983) Assessment of chlorination by human neutrophils. Nature. 301, 715–716.
    240. Thomas E L, Grisham M B, Jefferson M M. (1983) Myeloperoxidasedependent effect of amines on functions of isolated neutrophils. J Clin Invest. 72, 441–454.
    241. Weiss S J, Klein R, Slivka A, Wei M. (1982) Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 70, 598–607.
    242. Jiang Q, Griffin D A, Barofsky D F, Hurst J K. (1997) Intraphagosomal chlorination dynamics and yields determined using unique fluorescent bacterial mimics. Chem Res Toxicol. 10, 1080–1089.
    243. Griffin Jr F M, Griffin J A, Leider J E, Silverstein S C. (1975) Studies on the mechanism of phagocytosis. I. Requirements for circum-ferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med. 142, 1263–1282.
    244. Staudinger B J, Oberdoerster M A, Lewis P J, Rosen H. (2002) mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J Clin Invest. 110, 1151–1163.
    245. Root R K, Stossel T P. (1974) Myeloperoxidase-mediated iodination by granulocytes. Intracellular site of operation and some regulating factors. J Clin Invest. 53, 1207–1215.
    246. Segal A W, Garcia R C, Harper A M. (1983) Iodination by stimulated human neutrophils. Studies on its stoichiometry, subcellular localization and relevance to microbial killing. Biochem J. 210, 215–225.
    247. Reeves E P, Nagl M, Godovac-Zimmermann J, Segal A W. (2003) Reassessment of the microbicidal activity of reactive oxygen species and hypochlorous acid with reference to the phagocytic vacuole of the neutrophil granulocyte. J Med Microbiol. 52, 643–651.
    248. Klebanoff S J, Hamon C B. (1972) Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes. J Reticuloendothel Soc. 12, 170–196.
    249. Odeberg H, Olofsson T, Olsson I. (1974) Myeloperoxidase-mediated extracellular iodination during phagocytosis in granulocytes. Scand J Haematol. 12, 155–160.
    250. Wu W, Chen Y, d’Avignon A, Hazen S L. (1999) 3-Bromotyrosine and 3,5- dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo. Biochemistry. 38, 3538–3548.
    251. Buss I H, Senthilmohan R, Darlow B A, Mogridge N, Kettle A J,Winterbourn C C. (2003) 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: association with adverse respiratory outcome. Pediatr Res. 53, 455–462.
    252. Hazen S L, Heinecke J W. (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase- catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin.Invest. 99, 2075–2081.
    253. van der Vliet A, Nguyen M N., Shigenaga M K, Eiserich J P, Marelich G P, Cross C E. (2000) Myeloperoxidase and protein oxidation in cystic fibrosis. Am. J Physiol Lung Cell Mol Physiol. 279, L537–L546.
    254. Lamb N J, Gutteridge J M, Baker C, Evans T W, Quinlan G J. (1999) Oxidative damage to proteins of bronchoalveolar lavage fluid in patients with acute respiratory distress syndrome: evidence for neutrophil-mediated hydroxylation, nitration, and chlorination. Crit Care Med. 27, 1738–1744.
    255. Chapman A L, Hampton M B, Senthilmohan R, Winterbourn C C, Kettle A J. (2002) Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem. 277, 9757–9762.
    256. Rosen H, Crowley J R, Heinecke J W. (2002) Human neutrophils use the myeloperoxidase- hydrogen peroxide-chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis. J Biol Chem. 277, 30463–30468.
    257. Klebanoff S J, Clark R A. (1978) The Neutrophil: Function and Clinical Disorders, Amsterdam, North Holland.
    258. Klebanoff S J, Pincus S H. (1971) Hydrogen peroxide utilization in myeloperoxidase- deficient leukocytes: a possible microbicidal control mechanism. J Clin Invest. 50, 2226–2229.
    259. Cech P, Papathanassiou A, Boreux G, Roth P, Miescher P A. (1979) Hereditary myeloperoxidase deficiency. Blood. 53, 403–411.
    260. Kitahara M, Simonian Y, Eyre H J. (1979) Neutrophil myeloperoxidase: a simple reproducible technique to determine activity. J Lab Clin Med. 93, 232–237.
    261. DeChatelet L R, Long G D, Shirley P S, Bass D A, Thomas M J, Henderson F W, Cohen M S. (1982)Mechanism of the luminoldependent chemiluminescence of human neutrophils. J Immunol. 129, 1589–1593.
    262. Nauseef W M, Root R K, Malech H L. (1983) Biochemical and immunologic analysis of hereditary myeloperoxidse deficiency. J ClinInvest. 71, 1297–1307.
    263. Nauseef W M, Metcalf J A, Root R K. (1983) Role of myeloperoxidase in the respiratory burst of human neutrophils. Blood. 61, 483–492.
    264. Stendahl O, Coble B-I, Dahlgren C, Hed J, Molin L. (1984) Myeloperoxidase modulates the phagocytic activity of polymorphonuclear neutrophil leukocytes. Studies with cells from a myeloperoxidase-deficient patient. J Clin Invest. 73, 366–373.
    265. Dri P, Soranzo M R, Cramer R, Menegazzi R, Miotti V, Patriarca P. (1985) Role of myeloperoxidase in respiratory burst of human polymorphonuclear leukocytes. Studies with myeloperoxidase-deficient subjects. Inflammation. 9, 21–31.
    266. Dri P, Cramer R, Soranzo M R, Miotti R, Menegazzi R, Patriarca P. (1984) Influence of myeloperoxidase on neutrophil functions: studies with MPO-deficient neutrophils. Agents Actions. 15, 43–44.
    267. Jandl R C, Andre-Schwartz J, Borges-Dubois L, Kipnes R S, McMurrich B J, Babior B M. (1978) Termination of the respiratory burst in human neutrophils. J Clin Invest. 61, 1176–1185.
    268. Lynch R E, Fridovich I. (1978) Permeation of the erythrocyte stroma by superoxide radical. J Biol Chem. 253, 4697–4699.
    269. MacMicking J D, Nathan C, Hom G, Chartrain N, Fletcher D S, Trumbauer M, Stevens K, Xie Q W, Sokol K, Hutchinson N. (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 81, 641–650.
    270. Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang F C. (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis I Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med. 192, 227–236.
    271. Murray H W, Teitelbaum R F. (1992) L-arginine-dependent reactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes. J Infect Dis. 165, 513–517.
    272. Schneemann M, Schoedon G, Hofer S, Blau N, Guerrero L,Schaffner A. (1993) Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis.167, 1358–1363.
    273. Denis M. (1994) Human monocytes/macrophages: NO or no NO? J Leukoc Biol. 55, 682–684.
    274. Carreras M C, Pargament G A, Catz S D, Poderoso J J, Boveris A. (1994) Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett. 341, 65–68.
    275. Carreras M C, Catz S D, Pargament G A, Del Bosco C G, Poderoso J J. (1994) Decreased production of nitric oxide by human neutrophils during septic multiple organ dysfunction syndrome. Comparison with endotoxin and cytokine effects on normal cells. Inflammation. 18, 151– 161.
    276. Evans T J, Buttery L D, Carpenter A, Springall D R, Polak J M, Cohen J. (1996) Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proc Natl Acad Sci. USA 93, 9553–9558.
    277. Nathan C, Shiloh M U. (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci. USA. 97, 8841–8848.
    278. Weinberg J B. (1998) Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol.Med. 4, 557–591.
    279. Kroncke K D, Fehsel K, Kolb-Bachofen V. (1998) Inducible nitric oxide synthase in human diseases. Clin Exp Immunol. 113, 147–156.
    280. Bogdan C. (2001) Nitric oxide and the immune response. Nat Immunol. 2, 907–916.
    281. Weinberg J B, Misukonis M A, Shami P J, Mason S N, Sauls D L, Dittman W A, Wood E R, Smith G K, McDonald B, Bachus K E. (1995) Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood. 86, 1184–1195.
    282. Albina J E. (1995) On the expression of nitric oxide synthase by human macrophages. Why no NO? J Leukoc Biol. 58, 643–649.
    283. Saran M, Michel C, Bors W. (1990) Reaction of NO with O2–.Implications for the action of endothelium-derived relaxing factor (EDRF). Free Radic Res Commun. 10, 221–226.
    284. Koppenol W H, Moreno J J, Pryor W A, Ischiropoulos H, Beckman J S. (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. 5, 834–842.
    285. Huie R E, Padmaja S. (1993) The reaction of NO with superoxide. Free Radic Res Commun. 18, 195–199.
    286. Radi R, Beckman J S, Bush K M, Freeman B A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 266, 4244–4250.
    287. Beckman J S, Beckman T W, Chen J, Marshall P A, Freeman B A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci. USA. 87, 1620–1624.
    288. Lymar S V, Khairutdinov R F, Hurst J K. (2003) Hydroxyl radical formation by O-O bond homolysis in peroxynitrous acid. Inorg Chem. 42, 5259–5266.
    289. Zhu L, Gunn C, Beckman J S. (1992) Bactericidal activity of peroxynitrite. Arch Biochem Biophys. 298, 452–457.
    290. Brunelli L, Crow J P, Beckman J S. (1995) The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch Biochem Biophys. 316, 327–334.
    291. Hurst J K, Lymar S V. (1997) Toxicity of peroxynitrite and related reactive nitrogen species toward Escherichia coli. Chem Res Toxicol.10, 802–810.
    292. Lymar S V, Hurst J K. (1996) Carbon dioxide: physiological catalyst for peroxynitrite- mediated cellular damage or cellular protectant? Chem Res Toxicol. 9, 845–850.
    293. Pfeiffer S, Lass A, Schmidt K, Mayer B. (2001) Protein tyrosine nitration in mouse peritoneal macrophages activated in vitro and in vivo: evidence against an essential role of peroxynitrite. FASEB J. 15, 2355–2364.
    294. Pfeiffer S, Lass A, Schmidt K, Mayer B. (2001) Protein tyrosine nitration in cytokine- activated murine macrophages. Involvement of a peroxidase/nitrite pathway rather than peroxynitrite. J Biol Chem. 276, 34051–34058.
    295. Brennan M L, Wu W, Fu X, Shen Z, Song W, Frost H, Vadseth C, Narine L, Lenkiewicz E, Borchers M T, Lusis A J, Lee J J, Lee N A, Abu-Soud H M, Ischiropoulos H, Hazen S L. (2002) A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem. 277, 17415–17427.
    296. Hurst J K. (2002) Whence nitrotyrosine? J Clin Invest. 109, 1287–1289.
    297. van der Vliet A, Eiserich J P, Halliwell B, Cross C E. (1997) Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. J Biol Chem. 272, 7617–7625.
    298. Eiserich J P, Hristova M, Cross C E, Jones A D, Freeman B A,Halliwell B, van der Vliet A. (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 391,393–397.
    299. van Dalen C J, Winterbourn C C, Senthilmohan R, Kettle A J. (2000) Nitrite as a substrate and inhibitor of myeloperoxidase Implications for nitration and hypochlorous acid production at sites of inflammation. J Biol Chem. 275, 11638–11644.
    300. Hazen S L, Zhang R, Shen Z, Wu W, Podrez E A, MacPherson J C, Schmitt D, Mitra S N, Mukhopadhyay C, Chen Y, Cohen P A, Hoff H F, Abu-Soud H M. (1999) Formation of nitric oxidederived oxidants by myeloperoxidase in monocytes: pathways for monocyte-mediated protein nitration and lipid peroxidation in vivo. Circ Res. 85, 950–958.
    301. Ischiropoulos H. (1998) Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys. 356, 1–11.
    302. Jiang Q, Hurst J K. (1997) Relative chlorinating, nitrating, and oxidizing capabilities of neutrophils determined with phagocytosable probes. J Biol Chem. 272, 32767–32772.
    303. Baldus S, Eiserich J P, Mani A, Castro L, Figueroa M, Chumley P, Ma W, Tousson A, White C R, Bullard D C, Brennan M L, Lusis A J, Moore K P, Freeman B A. (2001) Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J Clin Invest. 108, 1759–1770.
    304. Eiserich J P, Cross C E, Jones A D, Halliwell B, van der Vliet A.(1996) Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxidemediated protein modification. J Biol Chem. 271, 19199–19208.
    305. Kono Y. (1995) The production of nitrating species by the reaction between nitrite and hypochlorous acid. Biochem. Mol Biol Int. 36, 275–283.
    306. Marcinkiewicz J, Chain B, Nowak B, Grabowska A, Bryniarski K, Baran J. (2000) Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflamm Res. 49, 280–289.
    307. Whiteman M, Hooper D C, Scott G S, Koprowski H, Halliwell B. (2002) Inhibition of hypochlorous acid-induced cellular toxicity by nitrite. Proc Natl Acad Sci. USA. 99, 12061–12066.
    308. Whiteman M, Rose P, Halliwell B. (2003) Inhibition of hypochlorous acid-induced oxidative reactions by nitrite: is nitrite an antioxidant? Biochem Biophys Res Commun. 303, 1217– 1224.
    309. Carr A C, Frei B. (2001) The nitric oxide congener nitrite inhibits myeloperoxidase/H2O2/ Cl-mediated modification of low density lipoprotein. J Biol Chem. 276, 1822–1828.
    310. Abu-Soud H M, Hazen S L. (2000) Nitric oxide modulates the catalytic activity of myeloperoxidase. J Biol Chem. 275, 5425–5430.
    311. Abu-Soud H M, Hazen S L. (2000) Nitric oxide is a physiological substrate for mammalian peroxidases. J Biol Chem. 275, 37524–37532.
    312. Metchnikoff E. (1905) Immunity in Infective Diseases. Cambridge Cambridge University Press, 182.
    313. Rous P. (1925) The relative reaction within living mammalian tissues. I. General features of vital staining with litmus. J Exp Med. 41, 379–397.
    314. Rous P. (1925) The relative reaction within living mammalian tissues II On the mobilization of acid material within cells, and the reaction as influenced by the cell state. J Exp Med. 41, 399–411.
    315. Sprick M G. (1956) Phagocytosis of M. tuberculosis and M. smegmatis stained with indicator dyes. Am Rev Tuberc. 74, 552–565.
    316. Pavlov E P, Solov’ev V N. (1967) pH changes of cytoplasm in phagocytosis of microbes stained with indicator dyes. Biull Eksp Biol Med. 63, 78–81.
    317. Jensen M S, Bainton D F. (1973) Temporal changes in pH within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte. J Cell Biol. 56, 379–388.
    318. Mandell G L. (1970) Intraphagosomal pH of human polymorphonuclear neutrophils. Proc Soc Exp Biol Med. 134, 447–449.
    319. Kakinuma K. (1970) Metabolic control and intracellular pH during phagocytosis by polymorphonuclear leucocytes. J Biochem. (Tokyo) 68,177–185.
    320. Segal A W, Geisow M, Garcia R, Harper A, Miller R. (1981) The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature. 290, 406–409.
    321. Geisow M J, D’Arcy H P, Young M R. (1981) Temporal changes of lysosome and phagosome pH during phagolysosome formation in macrophages: studies by fluorescence spectroscopy. J Cell Biol. 89, 645–652.
    322. Cech P, Lehrer R I. (1984) Phagolysosomal pH of human neutrophils.Blood. 63, 88–95.
    323. Hurst J K, Albrich J M, Green T R, Rosen H, Klebanoff S J. (1984) Myeloperoxidase -dependent fluorescein chlorination by stimulated neutrophils. J Biol Chem. 259, 4812–4821.
    324. Jankowski A, Scott C C, Grinstein S. (2002) Determinants of the phagosomal pH in neutrophils. J Biol Chem. 277, 6059–6066.
    325. Henderson L. M. (2001) NADPH oxidase subunit gp91phox: a proton pathway. Protoplasma. 217, 37–42.
    326. Henderson L M, Meech R W. (1999) Evidence that the product of the human X-linked CGD gene, gp91-phox, is a voltage-gated H(+) pathway.J Gen Physiol. 114, 771–786.
    327. DeCoursey T E, Cherny V V, Morgan D, Katz B Z, Dinauer M C. (2001) The gp91phox component ofNADPH oxidase is not the voltagegated proton channel in phagocytes, but it helps. J Biol Chem. 276, 36063–36066.
    328. DeCoursey T E, Morgan D, Cherny V V. (2002) The gp91phox component of NADPH oxidase is not a voltage-gated proton channel. J Gen Physiol. 120, 773–779.
    329. DeCoursey T E. (2003) Voltage-gated proton channels and other proton transfer pathways. Physiol Rev. 83, 475–579.
    330. van Zwieten R, Wever R, Hamers M N, Weening R S, Roos D. (1981) Extracellular proton release by stimulated neutrophils. J Clin Invest. 68, 310–313.
    331. Elsbach P, Weiss J, Levy O. (1999) Oxygen-independent antimicrobial systems of phagocytes. In Inflammation: Basic Principles and Clinical Correlates (J. I. Gallin, R. Snyderman, eds.), Philadelphia, PA, Lippincott Williams & Wilkins, 801–817.
    332. Ganz, T. (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 3, 710–720.
    333. Ganz, T. (2004) Antimicrobial polypeptides. J Leukoc Biol. 75, 34–38.
    334. Levy O. (2004) Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J Leukoc Biol. 76, 909–925.
    335. Olsson I, Venge P. (1972) Cationic proteins of human granulocytes. I.Isolation of the cationic proteins from the granules of leukaemic myeloid cells. Scand. J Haematol. 9, 204–214.
    336. Reeves E P, Lu H, Jacobs H L, Messina C G, Bolsover S, Gabella G, Potma E O, Warley A, Roes J, Segal A W. (2002) Killing activity of neutrophils is mediated through activation of proteases by K_ flux. Nature. 416, 291–297.
    337. Gratzer W. (2002) Immunology: the Wright stuff. Nature. 416, 275–277.
    338. Roos D, Winterbourn C C. (2002) Immunology. Lethal weapons.Science. 296, 669–671.
    339. Fang F C. (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2, 820–832.
    340. Tkalcevic J, Novelli M, Phylactides M, Iredale J P, Segal A W, Roes J. (2000) Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity. 12,201–210.
    341. Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley T J, Abraham S N, Shapiro S D. (1998) Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med.4, 615–618.
    342. Belaaouaj A. (2002) Neutrophil elastase-mediated killing of bacteria: lessons from targeted mutagenesis. Microbes Infect. 4, 1259–1264.
    343. MacIvor D M, Shapiro S D, Pham C T, Belaaouaj A, Abraham S N, Ley T J. (1999) Normal neutrophil function in cathepsin Gdeficient mice. Blood. 94, 4282–4293.
    344. Belaaouaj A, Kim K S, Shapiro S D. (2000) Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science. 289, 1185–1188.
    345. Lopez-Boado Y S, Espinola M, Bahr S, Belaaouaj A. (2004) Neutrophil serine proteinases cleave bacterial flagellin, abrogating its host response-inducing activity. J Immunol. 172, 509–515.
    346. Ahluwalia J, Tinker A, Clapp L H, Duchen M R, Abramov A Y, Pope S, Nobles M, Segal A W. (2004) The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature. 427,853–858.
    347. Harrison R E, Touret N, Grinstein S. (2002) Microbial killing: oxidants, proteases and ions. Curr Biol. 12, R357–R359.
    348. DeCoursey T E. (2004) During the respiratory burst, do phagocytes need proton channels or potassium channels, or both? Sci STKE. May 11, pe21.
    349. Rada B K, Geiszt M, Kaldi K, Timar C, Ligeti E. (2004) Dual role of phagocytic NADPH oxidase in bacterial killing. Blood. 104, 2947–2953.
    350. Clark R A. (1983) Extracellular effects of the myeloperoxidase-hydrogen peroxide-halide system. In Advances in Inflammation Research, vol.5 (G. Weissmann, ed.), New York, NY, Raven, 107–146.
    351. Fu X, Kassim S Y, Parks W C, Heinecke J W. (2003) Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7(matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem. 278, 28403–28409.
    352. Klebanoff S J, Coombs R W. (1996) Virucidal effect of stimulated eosinophils on human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 12, 25–29.
    353. Klebanoff S J, Kazazi F. (1995) Inactivation of human immunodeficiency virus type 1 by the amine oxidase-peroxidase system. J Clin Microbiol. 33, 2054–2057.
    354. Klebanoff S J, Coombs R W. (1992) Viricidal effect of polymorphonuclear leukocytes on HIV-1: role of the myeloperoxidase system. J Clin Invest. 89, 2014–2017.
    355. Chase M J, Klebanoff S J. (1992) Viricidal effect of stimulated human mononuclear phagocytes on human immunodeficiency virus type 1. Proc Natl Acad Sci. USA. 89, 5582–5585.
    356. Nathan C F, Murray H W, Wiebe M E, Rubin B Y. (1983)Identification of interferon- as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp.Med. 158, 670–689.
    357. Legrand-Poels S, Varia D, Pincemail J, Van de Vorst A, Piette J. (1990) Activation of human immunodeficiency virus type 1 by oxidative stress. AIDS Res Hum Retroviruses. 6, 1389– 1397.
    358. Schreck R, Rieber P, Baeuerle P A. (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 10, 2247–2258.
    359. Kazazi F, Koehler J K, Klebanoff S J. (1996) Activation of the HIV long terminal repeat and viral production by H2O2-vanadate. Free Radic Biol Med. 20, 813–820.
    360. Klebanoff S J, Mehlin C, Headley C M. (1997) Activation of the HIV-1 long terminal repeat and viral replication by dimethylsulfoxide and related solvents. AIDS Res Hum Retrovirises 13, 1221–1227.
    361. Klebanoff S J, Watts D H, Mehlin C, Headley C M. (1999) Lactobacilli and vaginal host defense: activation of the human immunodeficiency virus type 1 long terminal repeat, cytokine production, and NF-κB. J Infect Dis. 179, 653–660.
    362. Klebanoff S J, Headley C M. (1999) Activation of the human immunodeficiency virus-1 long terminal repeat by respiratory burst oxidants of neutrophils. Blood. 93, 350–356.
    363. Agner K. (1947) Detoxicating effect of verdoperoxidase on toxins. Nature. 159, 271–272.
    364. Agner K. (1950) Studies on peroxidative detoxification of purified diphtheria toxin. J Exp Med. 92, 337–347.
    365. Clark R A, Klebanoff S J. (1979) Myeloperoxidase-mediated platelet release reaction. J Clin Invest. 63, 177–183.
    366. Clark R A, Klebanoff S J. (1980) Neutrophil-platelet interaction mediated by myeloperoxidase and hydrogen peroxide. J Immunol. 124, 399–405.
    367. Henderson W R, Chi E Y, Klebanoff S J. (1980) Eosinophil peroxidase-induced mast cell secretion. J Exp Med. 152, 265–279.
    368. Chi E Y, Henderson W R. (1984) Ultrastructure of mast cell degranulation induced by eosinophil peroxidase: use of diaminobenzidine cytochemistry by scanning electron microscopy. J Histochem Cytochem.32, 337–341.
    369. Stendahl O, Molin L, Lindroth M. (1983) Granulocyte-mediated release of histamine from mast cells. Effect of myeloperoxidase and its inhibition by antiinflammatory sulfone compounds. Int Arch Allergy Appl Immunol. 70, 277–284.
    370. Lanza F, Musto P, Franze D. (1985) Hereditary myeloperoxidase deficiency syndrome: clinical and haematological data of 10 cases. Recenti Prog Med. 76, 71–78.
    371. Lanza F, Fietta A, Spisani S, Castoldi G L, Traniello S. (1987) Does a relationship exist between neutrophil myeloperoxidase deficiency and the occurrence of neoplasms? J Clin Lab Immunol. 22, 175–180.
    372. Lanza F. (1998) Clinical manifestation of myeloperoxidase deficiency. J Mol Med. 76, 676– 681.
    373. Lanza F, Giuliani A L, Amelotti F, Spisani S, Traniello S, Castoldi G. (1988) Depressed neutrophil-mediated tumor cell cytotoxicity in subjects affected by hereditary myeloperoxidase deficiency and secondary neoplasia. Haematologica. 73, 355–358.
    374. London S J, Lehman T A, Taylor J A. (1997) Myeloperoxidase genetic polymorphism and lung cancer risk. Cancer Res. 57, 5001–5003.
    375. van Zyl J M, Basson K, van der Walt B J. (1989) Stimulation of the chlorinating activity of human myeloperoxidase by thyroid hormones and analogues. Horm Metab Res. 21, 441–444.
    376. van Zyl J M, van der Walt B J, Kriegler A. (1993) Thyroxinesupported oxidation in the myeloperoxidase system. Horm Metab Res. 25, 569–572.
    377. Yip C, Klebanoff S J. (1963) Synthesis in vitro of thyroxine from diiodotyrosine by myeloperoxidase and by a cell-free preparation of beef thyroid glands I Glucose-glucose oxidase system. Biochim Biophys Acta. 74, 747–755.
    378. Taurog A, Dorris M L. (1992) Myeloperoxidase-catalyzed iodination and coupling. Arch Biochem Biophys. 296, 239–246.
    379. Klebanoff S J, Segal S J. (1960) The inactivation of estradiol by peroxidase. J Biol Chem. 235, 52–55.
    380. Klebanoff S J. (1977) Estrogen binding by leukocytes during phagocytosis. J Exp Med. 145, 983–998.
    381. Tiruppathi C, Naqvi T, Wu Y, Vogel S M, Minshall R D, Malik A B. (2004) Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells. Proc Natl Acad Sci. USA. 101,7699–7704.
    382. Piedrafita F J, Molander R B, Vansant G, Orlova E A, Pfahl M, Reynolds W F. (1996) An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem. 271, 14412–14420.
    383. Reynolds W F, Chang E, Douer D, Ball E D, Kanda V. (1997) An allelic association implicates myeloperoxidase in the etiology of acute promyelocytic leukemia. Blood. 90, 2730–2737.
    384. Cascorbi I, Henning S, Brockmoller J, Gephart J, Meisel C, Muller J M, Loddenkemper R, Roots I. (2000) Substantially reduced risk of cancer of the aerodigestive tract in subjects with variant–463A of the myeloperoxidase gene. Cancer Res. 60, 644–649.
    385. Le Marchand L, Seifried A, Lum A, Wilkens L R. (2000) Association of the myeloperoxidase–463G3a polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev. 9, 181–184.
    386. Schabath M B, Spitz M R, Zhang X, Delclos G L, Wu X. (2000) Genetic variants of myeloperoxidase and lung cancer risk. Carcinogenesis. 21, 1163–1166.
    387. Kantarci O H, Lesnick T G, Yang P, Meyer R L, Hebrink D D, McMurray C T, Weinshenker B G. (2002) Myeloperoxidase–463 (G3A) polymorphism associated with lower risk of lung cancer. Mayo Clin Proc. 77, 17–22.
    388. Feyler A, Voho A, Bouchardy C, Kuokkanen K, Dayer P, Hirvonen A, Benhamou S. (2002) Point: myeloperoxidase–463G 3 apolymorphism and lung cancer risk. Cancer Epidemiol Biomarkers Prev.11, 1550–1554.
    389. Schabath M B, Spitz M R, Delclos G L, Gunn G B, Whitehead L W, Wu X. (2002) Association between asbestos exposure, cigarette smoking, myeloperoxidase (MPO) genotypes, and lung cancer risk. Am JInd Med. 42, 29–37.
    390. Schabath M B, Spitz M R, Hong W K, Delclos G L, Reynolds W F, Gunn G B, Whitehead L W, Wu X. (2002) A myeloperoxidase polymorphism associated with reduced risk of lung cancer. Lung Cancer. 37, 35–40.
    391. Wu X, Schabath M B, Spitz M R. (2003) Myeloperoxidase promoter region polymorphism and lung cancer risk. Methods Mol Med. 75,121–133.
    392. Dally H, Gassner K, Jager B, Schmezer P, Spiegelhalder B, Edler L, Drings P, Dienemann H, Schulz V, Kayser K, Bartsch H, Risch A. (2002) Myeloperoxidase (MPO) genotype and lung cancer histologic types: the MPO–463 A allele is associated with reduced risk for small cell lung cancer in smokers. Int J Cancer. 102, 530–535.
    393. Dally H, Bartsch H, Risch A. (2003) Correspondence re: Feyler et al.,point:myeloperoxidase (–463)G 3 a polymorphism and lung cancer risk. Cancer Epidemiol Biomark Prev. 11: 1550–1554, 2002, and Xu et al., counterpoint: the myeloperoxidase (–463)G 3 a polymorphism does not decrease lung cancer susceptibility in caucasians. 11: 1555–1559, 2002. Cancer Epidemiol Biomarkers Prev. 12, 683.
    394. Caporaso N E. (2002) Why have we failed to find the low penetrance genetic constituents of commoncancers? Cancer Epidemiol Biomarkers Prev. 11, 1544–1549.
    395. Chevrier I, Stucker I, Houllier A M, Cenee S, Beaune P, Laurent-Puig P, Loriot M A. (2003) Myeloperoxidase: new polymorphisms and relation with lung cancer risk. Pharmacogenetics. 13, 729–739.
    396. Xu L L, Liu G, Miller D P, Zhou W, Lynch T J, Wain J C, Su L, Christiani D C. (2002) Counterpoint: the myeloperoxidase–463G3a polymorphism does not decrease lung cancer susceptibility in Caucasians.Cancer Epidemiol Biomarkers Prev. 11, 1555–1559.
    397. Misra R R, Tangrea J A, Virtamo J, Ratnasinghe D, Andersen M R, Barrett M, Taylor P R, Albanes D. (2001) Variation in the promoter region of the myeloperoxidase gene is not directly related to lung cancer risk among male smokers in Finland. Cancer Lett. 164,161–167.
    398. Hung R J, Boffetta P, Brennan P, Malaveille C, Gelatti U, Placidi D, Carta A, Hautefeuille A, Porru S. (2004) Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk. Carcinogenesis. 25, 973–978.
    399. Pakakasama S, Chen T T, Frawley W, Muller C, Douglass E C,Tomlinson G E. (2003) Myeloperoxidase promotor polymorphism and risk of hepatoblastoma. Int J Cancer. 106, 205–207.
    400. Tsuruta Y. Subrahmanyam V V, Marshall W, O’Brien P J. (1985) Peroxidase-mediated irreversible binding of arylamine carcinogens to DNA in intact polymorphonuclear leukocytes activated by a tumor promoter. Chem Biol Interact. 53, 25–35.
    401. Mallet W G, Mosebrook D R, Trush M A. (1991) Activation of trans-7,8-dihydroxy -7,8-dihydrobenzo[a] pyrene to diolepoxides by human polymorphonuclear leukocytes or myeloperoxidase. Carcinogenesis 12, 521–524.
    402. Petruska J M, Mosebrook D R, Jakab G J, Trush M A. (1992)Myeloperoxidase-enhanced formation of trans-7,8-dihydroxy-7,8-dihydrobenzo[a] pyrene-DNA adducts in lung tissue in vitro: a role of pulmonary inflammation in the bioactivation of a procarcinogen. Carcinogenesis. 13, 1075–1081.
    403. Josephy P D. (1996) The role of peroxidase-catalyzed activation of aromatic amines in breast cancer. Mutagenesis. 11, 3–7.
    404. Henderson J P, Byun J, Takeshita J, Heinecke J W. (2003) Phagocytes produce 5- chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue. J. Biol. Chem. 278, 23522–23528.
    405. Jiang Q, Blount B C, Ames B N. (2003) 5-Chlorouracil, a marker of DNA damage from hypochlorous acid during inflammation. A gas chromatography-mass spectrometry assay. J Biol Chem. 278, 32834–32840.
    406. Rojas M, Godschalk R, Alexandrov K, Cascorbi I, Kriek E, Ostertag J, Van Schooten F J, Bartsch H. (2001) Myeloperoxidase–463A variant reduces benzo[a]pyrene diol epoxide DNA adducts in skin of coal tar-treated patients. Carcinogenesis. 22, 1015–1018.
    407. Malle E, Buch T, Grone H J. (2003) Myeloperoxidase in kidney disease. Kidney Int. 64, 1956–1967.
    408. Johnson R J, Lovett D, Lehrer R I, Couser W G, Klebanoff S J. (1994) Role of oxidants and proteases in glomerular injury. Kidney Int. 45, 352–359.
    409. Johnson R J, Couser W G, Chi E Y, Adler S, Klebanoff S J. (1987) New mechanism for glomerular injury. Myeloperoxidase-hydrogen peroxide-halide system. J Clin Invest. 79, 1379–1387.
    410. Johnson R J, Guggenheim S J, Klebanoff S J, Ochi R F, Wass A, Baker P, Schulze M, Couser W G. (1988) Morphologic correlates of glomerular oxidant injury induced by the myeloperoxidase-hydrogen peroxide-halide system of the neutrophil. Lab Invest. 58, 294–301.
    411. Johnson R J, Klebanoff S J, Ochi R F, Adler S, Baker P, Sparks L, Couser W G. (1987) Participation of the myeloperoxidase-H2O2-halide system in immune complex nephritis. Kidney Int. 32, 342–349.
    412. Saeki T, Kuroda T, Morita T, Suzuki K, Arakawa M, Kawasaki K. (1995) Significance of myeloperoxidase in rapidly progressive glomerulonephritis. Am J Kidney Dis. 26, 13–21.
    413. Xiao H, Heeringa P, Hu P, Liu Z, Zhao M, Aratani Y, Maeda N, Falk R J, Jennette J C. (2002) Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest. 110, 955–963.
    414. D’Agati V. (2002) Antineutrophil cytoplasmic antibody and vasculitis:much more than a disease marker.J Clin Invest. 110, 919–921.
    415. Reumaux D, de Boer M, Meijer A B, Duthilleul P, Roos D. (2003) Expression of myeloperoxidase (MPO) by neutrophils is necessary for their activation by anti-neutrophil cytoplasm autoantibodies (ANCA) against MPO. J Leukoc Biol. 73, 841–849.
    416. Reynolds W F, Stegeman C A, Tervaert J W. (2002)–463 G/A myeloperoxidase promoter polymorphism is associated with clinical manifestations and the course of disease in MPO-ANCA-associated vasculitis. Clin Immunol. 103, 154–160.
    417. Pecoits-Filho R, Stenvinkel P, Marchlewska A, Heimburger O,Barany P, Hoff C M, Holmes C J, Suliman M, Lindholm B, Schalling M, Nordfors L. (2003) A functional variant of the myeloperoxidase gene is associated with cardiovascular disease in end-stage renal disease patients. Kidney Int Suppl. May, S172–S176.
    418. Ishida-Okawara A, Oharaseki T, Takahashi K, Hashimoto Y, Aratani Y, Koyama H, Maeda N, Naoe S, Suzuki K. (2001) Contribution of myeloperoxidase to coronary artery vasculitis associated with MPO-ANCA production. Inflammation. 25, 381–387.
    419. Suzuki K. (2001) Neutrophil functions of patients with vasculitis related to myeloperoxidase -specific anti-neutrophil antibody. Int J Hematol.74, 134–143.
    420. Malle E, Woenckhaus C, Waeg G, Esterbauer H, Grone E F, Grone H J. (1997) Immunological evidence for hypochlorite-modified proteins in human kidney. Am J Pathol. 150, 603–615.
    421. Himmelfarb J, McMenamin M E, Loseto G, Heinecke J W. (2001) Myeloperoxidase- catalyzed 3-chlorotyrosine formation in dialysis patients. Free Radic Biol Med. 31, 1163–1169.
    422. Johnson K J, Fantone J C I, Kaplan J, Ward P A. (1981) In vivo damage of rat lungs by oxygen metabolites. J Clin Invest. 67, 983–993.
    423. Cantin A M, North S L, Fells G A, Hubbard R C, Crystal R G. (1987) Oxidant- mediated epithelial cell injury in idiopathic pulmonary fibrosis. J Clin Invest. 79, 1665–1673.
    424. Buss I H, Darlow B A, Winterbourn C C. (2000) Elevated protein carbonyls and lipid peroxidation products correlating with myeloperoxidase in tracheal aspirates from premature infants. Pediatr Res. 47, 640–645.
    425. N Takahiko U.Makiko, H Kazuo, et al.“Neutrophil infiltration of culprit lesions in acute coronary syndromes”Circulation. vol. 106, no. 23, pp. 2894–2900, 2002.
    426. S. Sugiyama, Y. Okada, G. K. Sukhova, R. Virmani, J. W. Heinecke,and P. Libby,“Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes,”American Journal of Pathology, vol. 158, no. 3, pp.879–891, 2001.
    427. K. M. Mullane, R. Kraemer, and B. Smith,“Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium,”Journal of Pharmacological Methods, vol. 14, no. 3, pp. 157–167, 1985.
    428. Hazen S L, Hsu F F, Gaut J P, Crowley J R, Heinecke J W. (1999) Modification of proteins and lipids by myeloperoxidase. Methods Enzymol. 300, 88–105.
    429. Heinecke J W. (1999) Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. J Lab Clin Med. 133, 321–325.
    430. Chisolm III G M, Hazen S L, Fox P L, Cathcart M K. (1999) The oxidation of lipoproteins by monocytes-macrophages. Biochemical and biological mechanisms. J Biol Chem. 274, 25959–25962.
    431. Heinecke J W. (1997) Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Curr Opin Lipidol. 8, 268–274.
    432. Heinecke J W. (1998) Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis. 141, 1–15.
    433. Podrez E A, Abu-Soud H M, Hazen S L. (2000) Myeloperoxidasegenerated oxidants and atherosclerosis. Free Radic Biol Med. 28, 1717–1725.
    434. Heinecke J W. (1999) Mass spectrometric quantification of amino acid oxidation products in proteins: insights into pathways that promote LDL oxidation in the human artery wall. FASEB J. 13, 1113–1120.
    435. Chisolm G M, Steinberg D. (2000) The oxidative modification hypothesis of atherogenesis: an overview.Free Radic Biol Med. 28, 1815–1826.
    436. Gaut J P, Heinecke J W. (2001) Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis. Trends Cardiovasc. Med. 11,103–112.
    437. Heinecke J W. (2003) Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis. Am J Cardiol. 91, 12A–16A.
    438. P Holvoet.“Oxidative modification of low-density lipoproteinsin atherothrombosis.”Acta Cardiologica. vol. 53, no. 5pp. 253–260, 1998.
    439. Carr A C, Myzak M C, Stocker R, McCall M R, Frei B. (2000) Myeloperoxidase binds to low-density lipoprotein: potential implications for atherosclerosis. FEBS Lett. 487, 176–180.
    440. Heinecke J W, Li W, Mueller D M, Bohrer A, Turk J. (1994) Cholesterol chlorohydrin synthesis by the myeloperoxidase-hydrogen peroxide-chloride system: potential markers for lipoproteins oxidatively damaged by phagocytes. Biochemistry. 33, 10127–10136.
    441. Panasenko O M, Evgina S A, Aidyraliev R K, Sergienko V I, Vladimirov Y A. (1994) Peroxidation of human blood lipoproteins induced by exogenous hypochlorite or hypochlorite generated in the system of“myeloperoxidase + H2O2 +Cl–”. Free Radic Biol Med. 16, 143–148.
    442. Jerlich A, Hammel M, Horakova L, Schaur R J. (2001) An improved method for the sensitive monitoring of low density lipoprotein modification by myeloperoxidase. Redox Rep. 6, 257–264.
    443. Yang C Y, Gu Z W, Yang M, Lin S N, Garcia-Prats A J, Rogers L K, Welty S E, Smith C V. (1999) Selective modification of apoB-100 in the oxidation of low density lipoproteins by myeloperoxidase in vitro. J Lipid Res. 40, 686–698.
    444. Yang C-Y, Wang J, Krutchinsky A N, Chait B T, Morrisett J D, Smith C V. (2001) Selective oxidation in vitro by myeloperoxidase of theN-terminal amine in apolipoprotein B-100. J Lipid Res. 42, 1891–1896.
    445. Carr A C, Decker E A, Park Y, Frei B. (2001) Comparison of low-density lipoprotein modification by myeloperoxidase-derived hypochlorous and hypobromous acids. Free Radic Biol Med. 31, 62–72.
    446. Exner M, Hermann M, Hofbauer R, Hartmann B, Kapiotis S, Gmeiner B. (2004) Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL. Free Radic Biol Med. 37, 146–155.
    447. Podrez E A, Schmitt D, Hoff H F, Hazen S L. (1999) Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest. 103, 1547–1560.
    448. Byun J, Mueller D M, Fabjan J S, Heinecke J W. (1999) Nitrogen dioxide radical generated by the myeloperoxidase-hydrogen peroxidenitrite system promotes lipid peroxidation of low density lipoprotein. FEBS Lett. 455, 243–246.
    449. Heller J I, Crowley J R, Hazen S L, Salvay D M, Wagner P, Pennathur S, Heinecke J W. (2000) p-Hydroxyphenylacetaldehyde, an aldehyde generated by myeloperoxidase, modifies phospholipid amino groups of low density lipoprotein in human atherosclerotic intima. J Biol Chem. 275, 9957–9962.
    450. McCormick M L, Gaut J P, Lin T S, Britigan B E, Buettner G R, Heinecke J W. (1998) Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase. J Biol Chem. 273, 32030–32037.
    451. Leeuwenburgh C, Rasmussen J E, Hsu F F, Mueller D M, Pennathur S, Heinecke J W. (1997) Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem. 272, 3520–3526.
    452. Whitman S C, Hazen S L, Miller D B, Hegele R A, HeineckeJ W, Huff M W. (1999) Modification of type III VLDL, their remnants,and VLDL from ApoE- knockout mice by p-hydroxyphenylacetaldehyde,a product of myeloperoxidase activity, causes marked cholesteryl ester accumulation in macrophages. Arterioscler Thromb Vasc Biol. 19, 1238–1249.
    453. Bergt C, Marsche G, Panzenboeck U, Heinecke J W, Malle E, Sattler W. (2001) Human neutrophils employ the myeloperoxidase/ hydrogen peroxide/chloride system to oxidatively damage apolipoproteinA-I. Eur J Biochem. 268, 3523–3531.
    454. Bergt C, Pennathur S, Fu X, Byun J, O’Brien K, McDonald T O, Singh P, Anantharamaiah G M, Chait A, Brunzell J, Geary R L, Oram J F, Heinecke J W. (2004) The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc NatlAcad Sci. USA. 101, 13032–13037.
    455. Daugherty A, Dunn J L, Rateri D L, Heinecke J W. (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 94, 437–444.
    456. Malle E, Waeg G, Schreiber R, Grone E F, Sattler W, Grone H J. (2000) Immunohistochemical evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic lesions: colocalization of myeloperoxidase and hypochlorite-modified proteins. Eur J Biochem. 267, 4495–4503.
    457. Sugiyama S, Okada Y, Sukhova G K, Virmani R, Heinecke J W, Libby P. (2001) Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol. 158, 879–891.
    458. Malle E, Hazell L, Stocker R, Sattler W, Esterbauer H, Waeg G.(1995) Immunologic detection and measurement of hypochlorite-modified LDL with specific monoclonal antibodies. Arterioscler Thromb Vasc Biol. 15, 982–989.
    459. Hazell L J, Arnold L, Flowers D, Waeg G, Malle E, Stocker R. (1996) Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest. 97, 1535–1544.
    460. Hazell L J, Baernthaler G, Stocker R. (2001) Correlation between intima-to-media ratio, apolipoprotein B-100, myeloperoxidase, and hypochlorite-oxidized proteins in human atherosclerosis. Free Radic Biol.Med. 31, 1254–1262.
    461. Woods A A, Linton S M, Davies M J. (2003) Detection of HOClmediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem J. 370, 729–735.
    462. Woods A A, Davies M J. (2003) Fragmentation of extracellular matrix by hypochlorous acid. Biochem J.
    376, 219–227.
    463. Leeuwenburgh C, Hardy M M, Hazen S L, Wagner P, Oh-ishi S, Steinbrecher U P, Heinecke J W. (1997) Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem. 272, 1433–1436.
    464. Beckman J S, Ye Y Z, Anderson P G, Chen J, Accavitti M A, Tarpey M M., White C R. (1994) Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry.Biol Chem Hoppe Seyler. 375, 81–88.
    465. Byun J, Henderson J P, Mueller D M, Heinecke J W. (1999) 8-Nitro-2-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide-nitrite system of activated human phagocytes. Biochemistry. 38, 2590–2600.
    466. Shishehbor M H, Aviles R J, Brennan M L, Fu X, Goormastic M,Pearce G L, Gokce N, Keaney Jr J F, Penn M S, Sprecher D L,Vita J A, Hazen S L. (2003) Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA. 289, 1675–1680.
    467. Kirk E A, Dinauer M C, Rosen H, Chait A, Heinecke J W, LeBoeuf R C. (2000) Impaired superoxide production due to a deficiency in phagocyte NADPH oxidase fails to inhibit atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 20, 1529–1535.
    468. Noguchi N, Nakano K, Aratani Y, Koyama H, Kodama T, Niki E. (2000) Role of myeloperoxidase in the neutrophil-induced oxidation of low density lipoprotein as studied by myeloperoxidase-knockout mouse. J Biochem. (Tokyo) 127, 971–976.
    469. Brennan M L, Anderson M M, Shih D M, Qu X D, Wang X, Mehta A C, Lim L L, Shi W, Hazen S L, Jacob J S, Crowley J R, Heinecke J W, Lusis A J. (2001) Increased atherosclerosis in myeloperoxidase-deficient mice. J Clin Invest. 107, 419–430.
    470. Nauseef W M. (2001) The proper study of mankind. J Clin Invest.107, 401–403.
    471. Zhang R, Brennan M L, Fu X, Aviles R J, Pearce G L, Penn M S, Topol E J, Sprecher D L, Hazen S L. (2001) Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 286, 2136–2142.
    472. Brennan M L, Penn M S, Van Lente F, Nambi V, Shishehbor M H, Aviles R J, Goormastic M, Pepoy M L, McErlean E S,Topol E J, Nissen S E, Hazen S L. (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 349, 1595–1604.
    473. Baldus S, Heeschen C, Meinertz T, Zeiher A M, Eiserich J P, Munzel T, Simoons M L, Hamm C W. (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation. 108, 1440–1445.
    474. Cayley Jr W E. (2004) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 350, 516–518.
    475. Hiramatsu K, Rosen H, Heinecke J W, Wolfbauer G, Chait A.(1987) Superoxide initiates oxidation of low density lipoprotein by human monocytes. Arteriosclerosis. 7, 55–60.
    476. R Zhang, M-L Brennan, X Fu, et al.“Association between myeloperoxidase levels and risk of coronary artery disease,”Journal of the American Medical Association, vol. 286, no. 17,pp. 2136–2142, 2001.
    477. M C Meuwese, E S G Stroes, S L Hazen, et al.,“Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals. The EPIC-Norfolk prospective population study,”Journal of the American College of Cardiology, vol. 50, no. 2, pp. 159–165,2007.
    478. L M Biasucci, G D’Onofrio, G Liuzzo, et al.,“Intracellular neutrophil myeloperoxidase is reduced in unstable angina and acute myocardial infarction, but its reduction is not related to ischemia,”Journal of the American College of Cardiology, vol. 27, no. 3, pp. 611–616, 1996.
    479. A Buffon, L M Biasucci, G Liuzzo, G D’Onofrio, F Crea,and A Maseri,“Widespread coronary inflammation in unstable angina,”New England Journal of Medicine, vol. 347, no. 1,pp. 5–12, 2002.
    480. S Baldus, C Heeschen, T Meinertz, et al.,“Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes,”Circulation, vol. 108, no. 12, pp. 1440–1445, 2003.
    481. M-L Brennan, M S Penn, F Van Lente, et al.,“Prognostic value of myeloperoxidase in patients with chest pain,”New England Journal of Medicine, vol. 349, no. 17, pp. 1595–1604,2003.
    482. S-H Li, Y-W Xing, Z-Z Li, S-G Bai, and J Wang,“Clinical implications of relationship between myeloperoxidase and acute coronary syndromes,”Zhonghua xin xue Guan Bing Za Zhi, vol. 35, no. 3, pp. 241–244, 2007.
    483. E Cavusoglu, C Ruwende, C Eng, et al.,“Usefulness of baseline plasma myeloperoxidase levels as an independent predictor ofmyocardial infarction at two years in patients presenting with acute coronary syndrome,”American Journal of Cardiology, vol. 99, no. 10, pp. 1364–1368, 2007.
    484. T J Mocatta, A P Pilbrow, V A Cameron, et al.,“Plasma concentrations ofmyeloperoxidase predictmortality aftermyocardial infarction,”Journal of the American College of Cardiology, vol. 49, no. 20, pp. 1993–2000, 2007.
    485. D A.Morrow,“Appraisal ofmyeloperoxidase for evaluation of patients with suspected acute coronary syndromes,”Journal of the American College of Cardiology, vol. 49, no. 20, pp. 2001–2002, 2007.
    486. S Q Khan, D Kelly, P Quinn, J E Davies, and L L Ng,“Myeloperoxidase aids prognostication together with Nterminal pro-B-type natriuretic peptide in high-risk patients with acute ST elevation myocardial infarction,”Heart, vol. 93, no. 7, pp. 826–831, 2007.
    487. Llodra J, Angeli V, Liu J, Trogan E, Fisher E A, Randolph G J.(2004) Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci. USA. 101, 11779–11784.
    488. Grayston J T. (2000) Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J Infect Dis. 181 (Suppl. 3), S402–S410.
    489. Ludewig B, Krebs P, Scandella E. (2004) Immunopathogenesis of atherosclerosis. J Leukoc Biol. 76, 300–306.
    490. Nagra R M, Becher B, Tourtellotte W W, Antel J P, Gold D, Paladino T, Smith R A, Nelson J R, Reynolds W F. (1997) Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J Neuroimmunol. 78, 97–107.
    491. Ramsaransing G, Teelken A, Prokopenko V M, Arutjunyan A V, De Keyser J. (2003) Low leucocyte myeloperoxidase activity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 74, 953–955.
    492. Brennan M, Gaur A, Pahuja A, Lusis A J, Reynolds W F. (2001) Mice lacking myeloperoxidase are more susceptible to experimental autoimmune encephalomyelitis. J Neuroimmunol. 112, 97–105.
    493. Reynolds W F, Rhees J, Maciejewski D, Paladino T, Sieburg H, Maki R A, Masliah E. (1999) Myeloperoxidase polymorphism is associated with gender-specific risk for Alzheimer’s disease. Exp. Neurol.155, 31–41.
    494. Jolivalt C, Leininger-Muller B, Drozdz R, Naskalski J W, Siest G. (1996) Apolipoprotein E is highly susceptible to oxidation by myeloperoxidase,an enzyme present in the brain. Neurosci Lett. 210, 61–64.
    495. Jolivalt C, Leininger-Muller B, Bertrand P, Herber R, Christen Y, Siest G. (2000) Differential oxidation of apolipoprotein E isoforms and interaction with phospholipids. Free Radic Biol Med. 28, 129–140.
    496. Green P S, Mendez A J, Jacob J S, Crowley J R, Growdon W, Hyman B T, Heinecke J W. (2004) Neuronal expression of myeloperoxidase is increased in Alzheimer’s disease. J Neurochem. 90, 724–733.
    497. Reynolds W F, Hiltunen M, Pirskanen M, Mannermaa A, Helisalmi S, Lehtovirta M, Alafuzoff I, Soininen H. (2000) MPO and APOE 4 polymorphisms interact to increase risk for AD in Finnish males. Neurology. 55, 1284–1290.
    498. Crawford F C, Freeman M J, Schinka J A, Morris M D, Abdullah L I, Richards D, Sevush S, Duara R, Mullan M J. (2001) Association between Alzheimer’s disease and a functional polymorphism in the myeloperoxidase gene. Exp Neurol. 167, 456–459.
    499. Leininger-Muller B, Hoy A, Herbeth B, Pfister M, Serot J M, Stavljenic-Rukavina M, Massana L, Passmore P, Siest G, Visvikis S. (2003) Myeloperoxidase G–463A polymorphism and Alzheimer’sdisease in the ApoEurope study. Neurosci Lett. 349, 95–98.
    500. Combarros O, Infante J, Llorca J, Pena N, Fernandez-Viadero C, Berciano J. (2002) The myeloperoxidase gene in Alzheimer’s disease: a case-control study and meta-analysis. Neurosci Lett. 326, 33–36.
    501. Styczynska M, Religa D, Pfeffer A, Luczywek E, Wasiak B, Styczynski G., Peplonska B, Gabryelewicz T, Golebiowski M, Kobrys M, Barcikowska M. (2003) Simultaneous analysis of five genetic risk factors in Polish patients with Alzheimer’s disease. Neurosci Lett. 344, 99– 102.
    502. Hoy A, Leininger-Muller B, Poirier O, Siest G, Gautier M, Elbaz A, Amarenco P, Visvikis S. (2003) Myeloperoxidase polymorphisms in brain infarction. Association with infarct size and functional outcome. Atherosclerosis. 167, 223–230.
    503. Wu D C, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S. (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci. USA. 100, 6145–6150.
    504. Pennathur S, Jackson-Lewis V, Przedborski S, Heinecke J W. (1999) Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o'-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson's disease. J Biol Chem. 1999 Dec 3; 274(49):34621-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700