用户名: 密码: 验证码:
二甲基醚发动机喷射雾化的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二甲基醚(DME)作为柴油的代用燃料,与柴油相比,其理化特性有着明显的差异。而燃油喷雾混合过程是发动机缸内热力过程的基础,对后续的燃烧和排放性能具有决定性的作用。在阅读和分析大量国内外相关文献的基础上,针对迄今对雾化机理认识不足和燃油碰壁现象较为复杂的现状,并考虑到二甲基醚的理化特性,本文以理论研究为主,结合数值模拟计算与实验研究,较为深入地对二甲基醚喷雾特性进行了研究。
    根据油嘴内燃油空穴产生的机理,建立了油嘴流动模型,以准确地描述具有髙饱和蒸气压的二甲基醚在油嘴内的流动过程,为模拟研究缸内燃油雾化过程提供初始条件(如射流速度和直径),从而将油嘴内的流动过程与缸内的雾化混合过程联系起来。为燃油喷雾模拟研究奠定了基础。将燃油在油嘴内与缸内流动、雾化联系起来对DME进行的模拟研究,迄今在国内处于领先地位。
    首次考虑蒸发对射流表面非轴对称不稳定扰动的影响,并推导了色散方程。以色散方程为基础,详细分析了二甲基醚的表面张力、粘性系数、射流速度和环境气体密度等对二甲基醚射流表面不稳定性的影响,从中认识了二甲基醚的雾化特性,加深了对表面不稳定气动雾化机理的理解。
    在现有单液滴零维蒸发模型的基础上,考虑液滴运动、物性参数、高压以及液滴群等对蒸发过程的影响。本文建立了液滴蒸发的一维数学模型(又称有限热传导蒸发模型),并给出了TDMA追赶法的数值计算过程和移动边界的处理方法。研究表明:本文所建立的单液滴一维蒸发模型可以更准确地模拟喷雾液滴的蒸发过程。
    分析和归纳了前人对喷雾碰壁的研究成果,考虑液滴、壁面、油膜上方气体层之间的相互作用,即动量和热量的交换过程,以离散液滴油膜铺展和撞壁飞溅为主建立了喷雾碰壁数学模型。利用该模型对二甲基醚碰壁过程进行了模拟计算,并与柴油作了对比分析。研究表明:二甲基醚蒸发较快,与柴油相比,油膜厚度较薄,说明,二甲基醚碰壁后在壁面的沉积会大为减弱,这在燃烧过程中是非常有利的一面。
    基于KIVA3程序,以张量的形式叙述了数值解法中的交错网格系统、求解步骤、控制方程及其离散、状态方程、气液耦合、计算步长的控制以及边界条件等。在方程离散过程中,给出了时间瞬态项的差分格式以及求解边值的中心和上风差
    
    
    分格式。为模拟研究缸内的湍流流动,本文以RNG双方程模型为基础对湍流模型进行了论述。为整个喷雾过程的数值模拟计算奠定了基础。
    利用高速摄影技术,本文在高压定容室内对二甲基醚及其他燃料进行了喷雾实验研究,其中二甲基醚的碰壁实验研究在国内尚属首次。实验中考察了喷射压力、环境背压、油嘴半径以及碰壁入射角度和碰壁距离等因素对喷雾特性如贯穿距、喷雾锥角、壁面扩展度、壁面喷雾体和油膜厚度、空气卷吸等的影响。归纳和分析了实验测得的大量原始数据,获得了许多有价值的研究结论,为国内在该领域的研究提供了可靠的第一手实验资料和经验。同时,依据实验条件进行了数值模拟计算,并与实验结果进行了比较,深化了对二甲基醚喷雾混合特性的理解,为二甲基醚最终满足工程应用提供理论依据和技术措施。
The property of dimethyl ether (DME), which is used as a substitute for diesel, is obviously different from diesel. And fuel spray, which is as the source of in-cylinder working process, has the most important influence on the subsequent combustion and exhaust of engines. Unfortunately, the mechanism of liquid jet breakup is not understood completely, and the process of fuel wallinteraction is complicated. So, after reading a great number of literature on relevant research field, and basing on the theory, the author take a thorough study on the spray characteristics of DME by combining experiments with multi-dimensional numerical simulation.
    According to the formation mechanism of cavitations inside a nozzle, a nozzle flow model is established and first applied to DME that possesses higher saturation vapor pressure in this thesis, which can simulation more truly the flow status of DME and provides accurately initial parameters such as the velocity and diameter of a liquid jet for in-cylinder atomization. It is obvious that the nozzle flow model links the flow process inside a nozzle with the in-cylinder spray process.
    A dispersion equation of three-dimension unstable disturb wave on the surface of a viscous liquid jet with evaporating is first derived. And based on the dispersion equation which has been simplified, analysis analyses in detail the effects of surface tension, liquid viscosity, gas density and liquid jet velocity upon the surface instability of DME liquid jet. Form the analysis, the deeply understand about the spray characteristics of DME liquid jet and the aerodynamic atomization mechanism of surface unstable disturb wave is obtained.
    Based on the existing zero-dimensional evaporation model, a one-dimensional one (it is also called limited heat conductivity evaporation model) is constructed, which takes into account the effects of droplet movement, liquid property, high pressure and droplets group upon the evaporating process. And a solving method of TDMA(Tri-diagonal Matrix Algorithm) and the treatment method of moving boundary for the model are given. Droplets evaporation during spray process can be simulated more accurately by using the present model.
    Based on the detailed comparisons and analysis to many kinds of spray im
    
    
    pingement models, two representative spray impingement models, wall spread and splashing, are introduced in this thesis. In the model, the exchange of heat and momentum between the wall, droplets and the gas above liquid film are modeled. The spray impingement of DME is simulated and compared with that of diesel. Due to DME quickly evaporating, its film thickness is much smaller than the one of diesel, which show that the accumulation of DME on the wall is not serious to be of advantage to combustion process.
    The stagger grid system, solving process, governing equations and numerical approaches, gas state equations, the coupling of gas-liquid, the calculating of time step, and boundary conditions and so on are emphatically introduced in the form of tensor, according to the KIVA3. During the process of numerical approximations, the difference formula of time transient terms, and the central/upwind difference expressions for acquiring boundary value are chosen. And the turbulence models, especially the RNG model, are depicted here. Through the above mentioned, a ground for in-cylinder spray numerical simulation is made.
    Using the high speed camera, the liquid spray experiments of DME and other fuels in pressure constant volume chamber are carried out, of which the spray wall impingement tests of DME is the first time in domestic researches. The effects are tested of inject pressures, ambient pressures, the diameters of nozzle hole, impinging angles and distances, etc. upon the spray characteristics such as penetration, spray cone angle, wall spread, the thickness of spray body and liquid film on the wall, air entrainment, and so on. A great deal of data is obtained from experiments and is treated, and many valuable conclusions are derived, which provide reliable origin
引文
[1] 刘永长. 内燃机原理. 武汉: 华中科技大学出版社, 2001.
    [2] 美国SAE国际内燃机大会专刊. Homogenous Charge Compression Ignition (HCCI) Combustion. 2001.03.
    [3] Whitehouse N D, Way R J B. A simple method for the calculation of heat release rates in diesel engines based on the fuel injection rate. SAE Transactions index abstract, pp. 80~85, 1971.
    [4] 张煜盛. 直喷式柴油机油-气混合过程的数学模型研究. 华中工学院博士学位论文, 1987.
    [5] 周俊杰等. 柴油机工作过程数值计算: 大连理工大学出版社, 1990.
    [6] Abramovich G N. The Theory of Turbulent Jet. Cambridge, Mass: MIT Press, 1963.
    [7] Hiroyasu H, et al. Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines. SAE Paper 760129, 1976.
    [8] Dent J C, Mehta P S. A Predictive Model for Automotive D.I. Diesel Engine Performance and Smoke Emissions. I. Mech. E. Paper, Vol. C126, 1982.
    [9] Hiroyasu H, Kadota T, Arai M. Development and Use of a Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions (Part1:CombustionModeling)[J]. Bulletin of the JSME, Vol. 26(214), pp. 569~575, 1983.
    [10] Dent J C, Mehta P S. Phenomenological Combustion Model for a Quiescent Chamber Diesel Engine [C]. SAE Paper 811235, 1981.
    [11] Bazari Z. A D.I. Diesel Combustion and Emission Pre-dictive Capability for Use in Cycle Simulation [C]. SAE Paper 920462, 1992.
    [12] Payri F, Benajes J, Tinaut F V. A Phenomenological Combustion Model for Direct Injection Compression Ignition Engines [J]. Appl. Math. Modelling, pp. 293~304, 1988, 12.
    [13] Ajit K T, Mehta P S, Gupta C P. Models for Predicting Air-Fuel Mixing and Combustion for Direct Injection Diesel Engine [C]. SAE Paper 860331, 1986.
    [14] 金国栋. 直喷式柴油机燃烧模型的探讨[J]. 内燃机工程, pp. 33~43, 1986,8(3).
    [15] Chiu W S, Shahed S M, Lyn W T. A Transient Spray Mixing Model of Diesel Combustion. SAE Paper 760128, 1976.
    [16] 金昶明, 卓斌. 直喷式柴油机气缸内燃空混合及燃烧过程的数学模型. 内燃机工程, Vol. 22(2), 2001.
    
    [17] Abramovich G N. The Theory of Turbulent Jets. Cambridge, Mass: MIT Press, 1963.
    [18] Travis J R. Numerical Calculation of Two-phase Flow. Nuci. Sci. Engr, Vol. 61, 1976.
    [19] Gronews J F. The Statistical Description of a Spray in Term of Drop Velocity, Size, and Position. Ph. D. Thesis, Univ. of Wisconsin, 1967.
    [20] Westbrook C K. Three dimensional Numerical Modeling of Liquid Fuel Spray. in 16th Symposium (international) on Combustion, 1976.
    [21] Haselman I C, et al. A Theoretical Model for Two-phase Fuel Injection in Stratified Charge Engines. SAE Paper 780318, 1978.
    [22] Williams F A. Combustion Theory. 2nd ed.: The Benjamin/Cummings Publishing Company, 1985.
    [23] Gosman A D, Johns J R. Computer Analysis of Fuel-Air Mixing in D.I. Diesel Engines. SAE Paper 800091, 1980.
    [24] Amsden A A. KIVA-II: A computer Program for Chemically Reactive Flows with Sprays. Los Alamos: LA-11560-MS, 1989.
    [25] 陈白欣, 解茂昭, 王荣生. 柴油机缸内混合气形成的二维数学模型. 中国工程热物理学会第八届年会论文集, 1992.
    [26] 范维澄, 万跃鹏. 流动及燃烧的模型与计算. 合肥: 中国科技大学出版社, 1992.
    [27] 解茂昭. 内燃机计算燃烧学. 大连: 大连理工大学出版社, 1995.
    [28] Hirt C W, et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds. J. Comp. Phys, Vol. 14, pp. 227~253, 1974.
    [29] Butler T D, et al. CONCHAS: An ALE Computer Code for Multicomponent Chemically Reactive Flow at All Speeds. Los Alamos Scientific Laboratory (LASL) Report: LA-8129-MS 1979.
    [30] Cloutman L D, et al. CONCHAS-SPRAY: A Computer Code for Reactive Flows With Fuel Sprays. LASL Report: LA-9294-MS 1982.
    [31] Amsden A A. KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries. LASL Report: LA-12503-MS 1993.
    [32] Faeth G M. Mixing, Transport and Combustion in Sprays. Prog. Energy Combust Sci., Vol. 13, pp. 293~345, 1987.
    [33] Hsiang L P, Faeth G M. Drop Properties after Secondary Breakup. Int. J. Multiphase Flow, Vol. 19, No.5, pp. 721~735, 1993.
    [34] Faeth G M, Hsiang L P, Wu P K. Structure and Breakup Properties of Sprays. Int. J. Multi
    
    
    phase Flow, Vol. 21, Suppl, pp. 99~127, 1995.
    [35] Reitz R D, Diwakar R. Effect of Drop Breakup on Fuel Sprays. SAE Paper 860469, 1986.
    [36] Reitz R D, Diwakar R. Structure of High-Pressure Fuel Sprays. SAE Paper 870598, 1987.
    [37] Reitz R D. Modeling Atomization Processes in High Pressure Vaporizing Sprays: GMRL Publication, GMR-6017, 1988.
    [38] Mansour N N, Lundgren T S. Satellite formation in capillary jet breakup. Phys.Fluid A 2(7), pp. 1141~1144, July 1990.
    [39] Reitz R D, Bracco F V. Mechanism of Atomization of a Liquid Jet. Phys. Fluids, Vol. 25(10), pp. 1730~1742, 1982.
    [40] Rupe J H. Jet Propulsion Laboratory Technical Report No.32,207, 1972.
    [41] Shkador V Ya. Fluid Dyn. Vol. 5, 473, 1970.
    [42] Bergwerk W. Proc. Inst. Mech. Eng. Vol. 173, 655, 1959.
    [43] Rayleigh L. On the Instability of Jets. Proc: London Math. Soc, No. 10, pp.4~13, 1879.
    [44] P G 德拉津, W H 雷德. 流体动力稳定性: 宇航出版社, 1990.
    [45] Batchelor G K(Editor). Collected Works of G. I. Taylor. Cambridge: Cambridge University Press, 1958.
    [46] Yang H Q. Asymmetric Instability of a Liquid Jet. Phys. Fluids, Vol. A4(4), April, 1992.
    [47] 宋军. 内燃机燃油雾化与喷雾两相流的多维模拟研究. 华中理工大学博士学位论文, 1996.
    [48] 史绍熙, 郗大光, 秦建荣等. 高速粘性液体射流的不稳定模式. 内燃机学报, Vol. 15, No.1, pp. 1~7, 1997.
    [49] Maheshri J C, Palmer H J. A. I. Ch. E. J, Vol. 25, pp. 183, 1979.
    [50] Prosperetti A, Plesset M S. The stability of an Evaporating Liquid Surface. Phys. Fluids, Vol. 27(7), pp. 1590~1602, July 1984.
    [51] Jacobs J W, Catton I, Plesset M S. J. Fluid Eng. Vol. 106, 352, 1984.
    [52] Xu J J, Davis S H. Instability of Capillary Jets with Thermocapillary. J. Fluid Mech, Vol. 161, pp. 1~25, 1985.
    [53] Wang S P. Finite Amplitude Effect on the Stability of a Jet of Circular Cross-Section. J. Fluid Mech, Vol. 34, 1968.
    [54] Yuen M C. Nonlinear Capillary Instability of a Liquid Jet. J. Fluid Mech, Vol. 33, 1968.
    [55] Nayfeh A H. Nonlinear Stability of a Liquid Jet. The Physics of Fluids, Vol. 13, No.4, April 1970.
    
    [56] Lafrance P. Nonlinear Stability of a Liquid Jet. The Physics of Fluids, Vol. 17, No.10, October 1974.
    [57] Lafrance P. Nonlinear Breakup of a Laminar Liquid Jet. The Physics of Fluids, Vol. 18, No.4, April 1975.
    [58] 解茂昭. 直喷式柴油机缸内流动和燃油喷雾的二维数值分析. 空气动力学报, Vol. 7(2), pp. 156~161, 1989.
    [59] Garcia F J, Castellanos A. One-dimensional Models for Slender Axisymmetric Viscous Liquid Jets. Phys. Fluids, Vol. 6(8), August 1994.
    [60] Reinhard TATSCHL, Christopher v. KüNSBERG SARRE, Eberhard v. BERG. IC-ENGINE SPRAY MODELING-STATUS AND OUTLOOK. in International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress 2002.
    [61] Bower G, et al. Physical Mechanisms for Atomization of a Jet spray:A Comparison of Models and Experiments. SAE Paper 881318, 1988.
    [62] O'Rourke P J, Amsden A A. The Tab Method for Numerical Calculation of Spray Droplet Breakup. SAE Paper 872089, 1987.
    [63] Taylor G I. The Shape and Acceleration of Drop in a High Speed Air Stream: The Scientific Papers of G I Taylor, ed by G K Batchelor. Vol. III: University Press, Cambridge, 1963.
    [64] Liu A B, Reitz R D. Modeling the effects of Drop Drag and Breakup on Fuel Sprays. SAE Paper 930072, 1993.
    [65] Xin J, Riart L, Reitz R D. Computer Modeling of Diesel Spray Atomization and Combustion. Combustion Science and Technology, pp. 137:171~194, 1998.
    [66] 蒋德明. 内燃机燃烧与排放学. 西安: 西安交通大学出版社, 2001.
    [67] Su T F, et al. Experimental and Numerical Studies of High Pressure Multiple Injection Sprays. SAE Paper 860861, 1986.
    [68] Patterson M A, Reitz R D. Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission. SAE Paper 980131, 1998.
    [69] 徐海涛. 直喷式柴油机喷雾混合机理、建模及三维数值模拟. 华中理工大学博士学位论文, 1998.
    [70] Gosman A D, Clerides D. Diesel Spray Modeling: A Review. in ILASS-Europe Annual Meeting. Florence, Italy, 9-11 July,1997.
    [71] El Wakil M M, Uyehara O A, Myers F S. A Theoretical Investigation of the Heating-up Period of Injected Fuel Droplets Vaporizing in Air. Technical Note 3179, NACA, 1954.
    
    [72] Abramzon B, Sirignano W A. Droplet Vaporization Model for Spray Combustion Calculations. International Journal of Heat and Mass Transfer, Vol. 32, No.9, pp. 1605~1618, 1989.
    [73] Ranz W E, Marshall Jr W R. Evaporation from Drops, Part I. Chemical Engineering Progress, Vol. 48, No.3, pp. 141~146, March 1952.
    [74] Ranz W E, Marshall Jr W R. Evaporation from Drops, Part II. Chemical Engineering Progress, Vol. 48, No.4, pp. 173~180, April 1952.
    [75] Rowe P N, Claxton K T, Lewis J B. Heat and Mass Transfer from a Single Sphere in an Extensive Flowing Fluid. in Transactions of the Institute of Chemical Engineers, Vol. 43, 1965, pp. T14~T31.
    [76] Beard K V, Pruppacher H R. A Wind Tunnel Investigation of the Rate of Evaporation of Small Water Drops Falling at Terminal Velocity in Air. Journal of Atmospheric Sciences, Vol. 28, pp. 1455~1464, 1971.
    [77] Pruppacher H R, Rasmussen R. A Wind Tunnel Investigation of the Rate of Evaporation of Large Water Drops Falling at Terminal Velocity in Air. Journal of Atmospheric Sciences, Vol. 36, pp. 1255~1260, 1979.
    [78] Yuen M C, Chen L W. Heat-Transfer Measurements of Evaporating Liquid Droplets. International Journal of Heat and Mass Transfer, Vol. 21, pp. 537~541, 1978.
    [79] Renksizbulut M, Yuen M C. Experimental Study of Droplet Evaporation in a High -Temperature Air Stream. ASME Journal of Heat Transfer, Vol. 105, pp. 384~388, May 1983.
    [80] Clift R, Grace J R, Weber M E. Bubbles, Drops and Particles. New York: Academic Press, 1978.
    [81] Landis R B, Mills A F. Effect of Internal Diffusional Resistance on the Evaporation of Binary Droplets. In Proceedings of The Fifth International Heat Transfer Conference, Vol. IV: The Science Council of Japan, Tokyo, Japan, 3-7 September 1974, pp. 345~349.
    [82] Hubbard G L, Denny V E, Mills A F. Droplet Evaporation: Effects of Transients and Variable Properties. International Journal of Heat and Mass Transfer, Vol. 18, pp. 1003~1008, 1975.
    [83] Law C K. Internal Boiling and Superheating in Vaporizing Multicomponent Droplets. AIChE Journal, Vol. 24, No.4, pp. 626~632, July 1978.
    [84] Kneer R, et al. Diffusion Controlled Evaporation of a Multicomponent Droplet: Theoretical Studies on the Importance of Variable Liquid Properties. International Journal of Heat and Mass Transfer, Vol. 36, No.9, pp. 2403~2415, 1993.
    [85] Ayoub N S, Reitz R D. Multidimensional Computation of Multicomponent Spray Vaporiza
    
    
    tion and Combustion. SAE Paper 950285, 1995.
    [86] Hohmann S, Klingsporn M, Renz U. An Improved Model to Describe Spray Evaporation under Diesel-Like Conditions. SAE Paper 950285, 1996.
    [87] Al Omari S A B. Numerical Simulation of Transient Liquid Fuel Sprays Vaporization under Engine-Like Conditions Using Diffusion Limit and Well Mixed Vaporization Models. SAE Paper 960877, 1996.
    [88] Delplanque J P, Sirignano W A. Numerical Study of the Transient Vaporization of an Oxygen Droplet at Sub- and Super-Critical Conditions. International Journal of Heat and Mass Transfer, Vol. 36, No. 2, pp. 303~314, 1993.
    [89] Renksizbulut M, Bussmann M. Multicomponent Droplet Evaporation at Intermediate Reynolds Numbers. International Journal of Heat and Mass Transfer, Vol. 36, No. 11, pp. 2827~2835, 1993.
    [90] Jia H, Gogos G. High Pressure Droplet Vaporization: Effects of Liquid-Phase Gas Solubility. International Journal of Heat and Mass Transfer, Vol. 36, No. 18, pp. 4419~4431, 1993.
    [91] Varnavas C, Assanis D N. A High Temperature and High Pressure Evaporation Model for the KIVA-3 Code. SAE Paper 960629, 1996.
    [92] Abraham J, Shawn D G. Conditions In Which Vaporizing Fuel Drops Reach A Critical State In A Diesel Engine. SAE Paper 1999-01-0511, 1999.
    [93] Senda J. Characteristics of Diesel Spray Impinging on a Flat Wall. International Symposium on Advanced Spray Combustion, Hiroshima, Japan, pp. 55~69, 6-8 July 1994.
    [94] Nabor J D, Reitz R D. Modeling Engine Spray/Wall Impingement. SAE Paper 880107, 1988.
    [95] Shih L K, Assanis D N. Implementation of a Fuel Spray/Wall Interaction Model in KIVA-II. SAE Paper 911787, 1991.
    [96] Wang D M, Watkins A P. Numerical Modeling of Diesel Spray/Wall Impaction Phenomena. Int. J. Heat Fluid Flow, Vol. 14, No.3, 1993.
    [97] Bai C, Gosman A D. Development of Methodology for Spray Impingement Simulation. SAE Paper 950283, 1995.
    [98] 贺萍. 直喷式柴油机喷雾碰壁混合三维数值模拟及实验研究. 华中理工大学博士学位论文, 1996.
    [99] Bai C, Gosman A D. Mathematical Modeling of Wall Films Formed by Impinging Sprays. SAE Paper 960626, 1996.
    [100] Stanton D W, Rutland C J. Modeling Fuel Film Formation and Wall Interaction in Diesel
    
    
    Engines. SAE Paper 960628, 1996.
    [101] 成晓北, 黄荣华等. 喷雾撞壁油膜流动的研究. 内燃机学报, Vol. 20, No.3, 2002.
    [102] 髙剑, 蒋德明. 柴油机喷雾特性的测试方法[J]. 柴油机, pp. 4, 2002(6).
    [103] 董尧清. 国外柴油机喷雾特性的研究现状[J]. 国外油泵油嘴, pp. 1~4, 1985.
    [104] 黄素逸. 动力工程现代测试技术. 武汉: 华中科技大学出版社, 2001.
    [105] 徐航, 朱崇基, 沈云彪. 激光全息技术应用于柴油喷雾场的研究. 内燃机学报, Vol. 12(1), 1994.
    [106] Eroglu H, Chigier N. Initial Drop Size and Velocity Distributions for Airblast Coaxial Atomizers. J. of Fluid Engineering, Vol. 113(3), pp. 453~459, 1991.
    [107] Senda J, Kanda T. Quantitative Analysis of Fuel Vapor Concentration in Diesel Spray by Exciplex Fluorescence Method. SAE Paper 970796, 1997.
    [108] Cao Z M, Nishino K, Torii K. Digital-Imaging Measurement of Diesel Fuel Spray Using Double-Pulsed Laser-Induced Fluorescence. Trans. JSME, Ser. B, Vol. 65(629), pp. 71~77, 1999.
    [109] 孟庆生. 信息论. 西安: 西安交通大学出版社, 1986.
    [110] 诺曼.奇格著. 能源、燃烧与环境. 北京: 冶金工业出版社, 1991.
    [111] Beeck M A, Hentschel W. Laser Metrology-A Diagnostic Tool in Automotive Development Processes. Optics and Lasers in Engineering, Vol. 2000(34), pp. 101~120.
    [112] Bianchi G M, Pelloni P. Modeling Atomization of High-Pressure Diesel Sprays. ASME Journal of Engineering for Gas Turbine and Power, Vol. 2001(123), pp. 419~427.
    [113] 成晓北. 柴油机燃油喷射雾化过程的机理与试验研究. 华中科技大学博士学位论文, 2002.
    [114] Lin S P, Reitz R D. DROP AND SPRAY FORMATION FROM A LIQUID JET. Annu. Rev. Fluid Mech, Vol. 30, pp. 85~105, 1998.
    [115] 魏明锐, 刘永长, 文华等. 喷孔流动模型及其对高压喷雾计算的影响. 内燃机学报, Vol. 21(2003) No.4, pp. 228~233.
    [116] Schmidt D P, Corradini M L. The Internal Flow of Diesel Fuel Injector Nozzles: a Review. Int J Engine Research, Vol. 12, No1, pp. 1~21, 2001.
    [117] Nurick W H. Orifice Cavitation and Its Effects on Spray Mixing. J. Fluids Eng, Vol. 98, pp. 681~687, 1976.
    [118] Benedict R P. Fundamentals of Pipe Flow. Wiley,New York, 1980.
    [119] Soteriou C, Andrews R, Smith M. Direct Injection Diesel Sprays and the Effect of Cavitation
    
    
    and Hydraulic Flip on Atomization. SAE Paper 950080, pp. 1995.
    [120] Schmidt D P, Corradini M L. Analytical prediction of the exit flow of cavitating orifices. Atomization and Sprays, Vol. 7(6), 1997.
    [121] Su T F, Farrell P V, Nagarajan R T. Nozzle Effect on High Pressure Diesel Injection. SAE Paper 950083, 1995.
    [122] Li Jun, Yoshio Sato, Akio Noda. An Experimental Study on DME Spray Characteristics and Evaporation Process in a High Pressure Chamber. SAE Paper 2001-01-3635, 2001.
    [123] Higuera F J. The hydrodynamic stability of an evaporating liquid. Phys. Fluids, Vol. 30(3), pp. 679~686, March 1987.
    [124] Palmer H J. The Hydrodynamic Stability of Rapidly Evaporating Liquid at Reduated Pressure. J. Fluid Mech, Vol. 75, Part 3, pp. 487~511, 1976.
    [125] 金国栋. 内燃机燃烧学. 武汉: 华中理工大学出版社, 1991.
    [126] 刘正白. 燃烧学. 大连: 大连理工大学出版社, 1992.
    [127] 陶文铨. 数值传热学. 西安: 西安交通大学出版社, 1988.
    [128] Ricart L F, et al. In-Cylinder Measurement and Modeling of Liquid Fuel Spray Penetration in a Heavy-duty Diesel Engine. SAE Paper[C] 971591, 1997.
    [129] Golovitchev, V.I. Revising old good models: magnussen eddy dissipation concept. Proceedings of Topical Meeting on Modeling of Combustion, Turku, Finnland, 2000.
    [130] Kato S. SAE Mixture Formation Technology of Direct Fuel Injection Stratified Charge SI Engine (OSKA)-Test Result with Gasoline Fuel. SAE Paper 881241, 1988.
    [131] Sakata I, Ishisaka K. Development of TOYOTA Reflex Burn (TRB) System in D.I. Diesel Engine. SAE Paper 900658, 1990.
    [132] 刘育民, 舒国才, 杨长林等. 低散热发动机缓燃现象浅释. 内燃机工程, 1994.
    [133] Kroeger C A. A Neat Methanol Direct Injection Combustion System for Heavy Duty Application. SAE paper 861169, 1986.
    [134] Wachters L H J, Westerling N A J. The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spherical State. Chem. Engng. Sci, Vol. 1966(21), pp. 1047~1056.
    [135] Mundo Chr, Sommerfeld M, Tropea C. Droplet-Wall Collisions:Experimental Studies of the Deformation and Breakup Process. Int. J. Multiphase Flow, Vol. 21(2), pp. 151~173, 1995.
    [136] Yarin A L, Weiss D A. Impact of Drops on Solid Surfaces: Self-similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity. J. Fluid Mech, Vol. 1995(283), pp. 141~173.
    
    [137] Launder B E, Spalding D B. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, Vol. 1974(3), pp. 269~289.
    [138] Han Z, Reitz R D. Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models. Combustion Sci. Tech, 1994.
    [139] 刘会猛. 螺旋流增压排气系统性能研究. 华中科技大学博士学位论文, 2002.
    [140] 陈矛章. 粘性流体动力学基础. 北京: 高等教育出版社, pp. 363~370,1993.
    [141] Hiroyasu H, et al. Fuel Spray Penetration and Spray Angle in Diesel Engines. Trans. of JSAE, Vol. 21, 1980.5.
    [142] Hiroyasu H, Arai M. Structures of Fuel Sprays in Diesel Engines. SAE Paper 900475, 1990.
    [143] Wu K J, Reitz R D, Bracco F V. Measurements of Drop Size at the Spray Edge Near the Nozzle in Atomizing Liquid Jets. Phys. Fluids, Vol. 29, No.4, pp. 941~951, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700