用户名: 密码: 验证码:
含能化合物制备过程的相关基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含能化合物是一类可在无外界物质参与下发生自分解反应并急剧释放大量能量的特殊化合物,是发展先进武器装备的关键性物质基础。含能化合物的合成过程往往涉及硝化、氧化等反应,具有反应速率快、放热剧烈、易飞温失控等特点,对反应器性能和反应过程操作有较高的要求;同时由于产品易燃易爆,其后处理过程往往具有较高的危险性。本文对某含能化合物的氧化过程展开相关研究。测定了含能化合物合成过程所涉及的相关物性数据;对带盘管反应釜进行了传热实验,根据实验所得不同搅拌桨作用下釜内盘管外侧对流传热系数关联式,优选出适用于强放热反应过程的搅拌桨形式;结合工程计算和CFD数值模拟设计了用于该含能化合物氧化过程的强放热反应釜;建立了该含能化合物氧化过程的数学模型,并编写了可用于求解该数学模型的计算软件,结合所设计反应器对该强放热氧化过程进行了操作条件的优化和飞温模拟;研制了适用于含能化合物过滤的履带式真空连续过滤机,并建立了过滤过程的数学模型。
     论文主要研究内容如下:
     1.某些含能化合物的合成过程涉及二甲基亚砜(DMSO)和乙醇、水的二元、三元混合物体系。本文在较大浓度范围内测定了常压(0.1MPa)下,温度范围T=(278.15~338.15)K内DMSO+乙醇、DMSO+水、DMSO+乙醇+水体系的导热系数以及DMSO+乙醇+水体系的密度,并进行了数据的关联,为含能化合物合成过程的优化设计提供了相关的基础数据。
     2.搅拌桨是釜式反应器的核心部件。本文在带盘管的反应釜内对二斜叶搅拌桨、四斜叶搅拌桨、推进式搅拌桨、CBY搅拌桨和CBY-H搅拌桨等五种搅拌桨进行了传热实验,研究了桨型、转速对反应釜传热能力的影响,并根据实验结果得到了不同搅拌桨作用下盘管外侧对流传热系数的关联式,为含能化合物制备中反应釜搅拌桨的选择提供了依据。
     3.针对某含能化合物的氧化过程进行了反应釜的设计研究。该氧化反应强放热,且体系中大量的双氧水在高温下极易剧烈分解发生喷料,故该反应釜需要大量的盘管。为避免盘管排布过于紧密而影响釜内物料的流动和传热,本文通过计算流体力学(CFD)模拟了不同管间隙和离底高度对釜内流体流场的影响,并根据模拟结果确定了合适的盘管结构。论文进一步建立了该氧化过程的数学模型,利用Visual Basic(VB)语言编写了相应的模拟软件,考察了加料速率、反应温度、反应时间等因素对反应过程的影响并对飞温失控情况进行了模拟,确定了该氧化过程的合适操作条件。根据研究结果建造的该氧化过程试验线运行状况良好。
     4.目前含能化合物的过滤仍以间歇操作为主,劳动强度大,生产效率低,且存在较大的安全隐患。本文以水平带式过滤机为基础,对其进行了多项改进,研制了适用于含能化合物过滤的履带式真空连续过滤机,可实现人机隔离操作条件下含能化合物的安全连续过滤。论文还建立了过滤过程的数学模型,并编写了相关计算软件。
Energetic compounds are a kind of special compounds which can self-decompose and rapidly release large amounts of energy without the presence of external substance. These features make them the key material bases for the development of advanced weapons. The synthetic processes of energetic compounds always involve nitration reactions, oxidation reactions, etc, which have a high reaction rate, a strongly exothermic effect, and a great thermal runaway potential. Thus, these processes require high performance reactors and good operation conditions. Moreover, the flammable and explosive products make it dangerous for post treatment. In the dissertation, related fundamental problems of the oxidation process of a certain energetic compound were studied. Related properties of the system involved in the process were determined. The heat transfer experiment was taken in a stirred tank reactor with a coil inside. Convective heat transfer coefficient correlations of the outer surface of the coil for different impellers were obtained and a proper type of impeller was selected for the strongly exothermic process. A stirred tank reactor with high heat transfer performance was designed with the help of engineering calculation and numerical simulation. The process was modeled and a solving software was developed for operation optimization and runaway situation simulation. Besides, a continuous crawler filtration equipment was developed for the filtration of energetic compounds. A mathematical model was established for the filtration process.
     The main contents are generalized as follows:
     1. Binary and ternary mixtures of dimethyl sulfoxide (DMSO) with ethanol and water are involved in some energetic compound synthetic processes. The thermal conductivities of DMSO+ethanol, DMSO+water and DMSO+ethanol+water at0.1MPa and temperatures ranging from (278.15to338.15) K covering a wide concentration range were determined and correlated for the optimization design of the energetic compound synthetic processes, as well as the densities of DMSO+ethanol+water.
     2. The impeller is the core component of a stirred tank reactor. In the dissertation, five types of impellers, including a2pitched blade turbine, a4pitched blade turbine, a propeller, a CBY impeller and a CBY-H impeller were chosen for the heat transfer experiments in a stirred tank reactor with a coil inside. The influence of impeller type and stirring speed on heat transfer performance of the coil was investigated. The convective heat transfer coefficient correlations of the outer surface of the coil were obtained, which are helpful to select a proper type of impeller for the stirred tank reactor during the design of energetic compound synthetic processes.
     3. The oxidation process design of a certain energetic compound was studied. The oxidation reaction is strongly exothermic and the large amount of hydrogen peroxide in the system can intensively decompose and cause an accident when it is overheated. Large quantities of coil rings are then needed. Since intensively arranged coil rings may lead to a poor flow and heat transfer performance of reactants in the reactor, computational fluid dynamics (CFD) was introduced to investigate the influence of coil clearance and fix height on the flow performance in the reactor. Based on the CFD simulation results, a proper design was determined. A mathematical model was then established for the oxidation process and a solving software was developed by Visual Basic (VB). The influence of feeding rate, reaction temperature and reaction time on the reaction process was investigated. Runaway situations were investigated as well. Then proper operation conditions for the process were determined. The prototype line built up according to the research results runs well.
     4. So far, the energetic compound filtration still relies on batch operation, which is labor-intensive, low efficient, and dangerous. A continuous crawler filtration equipment was developed based on the horizontal belt filter, and some improvements were made for safer, continuous and automated energetic compound filtration. A mathematical model was established and a software was developed for the simulation of the filtration.
引文
[1]覃光明,葛忠学.含能化合物合成反应与过程[M].北京:化学工业出版社,2011.
    [2]An C W, Wang J Y, Xu W Z, Li F S. Preparation and properties of HMX coated with a composite of TNT/energetic material [J]. Propellants, Explosives, Pyrotechnics,2010,35(4):365-372.
    [3]Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications [J]. Journal of Hazardous Materials,2004,112(1): 1-15.
    [4]Pagoria P F, Lee G S, Mitchell A R, Schmidt R D. A review of energetic materials synthesis [J]. Thermochimica Acta,2002,384(1):187-204.
    [5]刘耀鹏.火炸药生产技术[M].北京:北京理工大学出版社,2009.
    [6]Keshavarz M H. Theoretical prediction of electric spark sensitivity of nitroaromatic energetic compounds based on molecular structure [J]. Journal of Hazardous Materials,2008,153(1):201-206.
    [7]Keshavarz M H, Motamedoshariati H, Pouretedal H R, Tehrani M K, Semnani A. Prediction of shock sensitivity of explosives based on small-scale gap test [J]. Journal of Hazardous Materials,2007,145(1): 109-112.
    [8]Chiu Y N, Naser J, Easton A, Ngian K F, Pratt K C. Kinetics of a catalyzed semi-batch ethoxylation of nonylphenol [J]. Chemical Engineering Science,2010,65(3):1167-1172.
    [9]Da G, Ferret E, Marechal P A, Thanh M L, Marouze C, Dufour D. Modeling small-scale cassava starch extraction. Simulation of the reduction of water consumption through a recycling process [J]. Process Biochemistry,2010,45(11):1837-1842.
    [10]Bunin G A, Lima F V, Georgakis C, Hunt C M. Model predictive control and dynamic operability studies in a stirred tank:rapid temperature cycling for crystallization [J]. Chemical Engineering Communications, 2010,197(5):733-752.
    [11]Westerterp K R, Van Swaaij W P M, Beenackers A A C M. Chemical reactor design and operation [M]. New York:John Wiley & Sons,1984.
    [12]Renken A. The use of periodic operation to improve the performance of continuous stirred tank reactors [J]. Chemical Engineering Science,1972,27(11):1925-1932.
    [13]陈志平,章序文,林兴华.搅拌与混合设备设计选用手册[M].北京:化学工业出版社,2004.
    [14]Nikhade B P, Pangarkar V G Theorem of corresponding hydrodynamic states for estimation of transport properties:Case study of mass transfer coefficient in stirred tank fitted with helical coil [J]. Industrial & Engineering Chemistry Research,2007,46(10):3095-3100.
    [15]Stoessesl F. Thermal safety of chemical process [M]. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA,2008.
    [16]郑炽,方丽珍,邵贞昌.化工工艺设计手册[M].北京:化学工业出版社,1985.
    [17]雷照.搅拌釜传热过程的研究[D].杭州,浙江大学,2008.
    [18]Fouad Y O, Malash G F, Zatout A A, Sedahmed G H. Mass and heat transfer at an array of vertical tubes in a square stirred tank reactor [J]. Chemical Engineering Research and Design,2013,91(2):234-243.
    [19]Lehrer I H. Jacket-side Nusselt number [J]. Industrial & Engineering Chemistry Process Design and Development,1970,9(4):553-558.
    [20]何潮洪,冯霄.化工原理[M].北京:科学出版社,2001.
    [21]车圆圆.易失控反应过程的调控及强化研究[D].杭州,浙江大学,2012.
    [22]Chilton T H, Drew T B, Jebens R H. Heat transfer coefficients in agitated vessels [J]. Industrial & Engineering Chemistry Research,1944,36(6):510-516.
    [23]Brown R W, Scott R, Toyne C. An investigation of heat transfer in agitated jacketed cast iron vessels [J]. Transactions of the Institution of Chemical Engineers,1947,25:181-190.
    [24]Strek F, Masiuk S. Heat transfer in liquid mixers [J]. International Chemical Engineering,1967,7(4): 693-702.
    [25]Askew W S, Beckmann R B. Heat and mass transfer in an agitated vessel [J]. Industrial & Engineering Chemistry Process Design and Development,1965,4(3):311-318.
    [26]Bourne J R, Buerli M, Regenass W. Heat transfer and power measurements in stirred tanks using heat flow calorimetry [J]. Chemical Engineering Science,1981,36(2):347-354.
    [27]Oldshue J Y, Gretton A T. Helical coil heat transfer in mixing vessels [J]. Chemical Engineering Progress, 1954,50(12):615-621.
    [28]Cummings G H, West A S. Heat transfer data for kettles with jackets and coils [J]. Industrial & Engineering Chemistry Research,1950,42(11):2303-2313.
    [29]Pratt N H. The heat transfer in a reaction tank cooled by means of a coil [J]. Transactions of the Institution of Chemical Engineers,1947,25:163-180.
    [30]车圆圆,周俊超,毕纪葛,何潮洪.改进CBY桨搅拌釜内单相流体流动与传热特性研究[J].高校化学工程学报,2013.
    [31]Attorni A, Cavagna L, Quaranta G. Aircraft T-tail flutter predictions using computational fluid dynamics [J]. Journal of Fluids and Structures,2011,27(2):161-174.
    [32]Zhang J T, Maxwell J A, Gerber A G, Holloway A G L, Watt G D. Simulation of the flow over axisymmetric submarine hulls in steady turning [J]. Ocean Engineering,2013,57:180-196.
    [33]Mobasheri R, Peng Z, Mirsalim S M. Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling [J]. International Journal of Heat and Fluid Flow,2012,33(1):59-69.
    [34]Lisowski E, Rajda J. CFD analysis of pressure loss during flow by hydraulic directional control valve constructed from logic valves [J]. Energy Conversion and Management,2013,65:285-291.
    [35]An H, Li A, Sasmito A P, Kurnia J C, Jangam S V, Mujumdar A S. Computational fluid dynamics (CFD) analysis of micro-reactor performance:Effect of various configurations [J]. Chemical Engineering Science, 2012,75:85-95.
    [36]Harvey P S, Greaves M. Turbulent flow in an agitated vessel. Part I:A predictive model [J]. Transactions of the Institution of Chemical Engineers,1982,60:195-200.
    [37]Harvey P S, Greaves M. Turbulent flow in an agitated vessel. Part II:Numerical solution and model predictions [J]. Transactions of the Institution of Chemical Engineers,1982,60:201-210.
    [38]傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2002.
    [39]Sahu A K, Kumar P, Patwardhan A W, Joshi J B. CFD modelling and mixing in stirred tanks [J]. Chemical Engineering Science,1999,54(13):2285-2293.
    [40]周国忠,施力田.搅拌槽内近桨区流动场的数值研究[J].高校化学工程学报,2002,16(1):17-22.
    [41]Rudniak L, Milewska A, Molga E. CFD simulations for safety of chemical reactors and storage tanks [J]. Chemical Engineering & Technology,2011,34(11):1781-1789.
    [42]Kasat G R, Khopkar A R, Ranade V V, Pandit A B. CFD simulation of liquid-phase mixing in solid-liquid stirred reactor [J]. Chemical Engineering Science,2008,63(15):3877-3885.
    [43]Vakili M H, Esfahany M N. CFD analysis of turbulence in a baffled stirred tank, a three-compartment model [J]. Chemical Engineering Science,2009,64(2):351-362.
    [44]Yakhot V, Orszag S A. Renormalization group analysis of turbulence. I:Basic theory [J]. Journal of Scientific Computing,1986,57(14):3-51.
    [45]Shih T H, Liou W W, Shabbir A, Yang, Z G, Zhu J. A new k-ε eddy-viscosity model for high Reynolds number turbulent flows [J]. Computers & Fluids,1993,24(3):227-238.
    [46]Kim S E, Choudhury D, Patel B. Computations of complex turbulent flows using the commercial code FLUENT [J]. ICASE/LaRC interdisciplinary Series in Science and Engineering,1999,7:259-276.
    [47]Brucato A, Ciofalo M, Grisafi F, Micale G. Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modelling approaches [J]. Chemical Engineering Science,1998,53(21): 3653-3684.
    [48]Ranade V V, Joshi J B. Flow generated by a disc turbine. Ⅱ:Mathematical modelling and comparison with experimental data [J]. Chemical Engineering Research and Design,1990,68(1):34-50.
    [49]Brucato A, Ciofalo M, Grisafi F, Micale G D. Complete numerical simulation of flow fields in baffled stirred vessels:The inner-outer approach [C]. Institution of Chemical Engineering Symposium Series 136, Institution of Chemical Engineers, Rugby,1994.
    [50]Harris C K, Roekaerts D, Rosendal F J J, Buitendijk F G J, Daskopoulos P, Vreenegoor A J N, Wang H. Computational fluid dynamics for chemical reactor engineering [J]. Chemical Engineering Science,1996, 51(10):1569-1594.
    [51]Micale G, Brucato A, Grisafi F, Ciofalo M. Prediction of flow fields in a dual-impeller stirred vessel [J]. AIChE Journal,1999,45(3):445-464.
    [52]Pericleous K A, Patel M K. The source-sink approach in the modeling of stirred reactors [J]. Physical Chemical Hydrodynamics,1987,9:279-297.
    [53]Xu Y, Mcgrath G. CFD predictions of stirred tank flows [J]. Chemical Engineering Research& Design, 1996,74:471-475.
    [54]Van't Riet K, Bruijn W, Smith J M. Real and pseudo-turbulence in the discharge stream from a Rushton turbine [J]. Chemical Engineering Science,1976,31(6):407-412.
    [55]Yianneskis M, Popiolek Z, Whitelaw J H. Experimental study of the steady and unsteady flow characteristics of stirred reactors [J]. Journal of Fluid Mechanics,1987,175:537-555.
    [56]Jaworski Z, Wyszynski M L, Moore I P T, Nienow A W. Sliding mesh computational fluid dynamics:a predictive tool in stirred tank design [J]. Process Institution of Mechanical Engineers,1997,211(3):149-156.
    [57]Ng K, Fentiman N J, Lee K C, Yianneskis M. Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller [J]. Chemical Engineering Research and Design,1998,76(6):737-747.
    [58]Luo J Y, Issa R 1, Gosman A D. Prediction of impeller induced flows in mixing vessels using multiple frames of reference [C]. Institution of Chemical Engineers Symposium Series 136, Institution of Chemical Engineers, Rugby,1994.
    [59]Lane G L, Schwarz M P, Evans G M. Comparison of CFD methods for modeling of stirred tanks [C]. Proceedings of 10th European Conference on Mixing, Delft University of Technology, Delft,2000.
    [60]Wechsler K, Breuer M, Durst F. Steady and unsteady computations of turbulent flows induced by a 4/45 pitched-blade impeller [J]. Journal of Fluids Engineering,1999,121(2):318-329.
    [61]Dong L, Johansen S T, Engh T A. Flow induced by an impeller in an unbaffled tank-Ⅰ. Experimental [J]. Chemical Engineering Science,1994,49(4):549-560.
    [62]Dong L, Johansen S T, Engh T A. Flow induced by an impeller in an unbaffled tank-Ⅱ. Numerical modelling [J]. Chemical Engineering Science,1994,49(20):3511-3518.
    [63]Harvey A D, Rogers S E. Steady and unsteady computation of impeller-stirred reactors [J]. AIChE Journal,1996,42(10):2701-2712.
    [64]Harvey A D, Wood S P, Leng D E. Experimental and computational study of multiple impeller flows [J]. Chemical Engineering Science,1997,52(9):1479-1491.
    [65]Jaworski Z, Dudczak J. CFD modelling of turbulent macromixing in stirred tanks. Effect of the probe size and number on mixing indices [J]. Computers & Chemical Engineering,1998,22:293-298.
    [66]Syrjanen J K, Manninen M T. Detailed CFD prediction of flow around a 45 pitched blade turbine [C]. Proceedings of 10th European Conference on Mixing, Delft University of Technology, Delft,2000.
    [67]Montante G, Lee K C, Brucato A, Yianneskis M. Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels [J]. Chemical Engineering Science,2001,56(12):3751-3770.
    [68]Ranade V V, Bourne J R, Joshi J B. Fluid mechanics and blending in agitated tanks [J]. Chemical Engineering Science,1991,46(8):1883-1893.
    [69]Aubin J, Fletcher D F, Xuereb C. Modeling turbulent flow in stirred tanks with CFD:The influence of the modeling approach, turbulence model and numerical scheme [J]. Experimental Thermal and Fluid Science, 2004,28(5):431-445.
    [70]Bujalski W, Jaworski Z, Nienow A W. CFD study of homogenization with dual Rushton turbines-Comparison with experimental results. Part Ⅱ:The multiple reference frame [J]. Chemical Engineering Research and Design,2002,80(1):97-104.
    [71]Milewska A, Molga E J. CFD simulation of accidents in industrial batch stirred tank reactors [J]. Chemical Engineering Science,2007,62(18):4920-4925.
    [72]Milewska A, Molga E. Safety aspects in modelling and operating of batch and semibatch stirred tank chemical reactors [J]. Chemical Engineering Research and Design,2010,88(3):304-319.
    [73]Gimbun J, Rielly C D, Nagy Z K, Derksen J J. Detached eddy simulation on the turbulent flow in a stirred tank [J]. AIChE Journal,2012,58(10):3224-3241.
    [74]Coroneo M, Montante G, Paglianti A, Magelli F. CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations [J]. Computers & Chemical Engineering,2011,35(10): 1959-1968.
    [75]侯拴弟,张政,王英琛,施力田.螺旋桨搅拌槽内流动场二维数值模拟[J].北京化工大学学报,1998,25(3):1-7.
    [76]侯拴弟,钟孝湘,王英琛,施力田,张政.斜叶涡轮搅拌槽流动场数值研究[J].北京化工大学学报,1999,26(4):1-4.
    [77]侯拴弟,王英琛,张政,施力田,阎旭.轴流式搅拌器湍流运动特性[J].化工学报,2000,51(2):259-263.
    [78]侯栓弟,张政,王英琛,施力田.轴流桨搅拌槽三维流场数值模拟[J].化工学报,2000,51(1):71-76.
    [79]侯拴弟,张政,王英琛,施力田.涡轮桨搅拌槽流动场数值模拟[J].化工学报,2001,52(3):241-246.
    [80]周国忠,王英琛,施力田.搅拌槽内三维流动场的RNG k-ε 数值模拟[J].北京化工大学学报,2002,29(2):15-23.
    [81]周国忠,聂毅强,包雨云,施力田,王英琛.搅拌槽内非牛顿流体流动场的数值模拟[J].北京化工大学学报,2002,29(4):4-7.
    [82]周国忠,王英琛,施力田.用CFD研究搅拌槽内的混合过程[J].化工学报,2003,54(7):886-890.
    [83]马青山,聂毅强,包雨云,王英琛,施力田.搅拌槽内三维流场的数值模拟[J].化工学报,2003,54(5):612-618.
    [84]马青山,王英琛,施力田,王嘉骏.多层搅拌桨流动场的测量与数值模拟[J].化工学报,2003,54(12):1661-1666.
    [85]张国娟,闵健,高正明,牛国瑞,施力田.涡轮桨搅拌槽内混合过程的数值模拟[J].北京化工大学学报,2004,31(6):24-27.
    [86]张国娟,闵健,高正明,施力田.翼形桨搅拌槽内混合过程的数值模拟[J].高校化学工程学报, 2005,19(2):169-174.
    [87]苗一,潘家祯,闵健,高正明.涡轮桨搅拌槽内混合过程的大涡模拟[J].华东理工大学学报,2006,32(5):623-628.
    [88]苗一,潘家祯,牛国瑞,闵健,高正明.多层桨搅拌槽内的宏观混合特性[J].华东理工大学学报,2006,32(3):357-360.
    [89]苗一,潘家祯,张国娟,闵健,高正明.双层涡轮桨搅拌槽内混合过程的数值模拟[J].华东理工大学学报,2006,32(3):352-356.
    [90]郭武辉,潘家祯.计算流体力学用于搅拌器流场研究及结构设计[J].化学工程,2009,37(9):20-23.
    [91]郭武辉,潘家祯,许洪朋,谈国伟.同轴搅拌混合器性能的数值模拟[J].华东理工大学学报,2009,35(3):486-491.
    [92]杨锋苓,周慎杰,王贵超,胡凡金.非标准挡板搅拌槽内湍流流场的数值模拟[J].高校化学工程学报,2012,26(6):952-958.
    [93]Bertrand J, Poux M, Aubin J. European federation of chemical engineering working party on mixing: Development, state of the art and future of the scientific field [J]. Chemical Engineering Research and Design, 2004,82(12):1575-1579.
    [94]李志鹏.涡轮桨搅拌槽内流动特性的实验研究和数值模拟[D].北京,北京化工大学,2007.
    [95]刘心洪.搅拌槽内湍流特性的实验研究[D].北京,北京化工大学,2010.
    [96]Peixoto S M C, Nunhez J R. Improving internal flow of coiled stirred tanks [C]. Second International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne,1999.
    [97]Kelly W J, Humphrey A E. Computational fluid dynamics model for predicting flow of viscous fluids in a large fermentor with hydrofoil flow impellers and internal cooling coils [J]. Biotechnology Progress,1998, 14(2):248-258.
    [98]张仲敏,黄雄斌.酯化反应搅拌釜内流动特性的数值模拟[J].北京化工大学学报,2005,32(5):29-35.
    [99]Bisio A, Kabel R L. Scaleup of chemical processes:Conversion from laboratory scale tests to successful commercial size design [M]. New York:John Wiley & Sons,1985.
    [100]Gygax R W. Scale up principles for assessing thermal runaway risk [J]. Chemical Engineering Progress, 1990,86(2):53-60.
    [101]van de Vusse J G. A new model for the stirred tank reactor [J]. Chemical Engineering Science,1962, 17(7):507-521.
    [102]Gonzalez R, Gentina J C, Acevedo F. Biooxidation of a gold concentrate in a continuous stirred tank reactor:Mathematical model and optimal configuration [J]. Biochemical Engineering Journal,2004,19(1): 33-42.
    [103]Papangelakis V G, Demopoulos G P. Reactor models for a series of continuous stirred tank reactors with a gas-liquid-solid leaching system:Part I. Surface reaction control [J]. Metallurgical Transactions B,1992, 23(6):847-856.
    [104]Littlejohns J V, Mcauley K B, Daugulis A J. Model for a solid-liquid stirred tank two-phase partitioning bioscrubber for the treatment of BTEX [J]. Journal of Hazardous Materials,2010,175(1):872-882.
    [105]Quijano G, Revah S, Gutierrez-Rojas M, Flores-Cotera L B, Thalasso F. Oxygen transfer in three-phase airlift and stirred tank reactors using silicone oil as transfer vector [J]. Process Biochemistry,2009,44(6): 619-624.
    [106]李希.化工问题建模与数学分析方法[M].北京:化学工业出版社,2006.
    [107]Zeman R J, Amundson N R. Continuous polymerization models-Ⅰ:Polymerization in continuous stirred tank reactors [J]. Chemical Engineering Science,1965,20(4):331-361.
    [108]Zeman R J, Amundson N R. Continuous polymerization models-part Ⅱ:Batch reactor polymerization [J]. Chemical Engineering Science,1965,20(7):637-664.
    [109]Evangelista J J, Katz S, Shinnar R. Scale-up criteria for stirred tank reactors [J]. AIChE Journal,1969, 15(6):843-853.
    [110]Hanley T R, Mischke R A. A mixing model for a continuous flow stirred tank reactor [J]. Industrial & Engineering Chemistry Fundamentals,1978,17(1):51-58.
    [111]Pohorecki R, Baldyga J. The use of a new model of micromixing for determination of crystal size in precipitation [J]. Chemical Engineering Science,1983,38(1):79-83.
    [112]Pohorecki R, Baldyga J. New model of micromixing in chemical reactors.1. General development and application to a tubular reactor [J]. Industrial & Engineering Chemistry Fundamentals,1983,22(4):392-397.
    [113]Pohorecki R, Baldyga J. New model of micromixing in chemical reactors.2. Application to a stirred tank reactor [J]. Industrial & Engineering Chemistry Fundamentals,1983,22(4):398-405.
    [114]Tosun G. A mathematical model of mixing and polymerization in a semibatch stirred-tank reactor [J]. AIChE Journal,1992,38(3):425-437.
    [115]Papangelakis V G, Berk D, Demopoulos G P. Mathematical modeling of an exothermic leaching reaction system:Pressure oxidation of wide size arsenopyrite participates [J]. Metallurgical Transactions B, 1990,21(5):827-837.
    [116]Papangelakis V G, Demopoulos G P. Reactor models for a series of continuous stirred tank reactors with a gas-liquid-solid leaching system:Part Ⅱ. Gas-transfer control [J]. Metallurgical Transactions B,1992,23(6): 857-864.
    [117]Papangelakis V G, Demopoulos G P. Reactor models for a series of continuous stirred tank reactors with a gas-liquid-solid leaching system:Part Ⅲ. Model application [J]. Metallurgical Transactions B,1992,23(6): 865-877.
    [118]Tobita H. A simulation model for long-chain branching in vinyl acetate polymerization:1. Batch polymerization [J]. Journal of Polymer Science Part B:Polymer Physics,1994,32(5):901-910.
    [119]Tobita H. A simulation model for long-chain branching in vinyl acetate polymerization:2. Continuous polymerization in a stirred tank reactor [J]. Journal of Polymer Science Part B:Polymer Physics,1994,32(5): 911-919.
    [120]Chatterjee A, Kabra K, Graessley W W. Free-radical polymerization with long-chain branching: Batch polymerizations of vinyl acetate in t-butanol [J]. Journal of Applied Polymer Science,1977,21(7): 1751-1762.
    [121]Mork M, Gudmundsson J S. Hydrate formation rate in a continuous stirred tank reactor:Experimental results and bubble-to-crystal model [C].4th International Conference on Gas Hydrates, May, Norwegian University of Science and Technology, Trondheim,2002.
    [122]Lakatos B G, Barkanyi, Nemeth S. Continuous stirred tank coalescence/redispersion reactor:A simulation study [J]. Chemical Engineering Journal,2011,169(1):247-257.
    [123]Eisapour M, Keshtkar A, Moosavian M A, Rashidi A. Bioleaching of uranium in batch stirred tank reactor:Process optimization using Box-Behnken design [J]. Annals of Nuclear Energy,2013,54:245-250.
    [124]Gupta V K, Ali I, Saleh T A, Nayak A, Agarwal S. Chemical treatment technologies for waste-water recycling-an overview [J]. RSC Advances,2012,2(16):6380-6388.
    [125]Borges A J P, Hauser-Davis R A, Ferreira De Oliveira T. Cleaner red mud residue production at an alumina plant by applying experimental design techniques in the filtration stage [J]. Journal of Cleaner Production,2011,19(15):1763-1769.
    [126]Yang J, Wang X H, Parekh B K. Improved techniques for hyperbaric filtration of fine coal slurry [J]. International Journal of Coal Preparation and Utilization,2010,30(1):32-43.
    [127]Lozano-Sanchez J, Cerretani L, Bendini A, Segura-Carretero A, Fernandez-Gutierrez A. Filtration process of extra virgin olive oil:Effect on minor components, oxidative stability and sensorial and physicochemical characteristics [J]. Trends in Food Science & Technology,2010,21(4):201-211.
    [128]Holland A A. Endless belt filter [P]. United States, US3190451,1965.
    [129]Aulich W. Method and apparatus for operating a filter belt [P]. United States, US3348682,1967.
    [1]Ogiwara K, Arai Y, Saito S. Thermal conductivities of liquid alcohols and their binary mixtures [J]. Journal of Chemical Engineering of Japan,1982,15(5):335-342.
    [2]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    [3]Tsederberg N V. Thermal conductivity of gases and liquids [M]. Cambridge:M. I. T Press,1965.
    [4]Mallan G M, Michaelian M S, Lockhart F J. Liquid thermal conductivities of organic compounds and petroleum fractions [J]. Journal of Chemical & Engineering Data,1972,17(4):412-415.
    [5]Ramires M L V, Nieto de Castro C A, Nagasaka Y, Nagashima A, Assael M J, Wakeham W A. Standard reference data for the thermal conductivity of water [J]. Journal of Physical and Chemical Reference Data, 1995,24(3):1377-1382.
    [6]Choudhary V R, Gaikwad A G. Kinetics of hydrogen peroxide decomposition in aqueous sulfuric acid over palladium/carbon:Effect of acid concentration [J]. Reaction Kinetics and Catalysis Letters,2003,80(1): 27-32.
    [7]Wu L K, Chen K Y, Cheng S Y, Lee B S, Shu C M. Thermal decomposition of hydrogen peroxide in the presence of sulfuric acid [J]. Journal of Thermal Analysis and Calorimetry,2008,93(1):115-120.
    [8]Vaisman I I, Berkowitz M L. Local structural order and molecular associations in water-DMSO mixtures. Molecular dynamics study [J]. Journal of the American Chemical Society,1992,114(20):7889-7896.
    [9]Martin D, Weise A, Niclas H J. The solvent dimethyl sulfoxide [J]. Angewandte Chemie International Edition,1967,6(4):318-334.
    [10]Jacobs S W, Rosenbaum E E, Wood D C. Dimethyl sulfoxide [M]. New York:Marcel Dekker,1971.
    [11]Gmehling J, Mollmann C. Synthesis of distillation processes using thermodynamic models and the Dortmund data bank [J]. Industrial & Engineering Chemistry Research,1998,37(8):3112-3123.
    [12]Berg L. Separation of ethanol, isopropanol and water mixtures by extractive distillation [P]. United States, US5800681A,1998.
    [13]Arifin S, Chien I L. Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer [J]. Industrial & Engineering Chemistry Research,2008, 47(3):790-803.
    [14]Sando G M, Dahl K, Owrutsky J C. Vibrational spectroscopy and dynamics of azide ion in ionic liquid and dimethyl sulfoxide water mixtures [J]. Journal of Physical Chemistry B,2007,111(18):4901-4909.
    [15]Dhumal N R. Electronic structure, molecular electrostatic potential and hydrogen bonding in DMSO-X complexes (X= ethanol, methanol and water) [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,79(3):654-660.
    [16]Grande M D C, Julia J A, Garcia M, Marschoff C M. On the density and viscosity of (water+ dimethylsulphoxide) binary mixtures [J]. Journal of Chemical Thermodynamics,2007,39(7):1049-1056.
    [17]Zarei H A, Lavasani M Z, Iloukhani H. Densities and volumetric properties of binary and ternary liquid mixtures of water (1)+acetonitrile (2)+dimethyl sulfoxide (3) at temperatures from (293.15 to 333.15) K and at ambient pressure (81.5 kPa) [J]. Journal of Chemical & Engineering Data,2008,53(2):578-585.
    [18]Lebel R G, Goring D a I. Density, viscosity, refractive index, and hygroscopicity of mixtures of water and dimethyl sulfoxide [J]. Journal of Chemical & Engineering Data,1962,7(1):100-101.
    [19]Bhuiyan M M H, Ferdaush J, Uddin M H. Densities and viscosities of binary mixtures of {dimethylsulfoxide+aliphatic lower alkanols (C1-C3)} at temperatures from T=303.15 K to T= 323.15 K [J]. Journal of Chemical Thermodynamics,2007,39(5):675-683.
    [20]Nikam P S, Jadhav M C, Hasan M. Density and viscosity of mixtures of dimethyl sulfoxide+methanol, +ethanol,+propan-1-ol,+propan-2-ol,+butan-1-ol,+2-methylpropan-1-ol, and+2-methylpropan-2-ol at 298.15 K and 303.15 K [J]. Journal of Chemical & Engineering Data,1996,41(5):1028-1031.
    [21]Pruett D J, Felker L K. Densities and apparent molar volumes in the binary system dimethyl sulfoxide-water at 25,40,60, and 65℃[J]. Journal of Chemical & Engineering Data,1985,30(4):452-455.
    [22]Zhang H F, Zhao G, Ye H, Ge X S, Cheng S X. An improved hot probe for measuring thermal conductivity of liquids [J]. Measurement Science and Technology,2005,16(7):1430-1435.
    [23]Assael M J, Charitidou E, Wakeham W A. Absolute measurements of the thermal conductivity of mixtures of alcohols with water [J]. International Journal of Thermophysics,1989,10(4):793-803.
    [24]Che Y Y, Shen J, Zhou J C, He C H. Thermal conductivity and density of (NH4) 2SO4+H2O, NH4NO3+ H2O, and (NH4) 2SO4+NH4NO3+H2O solutions at T= (278.15 to 333.15) K [J]. Journal of Chemical & Engineering Data,2012,57(5):1486-1491.
    [25]Yang J C, Li F C, Zhou W W, He Y R, Jiang B C. Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids [J]. International Journal of Heat and Mass Transfer, 2012,55(11-12):3160-3166.
    [26]Li F C, Yang J C, Zhou W W, He Y R, Huang Y M, Jiang B C. Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes [J]. Thermochimica Acta,2013,556:47-53.
    [27]Lei Q F, Lin R S, Ni D Y. Thermal conductivities of some organic solvents and their binary mixtures [J]. Journal of Chemical & Engineering Data,1997,42(5):971-974.
    [28]Wu J T, Li X J, Zheng H F, Assael M J. Thermal conductivity of liquid dimethyl ether from (233 to 373) K at pressures up to 30 MPa [J]. Journal of Chemical & Engineering Data,2009,54(6):1720-1723.
    [29]Wu J T, Zheng H F, Qian X H, Li X J, Assael M J. Thermal conductivity of liquid 1,2-dimethoxyethane from 243 K to 353 K at pressures up to 30 MPa [J]. International Journal of Thermophysics,2009,30(2): 385-396.
    [30]刘明,何潮洪,黄志尧,孟振振,周俊超,车圆圆,金伟光.丁酮肟-丁酮,丁酮肟-正己烷体系导热系数的测定[J].高校化学工程学报,2011,25(4):547-553.
    [31]Ramires M L V, Nieto de Castro C A, Perkins R A, Nagasaka Y, Nagashima A, Assael M J, Wakeham W A. Reference data for the thermal conductivity of saturated liquid toluene over a wide range of temperatures [J]. Journal of Physical and Chemical Reference Data,2000,29(2):133-139.
    [32]Assael M J, Mylona S K, Huber M L, Perkins R A. Reference correlation of the thermal conductivity of toluene from the triple point to 1000 K and up to 1000 MPa [J]. Journal of Physical and Chemical Reference Data,2012,41(2):023101-023112.
    [33]Kestin J, Sengers J V, Kamgar-Parsi B, Levelt Sengers J M H. Thermophysical properties of fluid H2O [J]. Journal of Physical and Chemical Reference Data,1984,13(1):175-183.
    [34]Huber M L, Perkins R A, Friend D G, Sengers J V, Assael M J, Metaxa I N, Miyagawa K, Hellmann R, Vogel E. New international formulation for the thermal conductivity of H2O [J]. Journal of Physical and Chemical Reference Data,2012,41(3):033102-1:23.
    [35]Fang S, Zhang J G, Liu J Q, Liu M, Luo S, He C H. Physicochemical properties of aqueous hydroxylamine sulfate and aqueous (hydroxylamine sulfate+ammonium sulfate) solutions at different temperatures [J]. Journal of Chemical & Engineering Data,2009,54(7):2028-2032.
    [36]房升.液液离子交换萃取法从Raschig合成液中分离硫酸羟胺:应用与相关基础研究[D].杭州,浙江大学,2009.
    [37]Murakami E G, Sweat V E, Sastry S K, Kolbe E. Analysis of various design and operating parameters of the thermal conductivity probe [J]. Journal of Food Engineering,1996,30(1):209-225.
    [38]Hoshi M, Omotani T, Nagashima A. Transient method to measure the thermal conductivity of high-temperature melts using a liquid-metal probe [J]. Review of Scientific Instruments,1981,52(5): 755-758.
    [39]Charitidou E, Dix M, Assael M J, Nieto de Castro C A, Wakeham W A. A computer-controlled instrument for the measurement of the thermal conductivity of liquids [J]. International Journal of Thermophysics,1987, 8(5):511-519.
    [40]Nieto-Draghi C, Avalos J B, Rousseau B. Transport properties of dimethyl sulfoxide aqueous solutions [J]. Journal of Chemical Physics,2003,119(9):4782-4789.
    [41]Reid R C, Prausnitz J M, Poling B E. The properties of gases and liquids [M]. New York:The McGraw-Hill Companies, Inc.,2004.
    [42]Ro S T, Kim J Y, Kim D S. Thermal conductivity of R32 and its mixture with R134a [J]. International Journal of Thermophysics,1995,16(5):1193-1201.
    [43]Scheffe H. Experiments with mixtures [J]. Journal of the Royal Statistical Society Series B (Methodology),1958,20(2):344-360.
    [44]Cornell J A. Experiments with mixtures [M]. New York:John Wiley & Sons,2002.
    [45]Focke W W, Du Plessis B. Correlating multicomponent mixture properties with homogeneous rational functions [J]. Industrial & Engineering Chemistry Research,2004,43(26):8369-8377.
    [46]Focke W W. Correlating thermal-conductivity data for ternary liquid mixtures [J]. International Journal of Thermophysics,2008,29(4):1342-1360.
    [47]Aguila-Hernandez J, Gomez-Quintana R, Murrieta-Guevara F, Romero-Martinez A, Trejo A. Liquid density of aqueous blended alkanolamines and N-methylpyrrolidone as a function of concentration and temperature [J]. Journal of Chemical & Engineering Data,2001,46(4):861-867.
    [48]Perry R H, Green D W. Perry's chemical engineers' handbook [M]. New York:The McGraw-Hill Companies, Inc.,2008.
    [49]Egorov G I, Makarov D M, Kolker A M. Densities and volumetric properties of ethylene glycol+ dimethylsulfoxide mixtures at temperatures of (278.15 to 323.15) K and pressures of (0.1 to 100) MPa [J]. Journal of Chemical & Engineering Data,2010,55(9):3481-3488.
    [50]Goenaga J M, Gayol A, Concha R G, Iglesias M, Resa J M. Effect of temperature on thermophysical properties of ethanol+aliphatic alcohols (C4-C5) mixtures [J]. Monatshefte fur Chemie-Chemical Monthly, 2007,138(5):403-436.
    [51]Saleh M A, Ahmed O, Shamsuddin Ahmed M. Excess molar volume, viscosity and thermodynamics of viscous flow of the system dimethylsulfoxide and acetic acid [J]. Journal of Molecular Liquids,2004,115(1): 41-47.
    [52]Yan J H, Dai L Y, Wang X Z, Chen Y Q. Densities and viscosities of binary mixtures of cyclopropanecarboxylic acid with methanol, ethanol, propan-1-ol, and butan-1-ol at different temperatures [J]. Journal of Chemical & Engineering Data,2009,54(3):1147-1152.
    [1]车圆圆,周俊超,毕纪葛,何潮洪.改进CBY桨搅拌釜内单相流体流动与传热特性研究[J].高校化学工程学报,2013.
    [2]陈志平,章序文,林兴华.搅拌与混合设备设计选用手册[M].北京:化学工业出版社,2004.
    [3]何潮洪,冯霄.化工原理[M].北京:科学出版社,2001.
    [4]时钧,汪家鼎,余国琮,陈敏恒.化学工程手册[M].北京:化学工业出版社,1996.
    [5]Chilton T H, Drew T B, Jebens R H. Heat transfer coefficients in agitated vessels [J]. Industrial& Engineering Chemistry Research,1944,36(6):510-516.
    [6]Oldshue J Y, Gretton A T. Helical coil heat transfer in mixing vessels [J]. Chemical Engineering Progress, 1954,50(12):615-621.
    [7]Cummings G H, West A S. Heat transfer data for kettles with jackets and coils [J]. Industrial & Engineering Chemistry Research,1950,42(11):2303-2313.
    [8]Pratt N H. The heat transfer in a reaction tank cooled by means of a coil [J]. Transactions of the Institution
    of Chemical Engineers,1947,25:163-180.
    [9]黄雄斌,王英琛,林猛流,吴德钧,施力田.轴流式搅拌器[P].中国,CN2149242,1993.
    [10]车圆圆,何潮洪,周俊超,吴可君.一种翼型轴流式搅拌器[P].中国,CN202036961U,2011.
    [11]Bourne J R, Buerli M, Regenass W. Heat transfer and power measurements in stirred tanks using heat flow calorimetry [J]. Chemical Engineering Science,1981,36(2):347-354.
    [12]Triveni B, Vishwanadham B, Venkateshwar S. Studies on heat transfer to Newtonian and non-Newtonian fluids in agitated vessel [J]. Heat and Mass Transfer,2008,44(11):1281-1288.
    [13]Wilson E E. A basis for rational design of heat transfer apparatus [J]. Transactions of the Institution of Chemical Engineers,1915,37(47):47-82.
    [14]Stoessesl F. Thermal safety of chemical process [M]. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA,2008.
    [15]朱彦.甲苯半间歇一段硝化反应放大研究[D].南京,南京理工大学,2007.
    [16]Schlichting H. Boundary layer theory [M]. New York:McGraw-Hill,1968.
    [17]Uhl V W, Gray J B. Mixing:Theory and practice [M]. New York:Academic Press,1966.
    [18]Gabriele A, Nienow A W, Simmons M J H. Use of angle resolved PIV to estimate local specific energy dissipation rates for up-and down-pumping pitched blade agitators in a stirred tank [J]. Chemical Engineering Science,2009,64(1):126-143.
    [19]Lamarque N, Zoppe B, Lebaigue O, Dolias Y, Bertrand M, Ducros F. Large-eddy simulation of the turbulent free-surface flow in an unbaffled stirred tank reactor [J]. Chemical Engineering Science,2010, 65(15):4307-4322.
    [20]Jafari R, Chaouki J, Tanguy P A. A comprehensive review of just suspended speed in liquid-solid and gas-liquid-solid stirred tank reactors [J]. Chemical Engineering Journal,2012,10(1):1-32.
    [1]刘耀鹏.火炸药生产技术[M].北京:北京理工大学出版社,2009.
    [2]车圆圆.易失控反应过程的调控及强化研究[D].杭州,浙江大学,2012.
    [3]Wu S H, Chi J H, Huang C C, Lin N K, Peng J J, Shu C M. Thermal hazard analyses and incompatible reaction evaluation of hydrogen peroxide by DSC [J]. Journal of Thermal Analysis and Calorimetry,2010, 102(2):563-568.
    [4]Horvath A L. Handbook of aqueous electrolyte solutions:Physical properties, estimation and correlation methods [M]. New York:John Wiley & Sons,1985.
    [5]Wu L K, Chen K Y, Cheng S Y, Lee B S, Shu C M. Thermal decomposition of hydrogen peroxide in the presence of sulfuric acid [J]. Journal of Thermal Analysis and Calorimetry,2008,93(1):115-120.
    [6]Choudhary V R, Gaikwad A G Kinetics of hydrogen peroxide decomposition in aqueous sulfuric acid over palladium/carbon:Effect of acid concentration [J]. Reaction Kinetics and Catalysis Letters,2003,80(1): 27-32.
    [7]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    [8]Lide D R, Bruno T J. CRC handbook of chemistry and physics [M]. Boca Raton:CRC Press,2012.
    [9]Palani R, Geetha A. Acoustical and excess thermodynamic studies of molecular interaction in aqueous mixed solvent systems at 303,308 and 313 K [J]. Physics and Chemistry of Liquids,2009,47(5):542-552.
    [10]Riddick J A, Bunger W B, Sakano T K. Organic solvents:Physical properties and methods of purification [M]. New York:John Wiley & Sons,1986.
    [11]Bienert G P, Schjoerring J K, Jahn T P. Membrane transport of hydrogen peroxide [J]. Biochimica et Biophysica Acta(BBA)-Biomembranes,2006,1758(8):994-1003.
    [12]Jamieson D T, Irving J B, Tudhope J S. Liquid thermal conductivity:A data survey to 1973 [M]. Edinburgh:Her Majesty's Stationery Office,1975.
    [13]Reid R C, Prausnitz J M, Poling B E. The properties of gases and liquids [M]. New York:The McGraw-Hill Companies, Inc.,2004.
    [14]Tsederberg N V. Thermal conductivity of gases and liquids [M]. Cambridge:M. I. T Press,1965.
    [15]汤善甫,朱思明.化工设备机械基础[M].上海:华东理工大学出版社,2004.
    [16]Chilton T H, Drew T B, Jebens R H. Heat transfer coefficients in agitated vessels [J]. Industrial & Engineering Chemistry Research,1944,36(6):510-516.
    [17]Lehrer I H. Jacket-side Nusselt number [J]. Industrial & Engineering Chemistry Process Design and Development,1970,9(4):553-558.
    [18]Lohrenz J, Kurata F. A friction factor plot for smooth circular conduits, concentric annuli, and parallel plates [J]. Industrial & Engineering Chemistry,1960,52(8):703-706.
    [19]何潮洪,冯霄.化工原理[M].北京:科学出版社,2001.
    [20]时钧,汪家鼎,余国琮,陈敏恒.化学工程手册[M].北京:化学工业出版社,1996.
    [21]吴德荣.化工工艺设计手册[M].北京:化学工业出版社,2009.
    [22]郑炽,方丽珍,邵贞昌.化工工艺设计手册[M].北京:化学工业出版社,1985.
    [23]车圆圆,周俊超,毕纪葛,何潮洪.改进CBY桨搅拌釜内单相流体流动与传热特性研究[J].高校化学工程学报,2013.
    [24]张国娟,闵健,高正明,施力田.翼形桨搅拌槽内混合过程的数值模拟[J].高校化学工程学报,2005,19(2):169-174.
    [25]侯栓弟,张政,王英琛,施力田.轴流桨搅拌槽三维流场数值模拟[J].化工学报,2000,51(1):71-76.
    [26]徐世艾,冯连芳.桨型和挡板对自浮颗粒三相体系混合的影响[J].高校化学工程学报,1999,13(4):362-367.
    [27]Sahu A K, Kumar P, Patwardhan A W, Joshi J B. CFD modelling and mixing in stirred tanks [J]. Chemical Engineering Science,1999,54(13):2285-2293.
    [28]Appleton W T, Brennan W C. Some observations on heat transfer to agitated liquids [J]. Canadian Journal of Chemical Engineering,2009,44(5):276-280.
    [29]Thongwik S, Kiatsiriroat T, Nuntaphan A. Heat transfer model of slurry ice melting on external surface of helical coil [J]. International Communications in Heat and Mass Transfer,2008,35(10):1335-1339.
    [30]Yamaha M, Nakahara N, Chiba R. Studies on thermal characteristics of ice thermal storage tank and a methodology for estimation of tank efficiency [J]. International Journal of Energy Research,2008,32(3): 226-241.
    [31]Triveni B, Vishwanadham B, Venkateshwar S. Studies on heat transfer to Newtonian and non-Newtonian fluids in agitated vessel [J]. Heat and Mass Transfer,2008,44(11):1281-1288.
    [32]李志鹏.涡轮桨搅拌槽内流动特性的实验研究和数值模拟[D].北京,北京化工大学,2007.
    [33]刘心洪.搅拌槽内湍流特性的实验研究[D].北京,北京化工大学,2010.
    [34]王凯,虞军.搅拌设备[M].北京:化学工业出版社,2003.
    [35]李志鹏,高正明.涡轮桨搅拌槽内流动特性的大涡模拟[J].高校化学工程学报,2007,21(4):592-597.
    [36]Taghavi M, Zadghaffari R, Moghaddas J, Moghaddas Y. Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank [J]. Chemical Engineering Research and Design,2011, 89(3):280-290.
    [37]Jahoda M, Mostek M, Fort I, Hasal P. CFD simulation of free liquid surface motion in a pilot plant stirred tank [J]. Canadian Journal of Chemical Engineering,2011,89(4):717-724.
    [38]Peixoto S M C, Nunhez J R. Improving internal flow of coiled stirred tanks [C]. Second International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne,1999.
    [39]Kelly W J, Humphrey A E. Computational fluid dynamics model for predicting flow of viscous fluids in a large fermentor with hydrofoil flow impellers and internal cooling coils [J]. Biotechnology Progress,1998, 14(2):248-258.
    [40]张仲敏,黄雄斌.酯化反应搅拌釜内流动特性的数值模拟[J].北京化工大学学报,2005,32(5):29-35.
    [41]Abdel-Aziz M H. Solid-liquid mass transfer in relation to diffusion controlled corrosion at the outer surface of helical coils immersed in agitated vessels [J]. Chemical Engineering Research and Design,2013, 91(1):43-50.
    [42]Rudniak L, Machniewski P M, Milewska A, Molga E. CFD modelling of stirred tank chemical reactors: Homogeneous and heterogeneous reaction systems [J]. Chemical Engineering Science,2004,59(22): 5233-5239.
    [43]Alopaeus V, Koskinen J, I Keskinen K, Majander J. Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 2-parameter fitting and the use of the multiblock model for dense dispersions [J]. Chemical Engineering Science,2002,57(10):1815-1825.
    [44]Ranade V V, Bourne J R, Joshi J B. Fluid mechanics and blending in agitated tanks [J]. Chemical Engineering Science,1991,46(8):1883-1893.
    [45]郭武辉,潘家祯.计算流体力学用于搅拌器流场研究及结构设计[J].化学工程,2009,37(9):20-23.
    [46]周国忠,施力田.搅拌槽内近桨区流动场的数值研究[J].高校化学工程学报,2002,16(1):17-22.
    [47]Milewska A, Molga E J. CFD simulation of accidents in industrial batch stirred tank reactors [J]. Chemical Engineering Science,2007,62(18):4920-4925.
    [48]Rudniak L, Milewska A, Molga E. CFD simulations for safety of chemical reactors and storage tanks [J]. Chemical Engineering & Technology,2011,34(11):1781-1789.
    [49]Milewska A, Molga E. Safety aspects in modelling and operating of batch and semibatch stirred tank chemical reactors [J]. Chemical Engineering Research and Design,2010,88(3):304-319.
    [50]陈志平,章序文,林兴华.搅拌与混合设备设计选用手册[M].北京:化学工业出版社,2004.
    [51]Marzzacco C J. The enthalpy of decomposition of hydrogen peroxide:A general chemistry calorimetry experiment [J]. Journal of Chemical Education,1999,76(11):1517-1518.
    [52]Fogler H S. Elements of chemical reaction engineering [M]. London:Prentice Hall,1999.
    [53]Westerterp K R, Molga E J. No more runaways in fine chemical reactors [J]. Industrial& Engineering Chemistry Research,2004,43(16):4585-4594.
    [54]Westerterp K R, Molga E J. Safety and runaway prevention in batch and semibatch reactors-a review [J]. Chemical Engineering Research and Design,2006,84(7):543-552.
    [1]刘耀鹏.火炸药生产技术[M].北京:北京理工大学出版社,2009.
    [2]郑炽,方丽珍,邵贞昌.化工工艺设计手册[M].北京:化学工业出版社,1985.
    [3]Holland A A. Endless belt filter [P]. United States, US3190451,1965.
    [4]Seibert K T. Horizontal vacuum belt filter machine [P]. United States, US3939077,1976.
    [5]Derenthal U. Belt filter with means to advance the belt responsive to a capacitance signal [P]. United States, US005571404A,1996.
    [6]Bratten J R. Enclosed belt filter apparatus [P]. United States, US 6495031 B1,2002.
    [7]Lockhart N C, Veal C J. Coal dewatering:Australian R&D trends [J]. Coal Preparation,1996,17(1-2): 5-24.
    [8]Mohanty M K, Wang Z, Huang Z, Hirschi J. Optimization of the dewatering performance of a steel belt filter [J]. Coal Preparation,2004,24(1-2):53-68.
    [9]Olivier J, Vaxelaire J. The prediction of filter belt press dewatering efficiency for activated sludge by experimentation on filtration compression cells [J]. Environmental Technology,2004,25(12):1423-1430.
    [10]Gabriel S A, Vilalai S, Arispe S, Kim H, Mcconnell L L, Torrents A, Peot C, Ramirez M. Prediction of dimethyl disulfide levels from biosolids using statistical modeling [J]. Journal of Environmental Science and Health,2005,40(11):2009-2025.
    [11]Shammas N K, Wang L K. Belt filter presses [J]. Biosolids Treatment Processes,2007,6:519-539.
    [12]Wang J W, Chen C, Gao Q, Li T, Zhu F F. Relationship between the characteristics of cationic polyacrylamide and sewage sludge dewatering performance in a full-scale plant [J]. Procedia Environmental Sciences,2012,16:409-417.
    [13]姚公弼.水平真空带滤机及其发展状况[J].化工机械,1992,19(3):172-178.
    [14]何潮洪,冯霄.化工原理[M].北京:科学出版社,2001.
    [15]Stafford T G, Rochow R W, Davis D W, Gilbert R L. Cyanamide, dicyandiamide, and melamine optical and crystallographic properties [J]. Industrial & Engineering Chemistry,1940,32(9):1187-1188.
    [16]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    [17]Geankoplis C J. Transport processes and unit operations [M]. Boston:Allyn and Bacon,1978.
    [18]Perry R H, Green D W. Perry's chemical engineers'handbook [M]. New York:The McGraw-Hill Companies, Inc.,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700