用户名: 密码: 验证码:
光照下低分子量有机酸(或醇)对Cr(Ⅵ)的还原作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属铬(Cr)在环境中主要以两种形态存在,即Cr(Ⅲ)和Cr(Ⅵ)。Cr(Ⅲ)毒性低,是人体必须的微量元素;而Cr(Ⅵ)毒性大,对环境造成严重危害。目前治理Cr(Ⅵ)的常用方法是利用其强氧化性,加入Fe(Ⅱ)、S02等还原剂,将Cr(Ⅵ)还原为Cr(Ⅲ)。环境中许多有机物都能还原Cr(Ⅵ),对于有机物还原Cr(Ⅵ)的热反应报道很多,但对于光化学反应研究较少。光催化法可利用太阳能,是自然环境中Cr(Ⅵ)还原的重要途径。本文主要研究不同光源照射下,Mn(Ⅱ)对低分子量有机酸(或醇)还原Cr(Ⅵ)的催化作用以及光和Ti02对酒石酸还原Cr(Ⅵ)的反应机理和及其影响因素。
     本论文共分两部分:
     第一部分:通过批式试验研究了不同光条件下,Mn(Ⅱ)对六种有机酸或醇:柠檬酸、丁二酸、酒石酸、苹果酸,正丙醇、丙三醇还原Cr(Ⅵ)的影响。结果表明,不同光条件下反应速率为:紫外光照射>365 nm特征波长照射>可见光照射>避光。避光条件下外加Mn(Ⅱ),3种α-OH酸(柠檬酸、酒石酸、苹果酸)对Cr(Ⅵ)还原速率为柠檬酸>酒石酸>苹果酸,而分子式中不含α-OH的丁二酸和不含羧基的正丙醇、丙三醇在避光条件下不具还原性。可见光照射下,正丙醇、丙三醇开始缓慢还原Cr(Ⅵ),丙三醇快于正丙醇,羟基数目增多有利于Cr(Ⅵ)的还原;丁二酸也开始还原Cr(Ⅵ),羧基结构有利于Cr(Ⅵ)的还原;3种a-OH酸在无Mn(Ⅱ)时还原速率为酒石酸>柠檬酸>苹果酸,外加Mn(Ⅱ)后速率为柠檬酸>酒石酸>苹果酸。紫外光照射下,无论有Mn(Ⅱ)或无Mn(Ⅱ)存在,3种α-OH酸均在10-12分钟内将Cr(Ⅵ)完全还原。365 nm特征波长照射下,紫外光能量减弱,Mn(Ⅱ)的参与对羟基还原Cr(Ⅵ)的抑制作用进一步凸显,3种a-OH酸均为无Mn(Ⅱ)快于有Mn(Ⅱ);且365 nm特征波长照射下,外加Mn(Ⅱ)对Cr(Ⅵ)的还原速率为柠檬酸>苹果酸>酒石酸。
     第二部分:研究了避光条件、可见光照射及紫外光照射时TiO2对酒石酸还原Cr(Ⅵ)的影响及其作用机理。结果表明,在避光条件下pH为4时,单独的酒石酸对Cr(Ⅵ)的还原作用很弱,即使外加TiO2反应仍然十分缓慢。其他条件相同时,可见光照射能加速酒石酸对Cr(Ⅵ)的还原,2 h内即有10%的Cr(Ⅵ)被还原;外加TiO2后反应速率进一步提高,40min内有80%的Cr(Ⅵ)被还原。与可见光照射下的相比较,紫外光照射对酒石酸还原Cr(Ⅵ)的反应有更显著的催化作用,无TiO2存在时,反应150 min时初始浓度为100μmol/L的Cr(Ⅵ)即被全部还原为Cr(Ⅲ);而TiO2存在时仅需7 min这一反应即彻底完成。体系的酸度对酒石酸在TiO2及光作用下还原Cr(Ⅵ)反应也有较大的影响,体系酸度越大,反应速率越快。提高酒石酸的初始浓度也可促进其对Cr(Ⅵ)的光催化还原。
Chromium (Cr) mainly exsits with two major forms, namely Cr(Ⅲ) and Cr(Ⅵ). Cr(Ⅲ) is low toxic and a necessary trace element for humans, while Cr(Ⅵ) is high toxic, causing serious pollutions. The common method to reduce Cr(Ⅵ) is using its strong oxidation, mixing reductants such as Fe(Ⅱ), SO2, etc, to transform Cr(Ⅵ) to Cr(Ⅲ). Many organisms in nature serve as reductants for Cr(Ⅵ). Much more reports are about thermal chemical reactions and photochemical reactions are less studied. Photocatalysis is available in solar nature and is an important way of Cr(Ⅵ) reduction This paper mainly studies the reduction of Cr(Ⅵ) by organic acids (or alcohols) with low molecular weight under the dark/visible light/UV/characteristic wavelength irradiation of 365 nm in the presence and absence of Mn(Ⅱ). And the effect of TiO2 on the photocatalic reduction of Cr(Ⅵ) by tartaric acid and its mechanism were also conducted.
     This paper is divided in two parts:
     The first part:through batch experiments of different types of light conditions, Cr(Ⅵ) were reduced by six kinds of organic acid or alcohols (citric acid, tartaric acid, malic acid, succinic acid, and N-propanol, glycerin) in the presence and absence of Mn(Ⅱ). Results showed that under different light conditions the reaction rate order was:UV> characteristic wavelength irradiation of 365 nm>VIS> the dark. Without light and in the absence of Mn(Ⅱ), Cr(Ⅵ) reduction rate was:citric acid> malic acid> tartaric acid, While succinic acid, no a-OH included in the molecular formula, and the alcohols, without a-COOH in the formulas, could not reduce Cr(Ⅵ). Under VIS, N-propanol and glycerin slowly began to remove Cr(Ⅵ), and glycerin is faster than N-propanol, more-OH was favorable of the reduction; Succinic acid also began to ruduce Cr(Ⅵ),-COOH helped to Cr(Ⅵ) reduction; 3 kinds of a-OH acids in the absence of Mn(Ⅱ) order was:tartaric acid> malic acid>citric acid, in the presence Mn(Ⅱ):tartaric acid>citric acid>malic acid. Under UV, no matter if Mn(Ⅱ) existing or not existing,3 kinds of a-OH acids fully wipe off Cr(Ⅵ) in 10-12 minutes. Under 365nm, because of uv energy abatement, the inhibition effect of Mn(Ⅱ) further highlighted, which handered-OH to remove Cr(Ⅵ).3 kinds of a-OH acids were weaker to eliminate Cr(Ⅵ) having Mn (Ⅱ) than having no Mn (Ⅱ). The Cr(Ⅵ) reduction rate in the presence of Mn(II) under 365 nm was:citric acid> malic acid> tartaric acid.
     The second part:The effect of TiO2 on the reduction of Cr(VI) by tartaric acid and its mechanism were conducted under UV/visible light/the dark condition. The results showed that under the dark condition, the tartaric acid alone could not induce the Cr(VI) reduction, and even in the presence of TiO2, Cr(VI) reduction had not been observed obviously. Exposed to visible light,10% of Cr (VI) had been reduced after 2h in the absence of TiO2, but in the presence of TiO2 the percentage of Cr(VI) reduction increased to 80%after 40 min. Under UV, the Cr(VI) reduction rate and efficiency by tartaric acid were improved further. For example,100%of Cr(VI) had been reduced to Cr(III) after 150min in the absence of TiO2, and it was almost completely reduced after 7 min in the presence of TiO2. Besides, the stronger acidity of reaction system promoted the TiO2 photocatalytic reduction of Cr(VI).
引文
1. 汤克勇.环境中的铬与铬的生理意义[J].皮革科学与工程,1996,6(3):41-45
    2. 房兴堂,张彩荣,陈宗方.有机铬的研究进展及应用前景[J].饲料与畜牧,1998,(5):15-17
    3. 江澜,王小兰.铬的生物作用及其污染治理[J].重庆工商大学学报,2004,21(4):325-327
    4. 汤克勇.铬的污染源及其危害[J].皮革科学与工程,1997,7(1):33-37
    5. 蔡宏道.环境污染与卫生检测[M].人民卫生出版社,1981,67-72
    6. 庞汤涛.无机化学[M].北京教育出版社,1992:350-352
    7. 黄昌勇主编.土壤学[M].中国农业出版社,北京,2000,272
    8. 夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72-76
    9. 董长勋,兰叶青,潘根兴.几种新型氧化锰对Cr(Ⅲ)氧化作用的研究[J].哈尔滨商业大学学报,2006,22(6):44-47
    10.李爱琴,唐宏建,王阳峰.环境中铬的生态效应及其污染防治[J].中国环境干部管理学报,2006,16(1):74-77
    11.张宝莉主编.农业环境保护[M].化学工业出版社,北京,2002,176
    12.蔡宏道,环境污染与卫生检测[M].人民卫生出版社,1981,67-72
    13.赵振新.六价铬径门摄入的动物慢性毒性买验研究[J].环境与健康杂志,1988,2:28-30
    14.张宝莉主编.农业环境保护[M].化学工业出版社,北京,2002,176
    15.赵振新.六价铬径门摄入的动物慢性毒性买验研究[J].环境与健康杂志,1988,2:28-30
    16.王淑英,马啸华.土壤重金属污染的危害及修复[J].商丘师范学院学报,2005,21(5)
    17.马宏瑞.低分子量有机酸对制革污泥污染土壤中铬的活化及植物提取效应[J].陕西科技大学学报,2004,22(6)
    18.刘子全,刘景.工业生产中的铬污染[J].化工环保,1997,7(10)
    19.夏清.化学还原法处理含铬废水工艺条件研究[J].无机盐工业,2003,35(3):37-39
    20.丁翼.铬化合物生产与应用[M].北京:化学工业出版社,2003,2
    21.李宾.化学法处理含重金属废水的应用介绍[J].材料保护,2000,33(10):18-19
    22. Lopez T. FTIR and UV-Vis Spectroscopic Characterization of TiO2 Sol-gel. Mater[J]. Chem. Phys., 1992,32:141-152
    23.张小庆,王文洲,王卫.含铬废水的处理方法[J].环境科学与技术,2004,27:111-113
    24. Vivaraghvavan T. Use of Peat in Pollution Control[J]. Intern. J. Environment Studies,1991(37): 263-269
    25.殷钟意,向夕品.工业含铬废水的络合萃取处理工艺研究[J].化学研究与应用,2004,16(4):479-481
    26. Fatama A.Management of Waste in a Light Vehicle Manufacturing Company in Egypt[J]. Environ. Sci.Technol.,1993,14(2):135-142
    27.夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72-76
    28. Thornton J S. Gas treatment of Cr(VI)-contaminated sediment samples from the North 60'spits of the chemical waste landfill[J]. PNNL-11634, Pacific Northwest National Laboratory, Richland, Washington,1997
    29. Thornton E.C.and Amdnette J E. Hydrogen sulfide gas treatment of Cr(VI) contaminated sediment samples from a plating-waste disposal site-implications for in situ-remediation[J]. Environment Sci. Technol.,1999,33:4096-4101
    30. Pichtel J, Pichtel T M.Comparison of solvents for ex situ removal of chromium and lead from contaminated soil[J].Env. Eng. Sci.,1997,14(2):97-104
    31. McKinley W S, Pratt R C, McPhillips L C. Cleaning up chromium[J]. Civil Eng.,1992,62(3): 69-71
    32.韩怀芬,黄玉柱,金漫彤.铬的固化/稳定化研究[J].环境污染与防治,2002,24(4):199-200
    33. Meegoda J N. Practice Periodical of Hazardous, Toxic, and Radioactive Waste[J]. Management, 1999,3(3):124-131
    34. Lytle C M, Lytle F M, Yang N, et al. Reduction of Cr(VI) to Cr(III) by wetland plants:potential for in situ heavy metal detoxification[J]. Environ. Sci. Technol,1998,32:3087-3093
    35.张学洪,罗亚平,黄海涛,等.一种发现的湿生铬超积累植物[J].生态学报,2006,26(3):950-953
    36. Reeves R D, Baker A J, Brooks R R. Abnormal accumulation of trace metals by plants [J]. Mining Environmental Management,1995,9,4-8
    37. Ribeiro A B, Mateus E P, Ottosen L M. Electrodialytic removal of Cu, Cr, and As from Chromated Copper Arsenate-Treated Timber Waste[J]. Environ. Sci. Technol.,2000,34(5):784-788
    38. Westheimer F. H. The mechanisms of chromic acid. Chromium VI biosorption and bioaccumulation oxidations[J].Chem.Rev.,1949,45(3),419-451
    39. Stewart R. Oxidation Mechanisms:Application to Organic Chemistry[J]. W. A. Benjamin Inc, New York,1964:58-76
    40. Cainelli G, Cardillo G. Chromium Oxidations in Organic Chemistry [J]. Springer-Verlag:Berlin, 1984:118-128
    41. Deng B and Stone A. Surface-catalyzed chromium(VI) reduction:reactivity comparisons of different organic reductants and different oxide surfaces[J]. Environ. Sci. Technol,1996,30, 2484-2494
    42. Elovitz M S and Fish W. Redox Extraction of Cr(VI) and substituted phenols:kinetic investigation[J]. Environ. Sci. Technol.,1994,28,2161-2169
    43. Nakayama E, Kuwamoto T, Tsurubo S, et al. Chemical speciation of chromium in seawater. Part3. The determination of Chromium species[J]. Anal. Chim. Acta.,1981,130,401-404
    44.王应红,陈武勇,辜海彬.葡萄糖和没食子酸与Cr(Ⅵ)氧化还原反应动力学特性比较研究[J].中国皮革,2005,34(3):30-32
    45. Deng B, Stone A T.Surface-catalyzed Chromium(VI) reduction:the TiO2-Cr(VI)-Mandelic acid system[J]. Environ. Sci. Technol.,1996(a),30,463-472
    46. Ross D S, R. E. Sjogren and R. J. Bartlett, Behavior of chromium in soils and Cr(VI) Toxicity to microorganisms[J]. J Environ. Qual.,1981,10:145-148
    47.王立军,章申.土壤水介质中Cr(Ⅵ)和Cr(Ⅲ)形态的转化[J].环境科学,1982,3(4):38-41
    48. James B R. and R. J. Bartlett. Behavior of chromium in soils VII. Adsorption and reduction of hexavalent form[J].J. Environ. Qual.,1983c,12(2):177-181
    49.陈静生,张国梁,穆岚.土壤对六价铬的还原容量初步研究[J].环境科学学报,1997,17(3):334-339
    50.黄启飞,高定,丁德蓉.垃圾堆肥对铬污染土壤的修复机理研究[J].土壤与环境,2001,110(3):176-180
    51.张亚丽,沈其荣,王兴兵.猪粪和稻草对铬污染黄泥土生物活性的影响[J],植物营养与肥料学报,2002,8(4):488-492
    52. Burge I J, Hug S J. Influence of organic ligands on chromium(VI) reduction by iron(II)[J]. Environ. Sci. Technol.,1998,32,2092-2099
    53. Wittbrodt P R. and Palmer C D. Reduction of Chromium(VI) in the presence of excess soil fulvic acid[J]. Environ. Sci. Technol.,1995,29:255-263
    54.李琳.多相光催化在水污染治理中的应用[J].环境科学进展,1994,2(6):23-31
    55. Hoffmann M R, Martin S T, Choi W, et al. Environmental application of semiconductor photocatalysis[J]. Chem. Rev.,1995,95:69-96
    56.付宏祥,吕功煊,李新勇,等.重金属离子的光催化还原研究进展[J].感光科学与光化学,1995,11(4):325-333
    57. Chen D, Ray Ajay K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis[J]. Chemical Engineering Science,2001,56:1561-1570
    58. Dhananjay S B, Vishwas G P. Photacatalytic degradation for environmental applicatons a review[J]. Journal of chemical Technology and Biotechnology,2001,77:102-116
    59.何怀平,谭欣,马红钦,等.Ti02光催化膜的应用研究[J].天津师范大学学报(自然科学版),2002,22(1): 186-188
    60.夏青,张旭辉.水质量标准手册[M].北京:中国环境科学出版社,1990,230-232
    61. Testa J, Grela M A, Litter Marta I. Experimental Evidence in Favor of an Initial One-Electron-Transfer Process in the Heterogeneous Photocatalytic Reduction of Chromiun(VI) over TiO2[J]. Langmuir:The ACS Journal of Surfaces and Colloids,2001,17(12):3515-3517
    62. Schrank S G, Jose H J, Moreira R F P M. Simultaneous photocatalytic Cr(VI) reduction and dye oxidation in a TiO2 slurry reactor [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2002,147:71-76
    63. Scott Goeringer, Chenthamarakshan C R., Krishnan Rajeshwar. Synwegistic photocatalysis mediated by TiO2:mutual rate enhancement in the photoreduction of Cr(VI) and Cu(II) in aqueous media[J]. Electrochemistry Communications,2001,3:290-292
    64.付宏祥,吕功煊,张宏,等.Cr(Ⅵ)离子在TiO2表面的吸附与光催化还原消除[J].环境科学,1998,19(3):80-83
    65. Khalil L B, Mourad W E, Rophael M W. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination[J]. Applied Catalysis B: Environmental,1998,17:267-273
    66.陈士夫,曹更玉.H2O2、金属离子等对Cr(Ⅵ)离子光催化还原及对敌敌畏农药光催化氧化的影响[J].感光科学与光化学,2002,20(6):435-440
    67.付宏祥,吕功煊,李树本,等.Cr(Ⅵ)离子在TiO2表面的光催化还原机理研究[J].化学物理学报,1999,12(1):112-115
    68. Khalil L B, Rophael M W, Mourad W E. The removal of the toxic Hg(II) salts from water by photocatalysis [J]. Applied Catalysis B:Environmental,2002,36:125-130
    69. Botta S G, Rodriguez D J. Features of the transformation of Hg Ⅱ by heterogeneous photocatalysis over TiO2[J]. Catalysis Today,2002,76:247-258
    70.李川,古国榜,柳松.Ti02光催化处理废水中贵重金属的研究进展[J].环境污染治理技术与设备,2003,4(11):6-12
    71. Tatsuo Kanki, Hiroshi Yoneda, Noriaki Sano, et al.Photocatalytic reduction and deposition of metallic ions in aqueous phase[J]. Chemical Engineering,2004,97(1):77-81
    72. Skubal L R, Meshkov N K. Reduction and removal of mercury from water using arginine-modified TiO2[J]. Journal of photochemistry and photobiology A:Chemistry,2002,148:211-214
    73.徐明芳,陈心满,徐开强,等.光催化反应器中光降解重金属Cr(Ⅵ)的研究[J].现代化工,2005,25(3):30-33
    74.汤心虎,韦朝海,龙保根,等.稀水溶液中Cr(Ⅵ)的光催化还原研究[J].环境化学,2006,25(1):20-23
    75.刘国光,丁雪军,张学治.光催化氧化技术的研究现状及发展趋势[J].环境污染治理技术与设
    备,2003,8(4):65-69
    76.史载锋,范益群,徐南平,等.不同光源对光催化降解亚甲基蓝的影响[J].南京化工大学学报,2000,22(1):31-34
    77.刘俊渤,吴景贵,刘景华.纳米Fe203光催化还原Cr(Ⅵ)的研究[J].吉林农业大学学报,2005,27(1):83-85,91
    78. Yurkow E J, Hong J. Min S, et al. Photochemical reduction of hexavalent chromium in glycerol containing solutions [J]. Environ. Pollut.,2002,117:1-3
    79. Piotr M, Andrzej K, Zofia S. Mechanism of photochemical reduction of chromium(VI) by alcohols and its environmental aspects[J].J Photochem. Photobiol. A:Chem.,2003,160:163-170
    80. Bruce R, James. Iron catalyzed Photochemical Reduction of Chromium(VI) by Oxalate and Citrate in solution[J]. Environment of science and technology,1997,31:160-170
    81. Li C, Lan Y Q, Deng B. Catalysis of Mn2+for the Reduction of Cr6+by Citrate[J]. Pedosphere, 2007,17(3):3:18-323
    82. Kabir-ud-Din and Khaled Hartani. Unusual rate inhibition of manganese(II) assited oxidation of citric acid by chromium(VI) in the presence of ionic micelles[J]. Transition metal chemistry,2000, 25:478-484
    83. Prairie M R., Evans L R, Stange B M, et al. An investigation of TiO2 photocatalysis for the treatment of water contamination with metals and organic chemicals[J]. Environ.Sci.Technol., 1993,27:1776
    84.梁斌,兰洁,兰叶青.苦杏仁酸、苹果酸、乳酸对Cr(Ⅵ)还原作用的比较[J].环境科学学报,2007,27(8):1326-1329
    85. Edward J Y, Janet H, Samantha M, et al. Photochemical Reduction of Hexavalent Chromium in Glycerol Containing Solutions [J].Environmental Pollution,2003(117):1-3
    86. Bartett R J.and Kimble J M. Behavior of chromium in soil. Ⅱ. Hexavalent forms[J]. J Environ. Quality,1976,5:383-386
    87. Deng B and Stone A T. Surface-catalyzed chromium(VI) reduction:The TiO2-mandelic acid system [J]. Environ. Sci.Technol.,1996(b),30:2484-2494
    88. Schwartz L M. Morn on autocatalytic reaction data analysis[J]. Journal of Chemical Education, 1989,66:677-678
    89.李琛.有机酸还原六价铬反应动力学及其影响因素研究[D].南京:南京农业大学,2006.
    90. Li C, Lan Y Q, Deng B. Catalysis of Mn2+for the Reduction of Cr6+by Citrate[J]. Pedosphere, 2007,17(3):318-323
    1 Westheimer F. H. The mechanisms of chromic acid. Chromium VI biosorption and bioaccumulation oxidations[J]. Chem. Rev.,1949,45(3),419-451
    2 Stewart R. Oxidation Mechanisms:Application to Organic Chemistry[J]. W. A. Benjamin Inc, New York,1964:58-76
    3 Cainelli G, Cardillo G.. Chromium Oxidations in Organic Chemistry[J]. Springer-Verlag:Berlin, 1984:118-128
    4 Ross D S, Sjogren R E and Bartlett R J. Behavior of chromium in soils IV Toxicity to microorganisms[J]. Environ. Qual.,1981,10:145-148
    5 Gupta K, Dey S, Gupta S, et al. Evidence of esterification during the oxidation of some aromatic aldehydes by chromium (VI) in acid medium and the mechanism of the oxidation process [J]. Tetrohed ron,1990,46:2431
    6 张亚丽,沈其荣,王兴兵.猪粪和稻草对铬污染黄泥土生物活性的影响[J].植物营养与肥料学报,2002,8(4):488-492
    7 王小平,赵学蕴,金维续.有机肥对铬污染土壤解毒效果的研究[J].环境科学,1986,7(3):18-21
    8 李惠英,邓波儿,刘同仇.铬污染土壤施入有机肥的改良效果[J].农业环境保护,1992,11(5):236-237
    9 Lee D G, Chen T. The oxidation of alcohols by permanganate. A comparison with other high valent transition metal oxidants[J]. J. Org. Chem.,1991,56:5341
    10 Elovitz M S, Fish W. Redox interaction of Cr(VI) and substituted phenols:kinetic investigation[J]. Environ. Sci. Technol.,1994,28:2161
    11 Elovitz M S, Fish W. Redox interaction of Cr(VI) and substituted phenols:products and mechanism[J]. Environ. Sci.Technol.,1995,29:1933
    12 Bartett R. J and Kimble J M. Behavior of chromium in soil. II. Hexavalent forms[J]. J. Environ. Quality,1976,5:383-386.
    13 Buerge I J and Hug S J. Influence of organic ligands on chromium(VI) reduction by iron(II)[J]. Environ. Sci. Technol.,1998,32,2092-2099.
    14戴树桂主编.环境化学[M].高等教育出版社,北京,2001,116
    15 Deng B and Stone A T. Surface-catalyzed chromium(VI) reduction:TiO2-mandelic acid system[J]. Environ. Sci.Technol.,1996(a),30,463-472
    16 Deng B and Stone A T. Surface-catalyzed chromium (VI) reduction:The TiO2-mandelic acid system[J]. Environ. Sci. Technol.,1996(b),30,2484-2494
    17 Schwartz L M. Morn on autocatalytic reaction data analysis[J]. Journal of Chemical Education, 1989,66:677-678
    18 Li C, Lan Y, Deng B. Catalysis of Mn(II) on the reduction of chromium(VI) by citrate[J]. Pedosphere,2007,16(3):318-323
    19梁斌,兰洁,兰叶青.苦杏仁酸、苹果酸、乳酸对Cr(Ⅵ)还原作用的比较[J].环境科学学报,2007,27(8):1326-1329
    20 Zheng S, Xu Z, Wang Y, et al. On the enhanced catalytic activity of TiO2-supported layered compounds for Cr(VI)photo-reduction[J]. J. Photochem. Photobiol.:A 2000,137:185-189
    21 Piotr M, AndrzejK, ZofiaS.Mechanism of photochemical reduction of chromium(VI) by alcohols and its environmental aspects[J]. J photochem Photobiol A:Chem,2003,160:163-170
    22 Tzou Y. M, Loeppert R H. and Wang M K.Light-Catalyzed Chromium(VI) Reduction by Organic Compounds and Soil Minerals[J]. J. Environ. Qual.,2003,32:2076-2084
    23汤心虎,韦朝海,龙保根等.稀水溶液中Cr(Ⅵ)的光催化还原研究[J].环境化学,2006,25(1):20-23
    24 Edward J Y, Janet H, Samantha M, et al.Photochemical Reduction of Hexavalent Chromium in Glycerol Containing Solutions [J]. Environmental Pollution,2003(117):1-3
    25 Kautsky H. Quenching of luminescence by oxygen[J]. Trans. Faraday Soc.,1939,35:216-219
    26 Baxter R M, Carey J H. Evidence for photochemical generation of Superoxide ion in humic waters[J]. Nature,1983,306:575-576
    27 William H, Gary R, Peyton, et.al. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. II. Natural trihalomethane precursors[J]. Environ. Sci. Technol.1982,16(8): 454-458
    28林铭章,朱清时.人工控制液相金属纳米粒子的组装[J].化学进展,1998,10(3):237-245
    29李田.光化学氧化法的类型及研究进展[J].环境污染与防治.1993,15(1):31-34
    1刘卫国,张新申,刘明华.制革工业中铬污染及防治[J].皮革科学与工程,2001,11(3):1-6
    2钟良康,方波.活性炭吸附色泽测定染料废水中六价铬[J].中国卫生检验杂志,2002,12(1):78
    3罗明标,周跃明.不锈钢中铬、镍、钛系统分析的研究和应用[J].江西化工,1994,(1):18-19
    4 Xia Q. Study on technology conditions of treatment of chromium-contained wastewater by chemical reduction[J]. Inorganic Chemicals Industry,2003,35(3):37-39
    5 Rengaraj S, Yeon K H, Moon S H. Removal of chromium from water and wastewater by ion exchange resins[J]. Journal of Hazardous Materials,2001,87(1-3):273-287
    6 Eary L E, Ral D. Chromate removal from aqueous wastes by reduction with ferrous ion[J]. Environ. Sci.Technol.,1988,22(8):972-977
    7李惠英,邓波儿,刘同仇.铬污染土壤上施入有机肥的改良效果[J].农业环境保护,1992,11(5):236-237
    8 Burge I J, Hug S J. Influence of organic ligands on chromium (VI) reduction by iron (II)[J]. Environ. Sci.Technol.,1998,32(14):2092-2099
    9 Bartlett R. J and Kimer J M. Behavior of chromium in soils:Ⅱ. Hexavalent forms[J]. J. Environ. Quality,1976,5(4):383-386
    10 Klare M, Scheen J, Vogrlsang K, et al. Degradation of short-chain alkyl-and alkanolamines by Ti02-and Pt/Ti02-assisted photocatalysis[J].Chemosphere,2000,41(3):353-362
    11 Kiriakidou F, Kondarides D I, Vertjios X E. The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes[J]. Catalysis Today,1999,54(1):119-130
    12 Heintz O, Robert D, Weber J V. Comparison of the degradation of benzamide and acetic acid on different TiO2 photocatalysts[J].J. Photochemistry Photobiology A:Chem.,2000,135(1):77-80
    13 Colon G, Hidalgo M C, Navio J A. Photocatalytic deactivation of commercial TiO2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid[J]. J. Photochemistry Photobiology A:Chem.,2001,138(1):79-85
    14 Li H X, Bian Z F, Zhu J, et al. Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity[J]. J.Am. Chem. Soc.,2007,129(27):8406-8407
    15李田.光化学氧化法的类型及研究进展[J].环境污染与防治,1993,15(1):31-34
    16 Zhang H. Light and Iron(III)-induced oxidation of chromium(III) in the presence of organic acids and manganese(II) in simulated atmospheric water[J]. Atmospheric Environ.,2000,34(10):1633-1640
    17付宏祥,吕功煊,张宏,等.Cr(Ⅵ)离子在Ti02表面的吸附与光催化还原消除[J].环境科学,1998,19(3):80-83
    18吕灵翠.Cr2O72-的太阳光催化还原研究[J].太阳能学报,1992,13(4):334-340
    19邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003,316-416
    20 Guettal N, Ait A.H. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part Ⅰ:Parametric study[J]. Desalination,2005.185(1-3):427-437
    21 Yang J K, Davis A P. Competitive adsorption of Cu(II)-EDTA and Cd(II)-EDTA onto TiO2[J]. Journal of Colloid and Interface Science,1999,216(1):77-85
    22朱灵峰.分析化学[M].北京:中国农业出版社,2003,279
    23 Ollis D F, Pelizzetti E, Serpone N. Destruction of water contaminants [J]. Environ. Sci. Technol., 1991,25(9):1523-1529

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700