用户名: 密码: 验证码:
阿尔泰剪切带中与钠长石花岗岩脉有关的金矿床地质地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆多拉纳萨依金矿床位于阿尔泰西南、西伯利亚板块西南缘额尔齐斯构造—岩浆成矿域西南部,额尔齐斯挤压带西北段,玛尔卡库里大断裂西侧。该区早古生代为西伯利亚板块南部的大陆边缘裂陷盆地,加里东期形成褶皱带后,晚古生代早期又于南、北两侧开裂、扩张、发育上叠式的裂谷带,在海西中、晚期演化为造山带。矿体以含金钠长岩脉(糜棱岩化钠长岩、钠长石-石英脉)、矿化千枚岩、糜棱岩赋存于韧性剪切带中,金矿物以大量碲化物、碲金矿、碲金银矿等为特征。多拉纳萨依金矿床是韧性剪切带中与钠长石花岗岩脉群有关的碲化物型金矿床。
     多拉纳萨依金矿区发育了一套古生代浅变质陆源碎屑岩和浅海相碳酸盐沉积建造,岩性为灰绿色片理化粉砂岩、碳质粉砂岩,千枚岩化粉砂岩夹砂质灰岩和薄层灰岩。在海西期,矿区遭受了拉张-挤压-拉张的地质作用,经历了大陆边缘拉张裂谷-挤压造山-局部拉张的演化历史,并伴随有相应的岩浆及成矿作用。矿区构造变形强烈,碎裂岩化、糜棱岩化、劈理、片理化带十分发育。近南北向、反“S”形的三条控岩(脉)、控矿的层间走滑-拆离破碎-韧性剪切带、海西中晚期挤压作用形成的多拉纳萨依-阿克萨依向斜、布托别山背斜同斜紧闭倾竖褶皱和海西晚期挤压作用形成的北北东向脆—韧性剪切带构成了多拉纳萨依金矿田基本构造格架。
     矿区钠长岩和花岗闪长岩是两期不同来源、不同成因的花岗岩。
     钠长石花岗岩形成于海西早期拉张环境,是壳幔圈层滑动,致使热流值升高,导致下地壳和上地幔重熔形成的以幔源为主的花岗岩,Rb-Sr等时线年龄为352.5±40Ma,单颗粒锆石Pb-Pb表面直接蒸发年龄为371±22Ma,造岩矿物以钠长石、石英、白云母为主,SiO_2为54%—73%,高Al_2O_3为15.32%—17.17%,富Na_2O(3.42%—7.97%),贫K_2O(0.83%—3.42%);Al_2O_3/(Na_2O+K_2O+CaO)>1.2,Na_2O/K_2O为1.14—5.24,∑REE为50.69×10~(-6)-111.39×10_(-6),LREE/HREE为4.82-16.58;δEu0.89-1.42,δCe0.81-1.0,球粒陨石标准化曲线为右倾型;(~(87)Sr/~(86)Sr)_i初始值为0.7043。其中含大量挥发组分CO_2、H_2O、S、Te、SiO_2、Cl、Na_2O、K_2O和Au等元素,平均含金24.0×10~(-9),是多拉纳萨依金矿区主要含金源岩。
     花岗闪长岩形成于海西中期挤压环境,是上地幔分异岩浆上升熔融下地壳物质形成的同熔性花岗岩。Rb-Sr等时年龄为297±11Ma,U-Pb法求得和谐年龄289±5Ma,平均含金3.28×10~(-9);造岩矿物以斜长石、石英、角闪石为主,岩石化学成分与钠长岩相似,高Al_2O_3,富Na_2O,贫K_2O,Na_2O/K_2O为1.76-4.72:∑REE为134.74×10~(-6)-183.19×10~(-6),LREE/HREE为2.52-2.87;稀土分馏强烈,且为轻稀土富集型,δEu0.73-0.85,δCe0.91-0.99,球粒陨石标准化曲线为右倾平缓型;(~(87)Sr/~(86)Sr)_i初始值为0.7073。花岗闪长岩及其中辉石闪长岩析离体、石英闪长玢岩、碱长花岗岩构成完整的岩浆演化系列,为多拉纳萨依金矿床成矿提供了大量热流体和部分成矿物质。
     多拉纳萨依金矿区金矿体主要为糜棱岩化钠长岩脉、蚀变钠长岩脉、矿化砂岩、矿化千枚岩,呈分枝复合的脉状、透镜状,赋矿围岩以钠长岩为主,少量变质砂岩。金属矿物主要为黄铁矿、少量自然金、碲金矿、磁黄铁矿、黄铜矿、方铅矿、闪锌矿、黝铜矿、辉铋矿、碲铅矿、碲铋矿、磁铁矿等;脉石矿物主要有钠长石、石英、白云母-绢云母、绿泥石,少量碳酸盐、磷灰石、金红石等。围岩蚀变主要有钠长石化、白云母—绢云母化、黄铁矿化、硅化,次有矽卡岩化、碳酸盐化,表生作用引起粘土化、褐铁矿化、石膏化等。成矿作用分为五个成矿阶段:成矿作用主要分四个成矿阶段:钠长石花岗岩成矿阶段、构造动力变质成矿阶段、岩浆热液成矿阶段和岩浆期后热液叠加成矿阶段。成矿年龄区间为269.0Ma-371.2Ma
     金矿物主要为自然金和碲金矿系列,自然金成色高,大多在950以上,含Ag、Hg、Bi、Te、Fe等微量元素,赋存状态主要有包体金、裂隙金和晶隙金;碲金矿系列金矿物主要分布在石英脉中,有碲金矿、针碲金矿、铋叶碲金矿、亮碲金矿、碲铅铜金矿等。
     矿石中Au与Bi、Li、Ba、As、Zn、Be、Mo呈正相关,与Cu、W呈负相关,其中与Bi最密切,相关系数为0.498。聚类分析表明矿石微量元素组合主要有Cr-Ni-Co-Cu、Rb-Ba-Be-Li、As-Pb-Ag-Zn-Sb、Au-Bi。
     多拉纳萨依金矿床为中—低温浅成热液矿床。该金矿床成矿物理化学条件为:成矿温度:160℃—315℃;成矿压力:212.8×10~5Pa—648.5×10~5Pa,形成深度为0.53-1.6km;流体盐度:气液包裹体为2.75-10.86NaCl%Wt;含子晶包裹体为35.57-37.22NaCl%Wt;氧逸度(f_(O2)):10~(-44.3)—10~(-31.8);硫逸度(f_(S2)):为10~(16.56)—10~(-10.91);碲逸度(f_(Te2)):为10~(-13.39)—10~(-4.24);pH:3.89—5.55;Eh:-0.58 eV—-0.72eV。
     多拉纳萨依金矿床成矿流体是主要由岩浆水、变质水、大气降水、地下水及岩石建造水、地层封存水组成的混合水。成矿流体中金的存在、迁移形式主要为HAu(HS)_2~0、Au(HS)_2~-、Au(HTe)_2~-、Au(Te_2)~-、Au_2(Te_2)~0、Au(Te_2)_2~(3-)、Au(Cl_2)~-;自然金和碲化物系列金矿物沉淀的主要机制为流体冷却作用、流体沸腾去气作用、糜棱岩化作用阶段的构造压剪作用和流体混合作用。
     该矿床是一个钠长石花岗岩脉群—韧性剪切—后期岩浆热液叠加、富集成矿“三位一体”多期次、多阶段、复成因形成的中—大型金矿床。其成因模式如下:
     早—中泥盆世,本区处于拉张期,矿区堆积了托克萨雷组陆源碎屑岩和浅海相碳酸盐岩建造,晚泥盆世—石炭纪,受西伯利亚板块向西南推挤,洋壳板块向北俯冲、对接,泥盆纪沉积盆地褶皱造山,矿区受左旋剪切,形成东西向挤压、南北向拉张的构造应力场作用,形成一系列南北向紧闭同斜褶皱;浅部伴生脆—韧性断裂,深部则强烈韧性剪切和圈层滑动,致使热流值骤然升高,导致俯冲洋壳的物质重熔,形成富含大量成矿物质组分CO_2、H_2O、Cl、S、Te、和Au等元素的长英质—钠长石花岗岩浆沿韧性剪切带和走滑断裂上升,并充填于韧性剪切带和走滑断裂,形成含金较高的钠长石花岗岩脉。
     随着区域构造应力作用,矿区地层发生褶皱,刚性碳酸盐岩与塑性泥质粉砂岩之间发生韧性剪切,钠长石花岗岩、泥质粉砂岩等发生糜棱岩化,钠长石花岗岩受韧性剪切形成糜棱岩化钠长岩,泥质粉砂岩等则变成片岩、千枚岩,与此同时,钠长石花岗岩中的金进一步活化、迁移、沉淀、富集形成金矿脉。
     石炭纪末准噶尔海盆封闭,哈萨克斯坦板块和西伯利亚板块拼合,区域构造作用力方向发生偏斜,矿区受右旋剪切作用,应力场转为SN向挤压、EW向拉张,在矿区形成一系列近SN向张裂隙,深部壳、幔层圈滑动致热,导致部分熔融,形成花岗岩类(花岗闪长岩)岩浆及其热液侵入,岩体周围地层发生大规模角岩化,促使金矿化叠加富集。岩浆活动晚期,一些NE向碱性岩脉上升,侵入在别列孜克花岗岩中,再次引起金的富集。
The Duolanasayi gold deposit, in 180km SW of Altay city in Xinjiang, is a middle-largescale telluride-type gold deposit controlled by the the brittle-ductile shear, albite-granite dykes,and post-stage magma solution of the rift valley dragging of the continental margin in earlyPalaeozoic Era. After Caledonian folding, this area developed open fissure and grew into rift inboth side of south and north in early stage of late Palaeozoic Era. Developing orogen formed inmiddle-late Variscian. The ore bodies, which are situated in the opposite "S" shape in the SNstrike, are present as the albitite veins (mylonitic albitite and mineralized albite-granite) andmineralized phyllite. There are lots of tellurides such as calaverite, petzite, sylvanite.
     It was developed that the slight metamorphous terrignous clastic rock, shallow sea faciescarbonatite formation of the Jiangjuleke group and the Tuokesalei group of the early-middleDevonian system in Duolanasayi gold deposit district, which consists of grey and green schistosesiltstone, carbonaceous siltstone, phyllitization siltstone and sandy limestone, flag limestone.Being dragged and pressed, the gold deposit district evolved from the rife valley dragging of thecontinental margin to compression and mountain making to local dragging taken place and fit inwith magmatism and mineralization in Variscian. With lots of clastation, mylonitic, schistositycleavage, the rock of gold deposit district are great deformation. The basic structure pattern of thegold deposit district consists of three interformational sliding fault-pulled and fractured-brittle-ductile shear zones, which opposite "S" shape in the SN strike, are present as the ore veinsor dyke, two predominantly isoclinal plunging folds of the Duolanasayi-Akesayi syncline andButuobieshan anticline in middle-later Variscian, and the NNE strike cleavages in late Variscian.
     There are two stages granite with origin and genesis. One is albite-granite dykes, the other isgranodiorite.
     The albite-granite dykes, which was the remeiting of the mantle and underthrust ocean crust,is the mantle-type granite in the rift valley dragging of the continental margin. It is bound up withgold mineralization with gold content of 97.1×10~(-9), and is major ore-bearing formation inDuolanasayi gold deposit. The rock forming principal mineral are albite, quartz, muscovite. Thepetrochemistry show middle SiO_2(54-73%), high Al_2O_3(15.32-17.17%), rich Na_2O(3.42-7.97%)and poor K_2O(0.83-3.42%). The characteristics of rare elements show thatΣREE are 50.69×10~(-6)-111.39×10~(-6), LREE/FIREE are 4.82-16.58, (La/Yb)_N are 5.70-37.34;δEu are 0.89-1.42,δCe are 0.81-1.0; The primitive rate of(~(87)Sr/~(86)Sr)_i is 0.7043.
     The granodiorite derived from the syntactic magma of the upper-mantle basic magma andlower-crust materials of the plate subduction's island arc in orogenic zone. The rock formingprincipal mineral are anorthose, quartz, diastatite. The petrochemistry show that features of Al_2O_3,rich Na_2O and poor K_2O.ΣREE are 134.74×10~(-6)-183.19×10~(-6), LREE/HREE are 2.52-2.87,(La/Yb)_N are 3.98-5.68:δEu are 0.73-0.85,δCe are 0.91-0.99;The primitive rate of(~(87)Sr/~(86)Sr)_iis 0.7073. The granodiorite, with xenolith of angite diorite, quartz diorite porphyry and alkalicfeldspar granite in granodiorite batholith, consists of a magma evolution series, and providedenormous hot energy and some ore materials.
     The three ore types in the Duolanasayi gold deposit are pyrite-gold-altered rock,gold-albite-quartz and ferrohydrite-gold-quartz. The ore minerals include pyrite, native gold,calaverite, pyrrhotite, chalcopyrite, galena, sphaterite scheelite, and the minority of chlcocite, covellite, bilbinskite and minium. The gangue minerals include quartz, calcite and carbonaceousminerals. The wall rock alteration associated with gold mineralization comprises of albitization,muscovitization -sericitization, pyritization and silicification, albite granite, mylonitic albititealbite-quartz, pyrite -muscovite-sericite-quartz and quartz-calcite are five main mineralizingphases. The metallogenetic epoch is 269.0Ma-371.2Ma.
     Gold minerals in the Duolanasayi deposit are dominated by native gold and gold-bearingtellurides. There are three gold-bearing types of native gold: in inclusion, in crack of minerals andin crack of minerals crystal. The percentage of Au in native gold is high (>950), and there are alittte of Ag, Hg, Bi, Te, Fe etc. The gold minerals of the gold-bearing tellurides are calaverite,petzite, sylvanite, montbrayite and so on, are characteristic in the gold deposit.
     According to elements correlating analyses, Au in positive relationship with Bi, Li, Ba, As,Zn, Be, Mo and negative Cu, W. There are four trace elements compound of Cr-Ni-Co-Cu,Rb-Ba-Be-Li, As-Pb-Ag-Zn-Sb and Au-Bi in gold ore.
     Fluid inclusions studies indicate that the homogenization temperatures rang from 160℃to315℃with the peak values of 220℃-300℃. Mineralization pressures is from 21.0×10 Mpa to64.5 Mpa. The ore fluid inclusion contains Ca~(2+), K~+, Na~+, Mg~(2+); HCO_3~-, SO_4~(2-), HS~-, F~-, Cl~- andAu(max is 5.3×10~(-6)). Salinities of fluid rang from 2.75-10.86NaCl%Wt in gas-solution inclusionsand 35.57-37.22NaCl%Wt in halite-bearing multi-phase inclusions, f_(O2)=10~(-44.3)-10~(-31.8), f_(S2)=10~(-16.56)-10~(-10.91), f_(Te2)=10~(-13.39)-10~(-4.49), pH=3.89-5.55; Eh=-0.58--0.72eV. The mineralizing fluid is aH_2O-CO_2 system. Sulfur, hydrogen, oxygen and strontium isotopic compositions (δ~(34)S=-2.46‰--7.02‰,δ~(18)O_(H2O)=1.65‰-12.4‰,δD=-132.2‰--51.8‰, The primitive rate of (~(87)Sr/~(86)Sr)_i=0.7043-0.7073) suggest the ore-forming fluid of the Duolanasayi gold deposit was a kind ofmixed hydrothermal solution mainly composed of magmatic water, metamorphic water, meteroricwater and formation water in rocks. The magmatic water in early mineralization is mantle fluid.HAu (HS)_2~0、Au(HS)_2~-、Au(HTe)_2~-、Au(Te_2)~-、Au_2(Te_2)~0、Au(Te_2)_2~(3-) and [AuCl_2]~- arelikely be the principal gold complexes in ore-bearing fluid. Four major types of precipitation ofgold are the action of boiling and exhaust, pressing and shearing in mylonitization stage,condensation and solution mixing in mineralization.
     Based on the above descriptions, the mineralization pattern of this gold deposit as follow:
     As a result of the tensile stress of rife in Duolanasayi gold deposit district, the albitite-granitemagma, which is the remelting material of lower-crust and upper-mantle, emergenced along faultand emplacement in the SN strike tension crack of the Tuokesalei group sedimentary formation inearly Variscian.
     In middle Variscian, the gold deposit district was pressed, as a result, the albitite-granite dykeand the rock of strata were folded and mylonitized. Meanwhile, with the brittle-ductile shear andthe granodiorite emergenced, the gold was activated, migrated, concentrated by the mineralizationof the brittle-ductile shear and post-magma hot fluid activation.
     The alkalic feldspar granite dyke, with the hot energy and ore-bearing hot fluid emergencedalong brittle-ductile shear zone in the NNE and NE strike, the gold was superimposed and enrichin later Variscian.
引文
蔡长金,陆荣军、宋湘荣编著.中国金矿物志.北京:冶金工业出版社 p:114-130
    曹荣龙.地幔流体的前缘研究.地学前缘,1996,3(3-4):105-118
    曹荣龙,朱寿华.地幔流体与成矿作用.地球科学进展,1995,1(4):323-329
    陈柏林,2001,金矿床和金成矿作用研究进展,地质论评,47(1):111—112
    陈光远、邵伟、孙岱生.1989.胶东金矿成因矿物学与找矿[M].重庆:重庆出版社
    陈好寿.同位素地球化学[M]。杭州:浙江大学出版社,1994
    陈毓川、李兆鼐、母瑞身等,2001,中国金矿及其成矿规律,北京:地质出版社
    陈毓川,叶同庆等,阿舍勒铜锌成矿带成矿条件和成矿预测。北京:地质出版社,1996
    邓军,徐守礼,方云等,1996,胶东西北部构造及金成矿动力学,北京:地质出版社
    杜乐天.1990.当代地球科学的一项重大前沿课题—幔汁研究[J].地球科学进展,5(1):42-47
    杜乐天.1993.地球的5个气圈与氢烃资源—兼论气体地球动力学[J].铀矿地质,9(4):257-265
    杜乐天.1996.地壳流体与地幔流体间的关系[J].地学前缘,(3-4):172-180
    赫英,毛景文,王瑞延等,2001,幔源岩浆去气形成富二氧化摊含金流体—可能性与现实性,地学前缘,8(4):265-270
    高永丰,李红阳,侯增谦.2002.试论幔柱构造对成矿的控制[J].矿床地质,21(增刊):8-11
    顾巧根,欧沛宁,多拉纳萨依金矿床的地质、地球化学特征及成因探。见芮行键主编新疆阿尔泰金矿床论文集。北京:地质出版社,1994
    何国琦等,中国阿尔泰造山带的构造分区和地壳演化,北京:地质出版社,新疆地质科学,1990,第2辑
    何绍勋,段嘉瑞,刘继顺等,1996,韧性剪切带与成矿,北京:地质出版社
    胡受奚,赵懿英、叶瑛等,1997,华北地台金成矿地质,北京:科学出版社.220
    胡受奚,赵懿英、叶瑛等,1998,花岗岩、绿岩、煌斑岩、韧性剪切带和钾交代在金矿床上的贡献及关系,矿床地质(17)增刊:153—158
    华仁民.1993.流体在金属矿床形成过程中的作用和意义—水岩反应研究进展系列评述.南京大学学报(地球科学).5(3):351-360
    季克俭,王立本。热液源研究的重要进展和三源交代热液成矿学。地学前源,1994,1(4):126—131
    李秉伦、石岗.1986.矿物包裹体气体成分的物理化学参数图解[J].地球化学.(2):126-134
    李华芹,谢才富,常海亮等,新疆北部有色贵金属矿床成矿作用年代学。北京:地质出版社,1998
    李献华,孙贤沭,1995,煌斑岩与金矿的实际观察与理论评述,地质论评,41(3):252—259
    李兆麟.1988.实验地球化学[M].北京:地质出版社
    刘斌.1986.利用不混溶包裹体作为地质温度计和压力计[J].科学通报,31(18):1432-1436
    刘斌、沈昆.1999.流体包裹体热力学[M].北京:地质出版社
    刘丛强,黄智龙,李和平等。地幔流体及其成矿作用。地学前缘,2001,8(4):231—24
    刘继顺,1996,韧性剪切带中金成矿研究的若干问题,地质论评,42(2):123—128
    刘家军,郑明华,刘建明等。西秦岭寒武系硅岩建造中金矿床成矿物质来源研究。矿床地质,1997,16(4):330—339
    刘显凡,战新志,高振敏,等.1999a.富碱斑岩中深源包体的地幔流体交代作用.见:中国科学院地球化学研究所编.资源环境与可持续发展[C].北京:科学出版社.71-375
    刘显凡,战新志,高振敏,等.1999b.云南六合深源包体与富碱斑岩成岩成矿的关系[J]. 中国科学(D辑),29(5):413-420
    刘英俊、马东生.1991.金的地球化学[M].北京:科学出版社
    刘英俊、曹励明、李兆麟等,1984,元素地球化学,北京:.科学出版社,547
    刘玉山,张桂兰,田军。绿岩中金淋滤作用的实验研究[J].地质学报,1991(4):362-369
    卢焕章,李秉伦,沈昆等,包裹体地球化学。北京:地质出版社,1990,102-154。
    罗镇宽,关康,王曼祉,王传泰,1999.中国某些金矿床中碲化物的特征[J].黄金地质,Vol:5,No.3:69-74
    马东升,1997,地壳中大规模流体运移的成矿现象和地球化学示踪,南京大学学报(自然科学版),33(地质流体专辑):1-10
    马东升,1998,地壳中流体的大规模流动系统及其成矿意义,高校地质学报,4(2):250-261
    马东升,1992,将南元古界层控金矿床地球化学特征和矿床成因,南京大学学报(自然科学版),21(4):754-764
    马新兴等,阿勒泰多拉金矿矿石组分特征及金的赋存状态,新疆地质,1990.No.3,231.
    毛景文,李荫清,2001,河北省东坪碲化物金矿床流体包裹体研究:地幔流体与成矿关系,矿床地质20(1):23—36
    彭少梅,何绍勋,1992,粤北新洲推覆构造外来系统中的石英脉及其金矿化的关系,地质找矿论丛,7(3)
    钱祥麟,1992,大陆岩石圈内地壳增厚的构造演化基本模式,伸展构造研究,北京,地质出版社:32—36
    秦大军,蔡新平,王杰,1999,金厂峪金矿床围岩蚀变特征与矿床成因,贵金属地质,8(1):7—14
    邱家骧,林景仟,1991.岩石化学[M].北京:地质出版社.
    芮行键等,1993,新疆阿尔泰岩金矿床。北京:地质出版社
    芮行健主等,1994,新疆阿尔泰岩金矿床,北京:地质出版社
    沈渭洲等编.1987.稳定同位素地质[M].北京:原子能出版社.
    孙丰月,石准立.1995.试论幔源C-H-O流体与大陆板内某些地质作用[J].地学前缘.2(1-2):167-173
    涂光炽等著.1998.低温地球化学[M].北京:科学出版社
    涂光炽,1983,构造地球化学,地质地球化学,4:26
    王登红,1999,地幔柱及其成矿作用,北京,地质出版社
    王鹤年、储同庆,1980。金的赋存形式及其有关的地球化学问题,矿物岩石,第一期
    王鹤年等,1988,胶东金矿含金建造的地球化学研究,地球化学,3:195-208
    王鹤年等,1988,胶东中元古代玲珑花岗岩及其后期叠加改造的地质地球化学证据,南京大学学报(地球科学版),1:105-118
    王鹤年,张守韵,俞受军,陈骏等,1992,华夏地块韧性剪切带型金矿地质,北京,科学出版社
    王鹤年,张景荣,陆建军,陈骏等,1991.粤西金矿矿床地球化学,南京:南京大学出版社
    王学明,汪东波,邵世才等,2001,陕西八卦庙金矿钠长石的成因,矿床地质,20(3):223—228
    吴美得、芮仲清主编,1989,含金剪切带型金矿床,北京:地质矿产部情报所出版,203
    肖惠良,董永观,王鹤年,周济元等。新疆多拉纳萨依金矿床地质特征及成矿耦合作用动力学模式.第四届世界华人地质大会论文集.2002.344-346
    肖惠良,周济元,王鹤年等,2003,新疆多拉纳萨依金矿床流体地球化学特征及来源,《中 国地球化学学报》(英文版)22(1):
    肖序常,汤耀庆,冯益民等,新疆北部及其邻区大地构造.北京:地质出版社,1992,P170
    杨敏之,1998,金矿床围岩蚀变带地球化学,北京:地质出版社
    杨敏之,黄国君,1989,胶东乳山钠长浅粒岩型金矿床地质地球化学,地质找矿论丛,2:1-14
    银剑钊,1996,世界首例独立碲矿床的成矿机理及成矿模式,重庆:重庆出版社,190
    张德会,刘伟,流体包裹体成分与金矿床成矿流体来源。地质科技情报,1998,17(增刊):67—71
    张恩,周永章,郭健,陕西八卦庙金矿床构造特征及其成因的控制,矿床地质,20(3):229—233
    张理刚,稳定同位素在地质科学上的应用,西安:陕西科学技术出版社,1985
    张秋生,杨振升,高德玉,任洪茂,1991,冀东金厂峪地区高级变质区地质与金矿床,北京,地质出版社:396—398
    张招崇、李兆鼐,1997,富碲化物型金矿床形成的物理化学条件,矿床地质,16(1)41-51
    翟裕生等,1997,大型构造与超大型矿床,北京,地质出版社
    中科院地质研究所西准黄金科考队、中科院兰州文献中心、新疆有色哈图金矿,1990,国外金矿地质研究新进展(第三集),兰州:甘肃科学技术出版社
    周济元,崔炳芳,陆彦。新疆哈密玉西银矿床特征及成因。北京:矿床地质,1999,18(3):209-218
    周济元等著,2000,赣南红山—锡根迳地区铜锡矿地质及预测。北京:地质出版社,52-53
    朱韶华,董永观,肖惠良,1994,阿尔泰原生金矿成矿地球化学特征,地球化学,23增刊,58—66
    Bai Q等.1994.橄榄石中氢的实际溶解度及其对地幔中水储存的意义[J].地质地球化学,22(1):41-44
    博伊尔,R.W.,1979,金的地球化学及金矿床,马万钧、王立文、罗永国、秦国兴译,北京:地质出版社,1984
    伯杰B.R.浅成热液贵金属矿床的概念模式,国外地质科技,1986(3):28-40
    赫顿,D.H.W.,走滑构造与花岗岩岩石形成作用,国外地质科技,1994(3):56—63
    Lemos,R.S.D.,Brown,M.,转换挤压造山带中花岗岩岩浆的生成、上升与定位,国外花岗岩类地质与矿产,1993(3):8—13
    Afifi A M, Nelly W C and Essene E J. 1988. Phase relations among tellurides, sulfides, and oxides: Ⅰ Thermochemical data and calculated equilibria[J]. Econ. Geol. v83: 377-394
    Afifi A M, Kelly W C and Essene E J. 1988. Phase relations among tellurides, sulfides, and oxides: ⅡApplications to telluride-bearing ore deposits[J]. Econ. Geol. v83: 395-404
    Ahmad M, Solomon M and Walshe J L. 1987. Mineralogical and geochemical studies of the Emperor gold telluride deposit, Fiji [J]. Econ. Geol. v82: 345-370
    Ahmand M, Solomen M, Walshe J L. 1987. Mineralogical and geochemical studies of the Emperor gold telluride deposit, Fiji [J]. Econ. Geol. (3): 345-370
    Bamba O., Beziat D., Bourges F. et al, 1997, New type of gold ore deposit in the in the Birimian greestone belts of Burkina Faso: Albititcs of Larafella, Journal of African earth sciences, 25 (3): 369—381
    Barker B.D.,1983, Igneous rocks. Prentice-hall Inc.,黄福生等译, 地质出版社, 1992: 88—252
    
    Barton M D. 1980. The Ag-Au-S system [J]. Econ. Geol. v75: 303-316
    
    BeziatD. , BourgesF. , Debat P. etal, 1998, Albititeand "Iistvenite": new type of disseminated gold deposit in the highly hydrothermalized Birmian greenstone belt of Burkina Faso, Bulletin de la societe geologique de France, 169 (4): 563—571
    
    Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones [J].J Geol. 91: 611 -627
    
    Birimian greestone belts of Burkina Faso: Albitites of Larafella, Journal of African earth sciences, 25 (3): 369—381
    
    Burke K, Dewey J F. 1973. Plume-generated triple junctions: Key indicdtors in applying plate tections to old rocks [J]. J. Geol. 81: 406-433
    
    Bohlke J K, Coveney R M Jr. and Rye R 0 et al. 1988. Stable isotope investigations of gold quartz veins at the Oriental mine, Alleghang district, California, U S. Geological Survey Open File Report, 279
    
    Bottinga Y., Javoy M.. 1975. Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks. Rev. Geophys. Space. Phys. (13): 401
    
    Camaron E M. 1989. Derivation of gold by oxidative metamorpnism of a deep ductile shear zone I Conecptual model. Jour. Geochem. xplor. 31: 135-147
    
    Cameron E M. 1989, Scouring of gold from the lower crust, Geology, 17(26): 45-54
    
    Campbell A. et al. 1984. Hydrogen and oxygen isotope study of the Son Cristobal Mine,Pero: Implication of the role of water to rock ratios for the genesis of wolframite deposit [J]. Econ. Geol., 79: 1818—1832
    
    Carcangiu G, Palomba M, Tamanini M. 1997, REE-bearing minerals in the albititei of central Sardinia, Italy, Mineralogical Magazine, 61 (2): 271-283
    Carrier A. , Jebrak M. , Angelier J. , and Holyland P. , 2000, The Silidor Deposit,Rouny-Noranda District, Abitibi Belt: Geology, Structural Evolution, and Paleostress Modeling of Au Quartz Vein-type Deposit in an Archean Trondjemite, Economic Geology,95, pp: 1049—1065
    
    Chappell B..W. and White A. J. R., 1974, Two contrasting granite type, Pacific geology,8:173-174
    
    Chappell B. W.,1978, Granitoids from the moonbi district, New England batholith, Eastern Australia, J. Geol. Soc. Austr. 25, Pt5, 267-283
    
    Clout J. M. F. , Cleghorn J. H. , Watt R. D. , 1988, Geological Characteristics of Charlotte KMA Leased Territory, Bicentennial Gold 88, Western Australian Gold Deposits, pp: 70—77
    
    Collions W J, et al. 1982. Nature and origin of A - type granites with paticular reference to Southeastern Australia. Contrb. Miner. Petro., 80:189-200
    
    Colvine A C. 1989. An empirical model for the formation of archaean gold deposits :products of find cratonization of the Superior Province,Canada. Econ. Geol. Mono. 6:37-53
    
    Cooke D R and Mcphail D C. 2001. Epithermal Au-Ag-Te mineralization, Acupan, Baguio district, Philippines: Numerical simulations of mineral deposition Economic Geology, 96, pp: 109—131
    
    Costa S, Caby R, 2001, Evolution of the Ligurian Tethys in the Western Alps: Sm/Nd and U/Pb geochronology and rare-garth element geochemistry of the Montgenever ophiolite(France), Chemical Geology, 175(3-4): 449-466
    
    Craw D. , Windle S. J. , Angus P. V. , 1999, Gold mineralization without quartz veins in a ductile-brittle shear zone, Macraes Mine. Otago Schist, New Zealand, Mineralium Deposita, 34: 382—394
    
    Cullen I. , Norris N. , 1988, New Celebration Gold Deposit, Bicentennial Gold 88, Western Australian Gold Deposits, pp: 87—90
    
    Davidson GJ. 1998, Variation in copper-gold styles through time in the Proterozoic Cloncurry Goldfield, Mt Isa Inlier: a reconnaissance view, Australian Journal of Earth Sciences, 45(3): 445-462
    
    Davidson GJ. 1998, Variation in copper-gold styles through time in the Proterozoic Cloncurry Goldfield, Mt Isa Inlier: a reconnaissance view, Australian Journal of Earth Sciences, 45(3): 445-462
    
    De Waal SA, Schweitzer JK, Hatton CJ et al. 1998, Albitite from the West.Driefontein Mine, South Africa, South African Journal of Geology, 101(1): 39-51
    
    Duuring P. , Hagemann S. G. , Groves D. I., 2000, Structural setting, hydrothermal alteration, and gold mineralisation at the Archaean syenite-hosted Jupiter deposit, Yilgarn Craton, Wewtern Australia, Mineralium Deposita, 35: 402—421
    
    Eby G N. Chemical subdivision of the A - Type granitoids: Petrogenesis and tectonic implications. Geology, 1992,20: 641-644
    
    Eby G N. 1990. The A - type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26:115-134
    
    Eisenlohr B N, Groves D I, Partingtonn G A, 1989, Crustal-scale shear zones and their significance to Archean gold mineralization in Western Australia. Mineralium Deposita, 24: 1-8
    
    El-Afandy AH, Abdalla HM, Aly MM, Ammar F, 2000, Geochemistry and radioactive potentiality of Um Naggat apogranite, central Desert Egypt, Resource Geology, 50(1):39-51
    
    Groves D I. 1993, The crustal continuum model for Late-Archean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28: 366-374
    
    Groves D I, Goldfarb R J, Gebre-Mariam M et al. 1998.Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13:7-27
    
    Jain R B, Yadav 0 P, Rahman M et al. 1999, Petrography and geochemistry of the radioactive albitites and their gensis: Maonda Area, north Rajasthan, Journal of the Geological Socity of Lndia, 53(4): 407-415
    
    Jin-Chu Zhu, Ren-Ke Li, Fu-Chun Li et al., 2001, Topaz-aibite granites and rare-metal mineralization in the Limu district, Guangxi province, southeast China,Mineralium Deposita, 36: 393-405
    
    Jiyuan Zhou, Binfang Cui, Yan Lu. 1995. On the minerzliantion controlled by tectonodynamic force. Resource Geology. 45(5):331-339
    Kerrich R. 2000. Nature' s gold factory. Science, 284:2101-2102
    Kerrich R, Wyman D. 1990. Geodynamic setting of mesothermal gold deposits:An association with accretionary tectonic regimes. Geology, 18:882-885
    Ledair A. D. 1991, Crustal-scale auriferous shear zones in the Central Superior province, Canada, Geology, 21:1298-1307
    
    Liu Xianfan, Zhan Xinzhi, Gao Zhenmin, et al.2000. Na-rich microlite-glass in deep xenoliths, Liuhe, Yunnan: discovery and implications [J]. Journal of Geodynamics.29:141-147
    
    Loiselle MC and Wones D R. 1979. Characteristics and origin of anorogenic granites.Geol. Soc. Am. Abstr. Programs, 11:468
    
    Mark G, 1998, Albitite formation by selective pervasive sodic alteration of tonalite plutons in the Cloncurry district, Queensland, Australian Journal of Earth Sciences, 45(5):765-774
    
    Maruyama S. 1994. Plume tectonics. Jour. Soc. Japan. 100:24-49
    Mitchell A H G, Garson M S. 1981. Mineral deposits and global tectonic settings [M]. Academic press, 1-101
    
    Mcphail. 1995. Thermodynamic properties of aqueous tellurium species between 25 and 350℃ [J]. Geochimca et Cosmechimica Acta. 59(5): 851-866
    
    Norman D. L., LandisG. P., 1983.Source of mineralizing components in hydrothermal ore fluids as' evidenced by Sr~(87)/Sr~(86)and stable isotope data from the pasto Buano deposit, Peru. Econ. Geol., 78:451-465
    
    Navon O et al. 1988. Mantle-derived in diamond miro-inclusions. Nature, 335:Pasi E., Edward J. M., Allison L. D. 2001, Alternation zoning and primary geochemical dispersion at the Bronzewing lode-gold deposit, Western Australia,Mineralium Deposita, 36(1):13—31
    
    Peacock S M. 1990. Fluid process in subduction zones[J]. Science. 248:329-337
    Philippot P, et al. 1991. Trace-element-rich brines in eclogite veins:imlicacations for fluid composition and transport during subduction [J]. Contrib.Mineral. Petrol. 106:417-430
    
    Pearce J A, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks .J Petrol. 25: 956-983
    Perkins C, Wyborn LAI. 1998, Age of Cu-Au mineralisation, Cloncurry district, eastern Mt Isa, Lnlier, Queensland, as determined by Ar-40/Ar-39 dating, Australian Journal of Earth Sciences, 45(2):233-246
    
    Phillips G N. 1986, Geology and alteration in the Godden Mine, Karlgoorlie,Eco. Geol., 81: 779-808
    
    Poulsen K H, Robert F and Dube B. 2000. Geological classification of Canadian gold depo Research, 100:12861-12879
    
    Robert F, Boullier A M and Firdaous K.1995. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. Journal of Geophysical
    
    Roser B P, Korsch R J . 1986 . Determination of tectonic setting of sandstone-mudstone suits using SiO_2 content and K_2O/Na_2Oratio [J]. J Geol. 94: 635650
    
    Roedder E, 1972. Composition of fluid inclusions. In: Data od Geochemistry, 6~(Th) Ed, U. S. Geol. Surv. Prof. Pap., 440-JJ, 164
    
    Roedder E, 1984. Fluid inclusion. Reviews in Mineralogy, (12) : 266-274
    Sawkins F J. 1976. Metal deposits related to intracontinental hotspot and rifting environments [J]. Journal of Geology. 84(6):653-671
    Sarvothman H, Srinivasan K N, Suresh G. 1998, Albitite-trondjemite-A-type granite association in the Prakasam alkaline province, Andhra Pradesh, Journal of the Geological Socity of Lndia, 51(4): 471—474
    
    Sawkins F J. 1984. Metal deposits in related to plate tectonics. Springer-Verlag,1-25
    
    Seward T. M., 1973. Thio complexes of gold and the transport of gold in hydrothemal ore solutions, Geochimica et Cosmochimica Acta, (37):379-399
    
    Seward T. M.. 1882. The transport and deposition of gold in hydrothermal systems. Gold' 82, the Geology, Geochemistry and Genesis of Gold Deposits, Edited by Foster, R. P.
    
    Sheppard S. M. F., Epstein S., 1970. D/H and ~(18)O/~(16)O ratios of minerals of possible mantle or lower crustal origin. Earth. Planet. Ci.Lett. , 9
    
    Sinha D K, Fahmi S, Bhatt A K et al., 2000, Evidence for soda metasomatism in Ladera-Sakhun area, northeastern Rajasthan, Journal of the Geological Socity of Lndia, 56(5): 573-582
    
    Skwarnecki M. S., 1988, Characteristics of Regional Geological in Leonora Gold Deposit, Bicentennial Gold 88, Western Australian Gold Deposits, pp: 122—131
    
    Spera F J. 1987. Dynamics of translithospheric migration of metasomatic fluid and alkaline magma. [M] Mantle Metasomatism. M A Menzies, et al. (eds.):1—20
    
    Taylor H. P. 1980. The effects of assimilation of Country rocks by magmas on ~(18)O/~(16)O and ~(87)Sr/~(86)Sr systematics in igneous rocks. E. P. S. L. (47): 243-254
    
    Taylor H. P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal altreation and deposit. Econ. Geol. (69):843-880
    
    Taylor S. R., McLennan S. M., 1985, The continental crust: its composition and evolution, Oxford: Blackwell Scientific Publication, 1-312
    
    Trull T, et al. 1993. C-He systematics in hotspot xnoliths: implications for mantle carbon content and carbon recycling [J]. Earth Planet Sci. Lett. 118: 43-64
    
    White A. J. R. and Chappell B. W., 1977, Ultrametamorphism of granitoid genesis. Tectonophysics, 48, 1/2, 7-22
    
    White A. J. R., Hine R., Williams I.S.and Chappell B. W., 1978,Contrasts between I- and S-type granitoids of the Kosciusko bathlith, J. Geol. Soc. Austr., 25 Pt4:219-234
    
    XIAO Huiliang, ZHOU Jiyuan, WANG Henian, et al. 2003.Geochemical Characteristics and Source of Ore-Forming Fluid of Duolanasayi Gold Deposit, Xinjiang.CHINESE JOURNAL OF GEOCHEMISTRY, 22(1):74-82
    
    ZHANG Xiaomao and Spry P G. 1994. Calculated stability of aqueous tellurium species, calaverite, and hessite at elevated temperatures [J].v89: 1152-1166 .
    
    ZHU Shaohua, DONG Yongguan, XIAO Huiliang, 1996, Geochemical Characteristics of Metallogeny of Primary Gold Deposits in Altay Area, Xinjiang, Acta Geoscientia Sinica, Bulletin of the Chinese Academy of Geological Sciences, Special Issue

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700