污水厂污泥一体化竖式强化渗滤自然干化与消化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文阐述了污泥的减量化和稳定化的发展概况,针对目前国内污泥处理处置存在的问题,如污泥脱水困难、能耗高等,并从生产性和实用性的角度出发,探索污泥竖式强化渗滤自然干化与消化一体化新工艺,并验证一体化污泥竖式强化渗滤自然干化与消化反应器的可行性并分析其效果,得出以下主要结论。
     ①开发了污泥一体化强化渗滤浓缩自然干化与消化新工艺,验证了该反应器初步用应于城市污水厂污泥处理是可行性。
     ②一体化污泥强化渗滤浓缩自然干化与消化反应器具有较好的浓缩效果,进泥含水率为99.2%左右,在污泥停留时间为120d条件下,排泥含水率为79%左右,浓缩效果良好且未出现滤料堵塞现象。
     ③一体化强化渗滤自然干化消化反应器采用膜保温系统,使反应器在常温下基本达到污泥中温消化的温度要求。
     ④污泥一体化强化渗滤浓缩自然干化与消化反应器在常温下消化效果良好。污泥中有机物含量由进泥的52%降到排泥的30%以下,有机物分解程度达到44.4%。较佳运行参数:有机负荷为0.8kgVSS/ (m3·d) ,污泥停置时间为120d,水力停留时间8.3d,污泥浓度为209.423g/L,污泥含水率为79.06%,有机物分解率达到44.4%。
     ⑤污泥渗滤液COD值大部分在200~600mg/L之间;TN最大值为489.5 mg/L;TP最大值为117.5 mg/L;NH_3-N平均值大部分在150~250mg/L之间,污泥渗滤液必须抽回至污水厂的水处理流程中处理。
     ⑥采用一体化强化渗滤自然干化消化反应器消化后污泥重金属检测中铜是超出污泥农用标准(城镇污水处理厂污染物排放标准GB18918-2002)的。因此污泥不宜农用,但可以作为园林用土和土壤改造。
     ⑦得到一体化污泥强化渗滤自然干化与消化反应器基于污泥沉降试验的减量预测模型式R = [99 - 79.3959t~(-0.5529)]×100%。利用这一模型式进行一体化污泥强化渗滤自然干化与消化反应器减量效率进行预测。
     通过试验证明本反应器提高了污泥泥水分离效率,增强了污泥自然干化效果,并且经过消化实现了减量化、稳定化及资源化。本反应器集污泥浓缩、稳定、脱水过程在一个装置中完成,管理简单、投资节约。
This paper described the development of the general situation of sludge reduction and stabilization. In light of the existing problems of domestic sludge treatment and disposal, such as sludge dewatering difficulties, higher energy consumption and so on, we explored from the perspective of the production and practicality, and developed a new type of reactor of integration of vertical enhanced filtration and natural drying and digestion on sewage sludge treatment. By the experiment, we vertified the feasibility of the reactor and analyzed its effect. Main conclusions are as follows:
     ①We developed a new type reactor of integration of vertical enhanced filtration and natural drying and digestion (IVEFNDD) on sewage sludge treatment. Furthermore, we vertified the feasibility of the reactor and analyzed its effect.
     ②The IVEFNDD reactor has a better effect on the sludge concentration. The rate of the moisture content in the sludge is 99.2%. But in the condition of 120 d, the rate of moisture content in the sludge is 79% .The effect on the sludge concentration is better and there is no plugging in the filter material.
     ③The IVEFNDD reactor has been adopted the membrane insulation system, so under the normal temperature, the temperature of digestion in the IVEFNDD reactor has basically reached the medium temperature of sludge digestion.
     ④Under the normal temperature, the IVEFNDD reactor has a better effect on digestion. The organic matter content in sludge which entered in the IVEFNDD reactor is from 52 percent to 30 percent, and the decomposition of organic matter level has reached 44.4%. Better operating parameters: The organic loading is 0.8 kgVSS / (m3 ? d), the sludge staying time is 120 d, the hydraulic retention time is 8.3 d, the sludge concentration is 209.423 g / L, the moisture content of the sludge is 79.06%, the decomposition of organic matter rate has reached 44.4%.
     ⑤Most of the COD value of the sludge leachate is from 200 to 600 mg / L; TN max is 489.5 mg / L, TP max is 117.5 mg / L; Most of the average NH3-N is from 150 to 250 mg / L . So the leachate must be returned to the wastewater treatment plant to deal with.
     ⑥Through the heavy metal examining, we discovered that the copper in the sludge which is treated in the IVEFNDD reactor had exceeded the standard (urban sewage treatment plant pollutant discharge standards GB18918-2002). Therefore, it is not appropriate to use the sludge on the farm, but it can be used as garden soil and soil transformation.
     ⑦Based on the sludge settlement test, we find the prediction model of the IVEFNDD reactor: R = [ 99 - 79.3959t~(-0.5529)]×100%. Use the prediction model; we can prognosticate the reducing efficiency of sludge.
     By the experiment, we proved that the IVEFNDD reactor improved the efficiency of slurry separation and enhanced the effect of sludge natural drying, and achieved the reductions, the stability and the resource through digestion. Furthermore, sludge thickening, stability and dehydration process are completed in a device of the IVEFNDD reactor. The management is simple, and the investment is saving.
引文
[1]徐强.污泥处理处置技术及装置[M ].北京:化学工业出版社, 2003.
    [2]何品晶,顾国维,李笃中.城市污泥利用与处理[M].北京:科学出版社, 2003.
    [3] Linder K H. Anforderungen an die Klarschlammentsor2gung in Europa[J]. Korres2pondenz Abwasser, 1993, 40(1) : 80 - 84.
    [4]石吉,邵青,米晓.城市污水污泥的处理利用及发展[J].中国资源综合利用,2004(2), 16-19.
    [5]何品晶,顾国维,李笃中.城市污泥利用与处理[M].北京:科学出版社, 2003.
    [6]姚刚.德国的污泥利用和处置(Ⅰ)[J].城市环境与城市生态,2000,13(1): 43-47.
    [7] Franklin LB, Stensen HD. Wastewater Engineering Treatment andReuse (Fourth Edition) [M]. Geoge Tchobanoglous: Metcalf& EddyInc, 2003.
    [8]李笃中,何品晶.污泥性质、胶羽结构与处置[J].科技导报; 2004(9), 27-31.
    [9]申丘澈,名取真著.污水污泥处理.北京;中国建筑工业出版社, 1981: 1~60.
    [10]解光武,蔡明招,郑文芝.国内外污泥的处理与处置技术[J].环境技术, 2003(5).
    [11]易红星,王建龙,李书军.我国污泥农用资源化的处置方法[J].石河子大学学报(自然科学版), 2004(3), 95-98.
    [12]赵丽君,杨意东,胡振苓.城市污泥堆肥技术研究.中国给水排水, 1999, 15(9): 58~60
    [13]王敦球,解庆林,李金城,张学洪,李全明.城市污水污泥处理及综合利用.桂林工学院学报, 1999, 19(4): 387~389.
    [14]华玉妹;污泥中Cu、Pb和Zn的生物沥滤研究[D];浙江大学,2005年.
    [15]谭启玲;土壤、作物及微生物对污泥施用及Pb、Cd污染的反应[D];华中农业大学,2004年.
    [16]陈涛,熊先哲;污泥的农林处置与利用[J];生态学杂志; 2000 (6), 54-57.
    [17]污泥变燃料[J],大科技(科学之迷), 2006 (1),38.
    [18]程五良,马娜,陈玲,赵建夫.城市污水厂污泥土地利用的初步探讨[A];中国地壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会文集(面向农业与环境的土壤科学专题篇)[C]; 2004年.
    [19]肖锦.城市污水处理及回用技术.北京.化学工业出版社.环境科学与工程出版中心. 2002.5 P378.
    [20]周少奇编著.城市污泥处理处置与资源化.广州,华南理工大学出版社, 2002: 1~10.
    [21] Djafer M,Luck F,Rose J P,et al.Transforming sludge into a recyclable and valuable carbon source by wet air oxidation[J].Wat Sci Tech.,2000,41(8): 77-83.
    [22] Onaka T.Sewage can make Portland cement:a new technology for ultimate reuse of sewage sludge wet air oxidation[J].Wat Sci Tech,2000,41(8): 93-98.
    [23] Edstentiford. Sludge composting-trend and opportunities. W&WT, November1995, 38, (11).
    [24]俞辉群.日本当前的下水道工程建设及污泥处理技术.给水排水, 1994, 1(2).
    [25]赵庆祥,污泥资源化技术.化学工业出版社, 2002.
    [26]陈绍军译.欧洲污泥处理的发展趋势.市政工程国外动态,1994,6(总第84期).
    [27] RAJ Arthur. Sludge disposal-where next. W&WT, September, 1992, Vol, 35, No.9.
    [28]贺亮.城市污泥快速高效好氧堆肥技术研究[D],西南大学, 2006年.
    [29]徐静安,潘振玉.复混肥和功能性肥料生产新工艺及应用技术丛书生产工艺技术.化学工业出版社, 2000.
    [30]陈春云,庄源益,刘斐.干污泥及其改性物对燃料的吸附.城市环境与城市生态, 2003.10. 16(5), 22~24.
    [31]李军,陈邦林,胡建斌等.高温突跃法处理城市污泥的研究.环境科学学报, 2000.11.20(6), 751~754.
    [32]詹莉.利用生化污泥制污泥型煤.今日科技, 1994.1, 10~11.
    [33]周瑾亮李昕辛卯.“污泥发电”破解全国环保难题[N];常州日报; 2005年.
    [34]张智,阙科健.利用城市污水厂污泥生产水处理填料研究.给水排水, 2007.3.
    [35]刘莲香.污水处理厂污泥于陶粒生产中的综合利用.陶瓷研究与职业教育, 2003.1, 1, 35~40.
    [36] Shen L,Zhang D K.An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidized-bed[J].Fuel,2003,82(4):465~472.
    [37] Nakouzi S.A novel approach to paint sludge recycling[J].Journal of Material Research, 1998, 13(1): 53~60.
    [38] Kumar M S,Mudliar S N,Reddy K M K,et al.Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant[J]. Bioresource Technology,2004,95(3): 327~330.
    [39]朱建平,常钧,芦令超,等.利用城市垃圾、污泥烧制生态水泥[J].硅酸盐通报,2003(2):57~61.
    [40]冯乃谦,邢峰.生态水泥及应用[J].混凝土与水泥制品,2000,(6):18~21.
    [41]杨磊,张鸿杰.利用苏州河底泥生产水泥熟料技术研究[J].水泥,2000,(10):10~12.
    [42]胡爱军,丘泰球,刘石生.应用超临界技术进行废水处理[J].水处理技术,2003,29(1):8~11.
    [43]伊军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2004.
    [44] Shen L,Zhang D K.An experimental study of oil recovery from sewage sludge by low-t emperature pyrolysis in a fluidized-bed[J].Fuel,2003,82(4):465~47.
    [45] Lutz H, Romeiro G A,Damasceno R N,et al.Low temperature conversion of some Brazilian municipal and industrial sludge[J].Bioresource Technology,2000,74(2):103~107.
    [46]吴俊锋,冯晓西,魏兴义.污泥减量化的研究现状[A],中国化学会第八届水处理化学大会暨学术研讨会论文集[C], 2006年.
    [47] Chang J, Chu doba P, Cap deville B. Determination of the maintenance requirement of activated sludge [J]. Wat Sci Technol, 1993, 28(3): 139~142.
    [48] Low EW. Chase HA, Milner MG, et al. Uncoupling of meta bolistmto reduce biomass production in the activated sludge process[J]. Wat Res, 2000, 34(12): 3204-3212.
    [49]安晓雯,仉春华;污泥减量技术及解偶联剂的应用[J],大连大学学报;2005 (4).
    [50] Liu Y. Effect of chemical uncouple on the observed growth yield in batch culture of activated sludge [J]. Wat Res, 2000, 34(7): 2025~2030.
    [51] Mayhew M, Stephenson T, Biomass yield reduction: is bio chenmical manipulation possible without affecting activated sludge process efficiency?[J].Wat Sci Technol, 1998,38(8-9): 137- 144.
    [52] Cook GM, Russell JB. Energy-spill in gre actions of Strep to coccus bovis and resistance of its member anetoprot on conductance[J].Appl Environ Microbiol, 1994, 60(6):: -1948.
    [53] Liu Y, Tay J H. Akinetic model for energy spilling-associated product formation in substrate- sufficient continuous culture [J]. J Appl Microbiol, 2000, 88(4): 663~668.
    [54] Janssen P M J,Rulkens W H,Riesenk J H,and Van der Roest H F. The Potential for Metazoa in Biological Wastewater Treatment. WQI,1998,(9~10):25~27.
    [55] Biocope, Inc. Municipal Wastewater Treatment with Biocope Multi-Enzyme Product. Company Literature, 1998.
    [56] B Z Wang, et al. A study on simultaneous organic and nitrogen removal by extended aeration submerged biofilm process. Wat Sci Tech,1991,24(5):197~214.
    [57] Kady International Bio solids Technical Bulletin. Company Literature,1998.
    [58] Dawson R M C,Elliot D C,Elliot W H and Jones K M. Data for Biochemical Research. 3rd. Edition. UK: Oxford science Publishers. 1986. 117~129.
    [59] Green P. Low sludge Producing STWs. Internal Communication, 1998. 232~242.
    [60] Lee N M and Welander T. Reducing sludge Production in Aerobic Wastewater Treatment. Through Manipulation of the Ecosystem. Water Research,1996,30(8):1781~1790.
    [61]沈劲锋;超声促进石化水厂剩余活性污泥脱水和厌氧消化[D],南京工业大学; 2006年.
    [62]王永霞,樊建军,莫卫松;超声波技术在污泥处理中的应用[J],重庆建筑大学学报,2007(3).
    [63]刘春红,杨顺生,戴本林.我国超声波处理污泥技术的研究进展[J].安徽化工,2007(2).
    [64]白晓慧.超声波技术与污水污泥及难降解废水处理[J].工业水处理,2000,20(12): 8-10.
    [65] Sludge and sustainability. Water Quality International(WQI),1997. 28~29.
    [66] Sludge Treatment, Reuse and Disposal. The cambi process: Volume reduction and biogasproduction in one. World Water, 1998, 21(1):14.
    [67]何群彪,高廷耀.污泥减容的关键技术-剩余活性污泥的气浮浓缩法.中国环境科学, 1996, 16(2): 128~131.
    [68]任宏英.北京市城市污水厂污泥利用途径的研究.北京工业大学硕士论文, 2003, 5: 61~63.
    [69]蒋成爱,黄国锋,吴启堂.城市污水污泥处理利用研究进展.农业环境与发展, 1999, 16(1): 13~18.
    [70]顾国维.水污染治理技术研究.上海:同济大学出版社, 1997: 276~322.
    [71]张清敏,陈卫平,胡国臣,孙红文,朱坦.污泥有效利用研究进展.农业环境保护, 2000, 19(1): 58~61.
    [72]何品晶,邵立明,宗兵年.污水厂污泥综合利用与消纳的可行性途径分析.环境卫生工程. 1997 (4) :21~25.
    [73] Jean. L. ,Maeseneer. D. Constructed wet lands for sludge dewatering. Water Science & Technology. 1997, 35(5): 279~285.
    [74] Kim B. J. Evaluation of sludge dewatering reed beds: a niche for small systems .Water Science & Technology. 1997, 35(6): 21~28.
    [75]高廷耀,顾国维.水污染控制工程下册(第二版).北京:高等教育出版社, 1999: 288~313.
    [76]薛文源.城市污水污泥处理与处置的途径.中国给水排水, 1992, 8(1): 41~45.
    [77]王凯军,Last A.R.M.Vander,G.Lettinga.厌氧处理的污泥稳定化研究[J],中国给水排水; 2001(12).
    [78]李多松,康东正,尤伟红,王温家,刘源. KHYC用于污泥脱水处理的研究.工业水处理, 1997: 17(5): 22~25.
    [79]杨琦,刘广立,钱易.污泥处理的处置技术新进展.上海环境科学, 1999, 18(3): 133~134, 138.
    [80]彭晓宏,沈家瑞.两性聚丙烯酰胺的絮凝脱水性能的研究.石油化工, 1998: 27(4): 167~170.
    [81]王敦球.污水污泥资源化利用研究.重庆大学硕士论文, 2000.
    [82]丁文川,脱水生污泥堆肥工艺及机理的试验研究.重庆建筑大学硕士论文, 1999.
    [83]王凯军,Last A.R.M.Vander,G.Lettinga.厌氧处理的污泥稳定化研究[J],中国给水排水, 2001(12): 71-74.
    [84] Ghosh, S. et al. Methane Production from industrial waste by two-phae anaerobic digestion Wat. Res, 1985.19(9).
    [85] Wang K.K,Two phase anaerobic treatment kinetics of palm oil wastes, Wat.Res.1985, 19(5).
    [86] Parkin P.L.,Fundamentals of anaerobic digestion of waste water aludge, J.ASCE,1986.112(4).
    [87]王晓.活性污泥的稳定化处理技术及其发展[J],青海大学学报(自然科学版),2001(1):37-39
    [88]石吉,邵青,米晓;城市污水污泥的处理利用及发展[J];中国资源综合利用; 2004(2), 16-19.
    [89]王凯军,王晓惠,李宝林.城市污水污泥稳定性问题和试验方法探讨[J],给水排水, 2002(5) ,9-12+3.
    [90]傅大放等.污水厂污泥微波处理试验研究.中国给水排水, 1999, 15(6).
    [91] Sanin. F. D. et al. Pathogen reduction cap bilities of treeze thaw sludge conditioning. Water Res, 1994.28(11).
    [92]水和废水检测分析方法(第四版).
    [93]柯建明王凯军田宁宁.北京市城市污水污泥的处理和处置问题研究[J].中国沼气, 2000, 18(3): 35~38.
    [94]余兰兰,钟秦;城市污泥的处置及资源化展望[J];环境监测管理与技术; 2006 (2).
    [95]周立祥等.城市污泥土地利用研究[J].生态学报, 1999, 19(2): 185~193.
    [96]林立君,贺君,王帅杰,王秀丽.秦皇岛城市污水处理厂剩余污泥基本性质及农用价值分析[J],环境科学与管理; 2006(5).
    [97]陈萍丽;重庆市城市污泥特性及其农用安全性研究[D],西南大学, 2006年.
    [98]李磊;污泥固化处理技术及重金属污染控制研究[D],河海大学, 2006年.
    [99]乔显亮骆永明吴胜春.污泥的土地利用及其环境影响[J].土壤, 2000, 2: 79~85.
    [100]张自杰林荣忱金儒霖.排水工程(第三版).北京:中国建筑工业出版社, 1996, 296~299.
    [101] GB18918-2002,农用污泥污染物控制标准.
    [102]王凯军贾立敏.城市污水生物处理新技术开发与应用.北京:化学工业出版社, 2001, 484.
    [103]田宁宁王凯军等.污水处理厂污泥处置及利用途径研究[J].环境保护, 2000, 2: 18~20.
    [104]李兵,尹庆美,张华,石磊,赵由才.污泥的处理处置方法与资源化[J].安全与环境工程, 2004(4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700