用户名: 密码: 验证码:
水沙两相紊流数学模型及其在近岸泥沙运动中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高精度的水沙两相数学模型在河流及海岸泥沙运动学中具有重要的应用背景,它是对泥沙运动进行统一描述的理论基础,也是揭示泥沙运动普遍规律,丰富和完善泥沙运动力学内容的重要途径。本文旨在建立一个能兼顾悬移质、推移质、层移质等输沙形式,准确体现固液两相紊流作用,合理反映泥沙颗粒问以及固液两相之间相互作用的水沙两相流模型,并将其应用于近岸水沙动力学典型问题的研究中。
     模型控制方程基于双流体连续介质模型,包含了相问阻力、附加质量力和升力对两相运动的耦合,考虑了泥沙粒问应力在高含沙区域对两相运动的重要意义。其中,水相的紊动采用k-ε模型描述并拓展到高含沙浓度区域,泥沙相紊动采用Hinze-Tchen颗粒紊流粘性系数模型。
     论文研究了恒定流动平衡输沙问题,揭示了不同流动强度或泥沙条件下两相流速分布、浓度分布、两相相互影响,不同的边界条件和泥沙扩散系数分布。对非平衡输沙问题进行模拟的结果表述了沿程变化的浓度、扩散系数和沉速分布及相互关系。
     在往复流动层移输沙问题中,论文揭示了对称和非对称往复流动条件下水沙两相动力特征和含沙层侵蚀深度的变化过程,并估计各种条件下的净输沙情况。近岸周期性动力条件下,论文深入探讨并解释了相位差、紊动以及泥沙运动在水流中的整体周期性响应。
     针对传统研究中的难点,论文系统地研究非线性往复流作用下水平和垂向泥沙通量,讨论了床面附近两相运动的微观机制特别是泥沙交换机制,并揭示扬沙率、挟沙能力和输沙率等重要参数的时空变化,以及它们随着水沙两相条件的变化规律。论文还阐明了速度偏度和加速度偏度对水平输沙的重要影响;提出适合于往复流动层移输沙条件的泥沙垂向通量经验公式并揭示该通量随着流动条件和泥沙条件变化的规律。
     此外,论文研究了波浪作用下的涡动沙纹,揭示了整个沙纹表面两相间强烈的相互作用和交换机制,以及沙纹地形条件下流体动力特性和泥沙运动过程。结果重现了绕流沙纹水流涡的形成、发展及耗散过程,表明了泥沙运动过程与流动水涡之间的密切关系。
It is of current significance to develop an advanced two-phase turbulent model forsediment-laden flow with important theoretical and practical background. With unifiedsediment transport description and specifically revealed general laws of sedimentmovement for both suspended and bedload sediments, the theory about near-shoresediment transport mechanics can be further enriched and perfected. Thus such avertical-horizontal2D numerical model is developed based on Euler-Euler approach oftwo-phase turbulence theory for the nearshore sediment-laden flow under a wide rangeof validation. The fluid phase and the sediment phase are coupled according to theirinteraction forces containing drag force, inertia force and lift force. The traditional k-model is applied for turbulence closure of the fluid phase, while an algebraic particleturbulence model is taken for the sediment phase.
     By modeling conventional particles and light particles sediment transport underunidirectional flow conditions, it reveals the two-phase velocity distribution,concentration distribution, two-phase interaction, different boundary conditions andsediment diffusion coefficient distribution under different flow and sediment conditions.Further more, the model is applied for non-equilibrium sediment transport problem forbetter understanding of variation of concentration, diffusion coefficient, fall velocity,and their relationships.
     Under oscillatory sheet flow conditions, the results reveal the temporal and specialvariation of the sediment concentration, horizontal velocities, thickness of the sheetflow layer, horizontal and vertical fluxes of the sediment, and net sediment transportrate under a wide range of conditions. Base on the discussion, it explores the perioddynamic phase response together with turbulence and sediment movement undernearshore period dynamic conditions.
     Furthermore, it reveals horizontal and vertical sediment fluxes systematicallyunder nonlinear oscillatory flows conditions according to difficulty in traditionalresearch, also explains the effects of flow period, shape, velocity and sedimentdiameters. Model reveals the detail of sediment transport process accompanying withvelocity skewness and acceleration skewness, especially the difference between onshore and offshore durations, according to the illustrating of sediment transport rate andsediment flux. Additionally, it illustrates the vertical sediment flux characteristics at thereference height, near immobile bed and at low concentration area, and explains totalsuspended sediment amount of different sediment sizes under the same flow conditions.
     Finally, the model is applied for general description of the hydrodynamic andsediment movement near vortex ripples regions under oscillatory flow conditions.Model reconstructs the strong interaction and phase exchange between two phases, andreveals the detail characteristics of formation ejection and dissipation of flow vortexaccompanying with the sediment entrainment and transport process over vortex ripples.
引文
Absi R. Concentration profiles for fine and coarse sediments suspended by waves overripples: An analytical study with the1-DV gradient diffusion model. Advance inWater Resources,2010,33:411-418.
    Ahilan R V, Sleath J. Sediment transport in oscillatory flow over flat beds. Journal ofHydraulic Engineering.1987,113:308-322.
    Ahmed A S M, Sato S. A sheet flow transport model for asymmetric oscillatory flows part I:uniform grain size sediments. Coastal Engineering Journal,2003,45(3),321-337.
    Andersen K H, Faraci C. The wave plus current flow over vortex ripples at an arbitrary angle.Coastal Engineering,2003,47:431-441.
    Andersen K H. The dynamics of ripples beneath surface wave and topics in shell models ofturbulence, Centre for Chaos and Turbulence Studies, The Niels Bohr Institute,University of Copenhagen,[Ph.D.],1999.
    Asano T. Sediment transport under sheet-flow conditions. Journal of Water, Port, Coast, andOcean Engineering,1995,121(5):239-246.
    Asano T. Two-phase flow model on oscillatory sheet-flow. Proceedings of the22ndInternational Conference on Coastal Engineering,1990:2372-2384.
    Auton T R, Hunt J C R, Prud’homme M. The force exerted on a body in inviscid unsteadynon-uniform rotational flow. Journal of Fluid Mechanics,1988,197:241-257.
    Auton T R. The lift force on a spherical body in rotational flow. Journal of Fluid Mechanics,1987,183:199-218.
    Aydin I, Shuto N. An application of the k-model to oscillatory boundary layers. CoastalEngineering in Japan,1988,30:11-24.
    Ayrton H. Origin and growth of ripple mark. Proceedings of the Royal Society London,1910,A84:285-310.
    Bagnold R A. Mechanics of marine sedimentation. In: Hill, M.N.(Editor.), The Sea, vol(3).Interscience, NewYork.1963.
    Bagnold R A. Motion of waves in shallow water: interaction between waves and sandbottoms. Proceedings of the Royal Society London, Ser. A187,1946:1-15.
    Bailard J A. An energetics total load sediment transport model for a plane sloping beach.Journal of Geophysical Research,1981,86(C11),10938–10954.
    Bakker W T. Sand concentration in an oscillatory flow. Proceedings of the14th InternationalConference on Coastal Engineering,1974:1129-1148.
    Besnard D C, Harlow F H. Turbulence in multiphase flow. International Journal ofMultiphase Flow,1988,14(6):679-699.
    Blondeaux P, Vittori G. Oscillatory flow and sediment motion over a ripples bed.Proceedings of the22nd International Conference on Coastal Engineering,1990:2186-2199.
    Blondeaux P, Vittori G. Vorticity dynamics in an oscillatory flow over a rippled bed. Journalof Fluid Mechanics,1991,226:257-289.
    Bradshaw P. Turbulence. New York,1976:1-44.
    Camenen B. Estimation of the wave-related ripple characteristics and induced bed shearstress. Estuarine, Coastal and Shelf Science,2009,84:553-564.
    Cao J, Ahmadi G. Gas-particle two-phase turbulent flow in a vertical duct. InternationalJournal of Multiphase Flow,1995,21(6):1203-1228.
    Cao Z. Equilibrium near-bed concentration of suspended sediment. Journal of HydraulicEngineering,1999,125(12):1270-1278.
    Cao Z. Turbulent bursting-based sediment entrainment function. Journal of HydraulicEngineering,1997,123(3):233-236.
    Carstens M R, F M Neilson, H D Altinbilek.Bed forms generated in laboratory under anoscillatory flow. Analytical and experimental study. Tech. Memo.28, CoastalEngineering Research Centre, USACE, USA,1969.
    Chang H K, Liou J C. Discussion on A fall-velocity equation by Ahrens. Journal of Water,Port, Coast, and Ocean Engineering,2001,129(3):146-150.
    Chen C P, Wood P E. A turbulence closure model for dilute gas-particle flows. TheCanadian Journal of Chemical Engineering,1985,63:349-360.
    Cheng N. Discussion on A fall-velocity equation by Ahrens. Journal of Water, Port, Coast,and Ocean Engineering,2001,127(4):250-251.
    Cheng Y, Guo Y C, Wei F, et al Modeling the hydrodynamics of dovner reactors based onkinetic theory. Chem. Eng. Sci.,1999,54(13-14):2019-2027.
    Coleman N L. Flume study of the sediment transfer coefficient. Water Resources Research,1970,6(3):801-809.
    Coleman N L. Effects of suspended sediment on the open-channel velocity distribution.Water Resources Research,1986,22(10):1377-1384.
    Darwin G H. On the formation of ripple-mark in sand. Proceedings of the Royal SocietyLondon,1883,36:18-43.
    Dasgupta S, Jackson R, Sundaresun S. Turbulent gas-particle flow in vertical risers. AIChE J,1994,110(2):215-288.
    Davies A G, Li Z. Modelling sediment transport beneath regular symmetrical andasymmetrical waves above a plane bed. Continental Shelf Research,1997,5:555-582.
    de Ruiter J C C. The mechanism of sediment transport on bed forms. Proc., Euromech156:Mech. of Sediment Transport, Technical Univ. of Istanbul, Istanbul, Turkey,1982.
    Deigaard R, Jakobsen J B, Fredsoe J. Net sediment transport under wave groups and boundlong waves. Journal of Geophysical Research,1999,104(C6):13559-13575.
    Dibajnia M, Watanabe A. A transport rate formula for mixed-sized sands. Proceedings of the25th International Conference on Coastal Engineering,1996:3791-3804.
    Dibajnia M, Watanabe A. Sheet flow under nonlinear waves and currents. Proceedings of the23rd International Conference on Coastal Engineering,1992:2015-2028.
    Dibajnia M, Watanabe A. Transport rate under irregular sheet flow conditions. CoastalEngineering,1998,35:167-183.
    Dibajnia M. Study on Nonlinear Effects in Beach Processes.[Ph.D.] University of Tokyo,1991.
    Dick J, Sleath J. Sediment transport in oscillatory sheet flow. Journal of GeophysicalResearch,1992,97(C4):5745-5758.
    Dick J, Sleath J. Velocities and concentrations in oscillatory flow over beds of sediment.Journal of Fluid Mechanics,1991,233:165-196.
    Dingier J R, Inman D L. Wave-formed ripples in nearshore sands. Proceedings of the15thInternational Conference on Coastal Engineering,1976:2109-2126.
    Dobbins W E. Effect of turbulence on sedimentation. Trans ASCE,1943,109:660-666.
    Dohmen-Janssen C M, Hanes D M. Sheet flow dynamics under monochromatic nonbreakingwaves. Journal of Geophysical Research,2002,107(C10):31-49.
    Dohmen-Janssen C M, Hanssan, W N, Ribberink J S. Mobile-bed effects in oscillatory sheetflow. Journal of Geophysical Research,2001,106(C11):103-115.
    Dohmen-Janssen C M, Kroekenstoel D F, Hassan W N M, Ribberink J S. Phase lags inoscillatory sheet flow: experiments and bed loadmodelling. Coastal Engineering,2002,46:61-87.
    Dohmen-Janssen M. Grain size influence on sediment transport in oscillatory sheet flow.PhD Thesis, Thechnische Universiteit Delft, Delft, The Netherlands,1999.
    Dong P, Zhang K. Intense near-bed sediment motions in waves and currents. CoastalEngineering,2002,45:75-87.
    Drake T G, Calantoni J. Discrete particle model for sheet flow sediment transport in thenearshore. Journal of Geophysical Research,2001,106(C9):19859-19868.
    Drew D A, Lahey T J. The virtual mass lift force on sphere in a rotating and straininginviscid flow. International Journal of Multiphase Flow.1987,13:113-121.
    Drew D A. Average Field Equations for two-phase Media. Stu Appl Math,1971,50:133-166.
    Drew D A. Mathematical modeling of two-phase flow. Ann Rev Fluid Mech,1983,15:261-291.
    Drumheller D S, Bedford A. A thermomechanical theory for reacting immiscible mixtures.Arch Rational Mech Anal,1980,73:257-284.
    Du Toit C, Sleath J F A. Velocity measurements close to ripple beds in oscillatory flow.Journal of Fluid Mechanics,1981,112:71-96.
    Dumas S, Arnott R, Southard J B. Experiments on oscillatory-flow and combined-flow bedforms: Implications for interpreting parts of the shallow-marine sedimentary record.Journal of Sedimentary Research,2005,75(3):501–513.
    Einstein H A, Ning Chien. Effects of sedimente concentration near the bed on the velocityand sediment distribution. M.R.D. Sedement Series No.8Missouri River Div., Corps.Engrs.,1955:76.
    Einstein H A. The bed load function for sediment transport in open channel flows. UniteStates Department of Agriculture, Report No.1026,1950.
    Elghobashi S E. On predicting particle-laden turbulent flows. Applied Scientific Research,1994,52:309-329.
    Elghobashi S E, Abou-Arab T W. A two-equation turbulence model for two-phase flows.Phys Fluids,1983,26(4):931-938.
    Emily A, Robert L. Sediment Transport over Ripples in Oscillatory Flow. Journal ofHydraulic Engineering,2006,132(2):180-193.
    Engelund F, Fredsoe J. A sediment transport model for straight alluvial channels. NordicHydrology,1976,7:295-324.
    Fang H W, Wang G Q. Three-dimensional mathematical model of suspended-sedimenttransport. Journal of Hydraulic Engineering,2000,126(8):578-592.
    Faraci C, Foti E. Geometry, migration and evolution of small scale bedforms generated byregular and irregular waves. Coastal Engineering,2002,47(1):35-52.
    Felgueroso L C, Colominas L, Mosqueiar G, Nvaarrina F, Casteleiro M. On the Galekrinformulation of the smooth bed Particle hydrodynamics method International Jounral ofNumerical Method in Engineering,2004,60:1475-1512.
    Fernandez-Luque R. Erosion and transport of bed-load sediment. Ph.D.thesis, KRIPS ReproBV, Meppel, The Netherlands,1974.
    Fredsoe J, Andersen K H, Summer B M. Wave plus current over a ripple-covered bed.Coastal Engineering,1999,38(4):177-221.
    Fredsoe J, Deigaard R. Mechanics of coastal sediment transport.1992, World Scientific.
    Garcia M, Parker G. Entrainment of bed sediment into suspension. Journal of HydraulicEngineering,1991,117(4):414-435.
    Ge W, Li J, in Circulating Fluidized Bed Technology V (eds. Kwauk M, Li J), SciencePress, Beijing,1996:260-266.
    Gonzalez-Rodriguez D, Madsen O S. Seabed shear stress and bedload transport due toasymmetric and skewed waves. Coastal Engineering,2007,54:914-929.
    Gotoh H, Sakai T. Lagrangian Simulation of Breaking Waves Using Particle Method.Coastal Engingeering Jounral,1999,41, Nos.3&4:303-326.
    Gotoh H, Shibahara T, Skaai T. Sub-particle-scale turbulence model for the MPSmethod-Lagrangian flow model of Hydraulic Engineering. Computational FluidDynamies Jornal,2001,9(4):339-347.
    Graf W H,Cellino M. Suspension flows in open channels; experimental study. Journal ofHydraulic Research,2002,40(4):435-447.
    Grant W D, Madsen O S. Movable bed roughness in unsteady oscillatory flow. Journal ofGeophysical Research,1982,87(C1):469-481.
    Gray G W, Lee P C, On the theorems for local volume averaging of multiphase systems.International Journal of Multiphase Flow,1977,3:333-340.
    Hagatun K, Eidsvik K J. Oscillating turbulent boundary layers with suspended sediment.Journal of Geophysical Research,1986,91(C11):13045-13055.
    Han Q W. A study of the non-equilibrium transportation of non-uniform suspended load.Chinese Sci Bull,1979,17(7):804-808.
    Hansen E, Fredsoe J, Deigaard R. Distribution of suspended sediment over wave-generatedripples. Journal of Waterway, Port, Coastal and Ocean Engineering,1994,120(1):37-55.
    Hassan W N M, Ribberink J S. Modelling of sand transport under wave-generated sheetflows with a RANS diffusion model. Coastal Engineering,201,57:19-29.
    Hassan W N M, Ribberink J S. Transport processes of uniform and mixed sands inoscillatory sheet flow. Coastal Engineering,2005,52:745-770.
    Hino M, Kashiwanayagi M, Nakayama A, Hara T. Experiments on the turbulence statisticsand the structure of a reciprocating oscillatory flow. Journal of Fluid Mechanics,1983,131:363-400.
    Hinze J O. Turbulence. NewYork: McGraw-Hill,1975.
    Hjelmfelt A T, Lenau C W. Nonequilibrium transport of suspended sediment, J. Hydr. Div.,ASCE,1970,96(7):1567-1586.
    Hoefel F, Elgar S. Wave-induced sediment transport and sandbar migration. Science299,2003:1885-1887.
    Homma M, Horikawa K, Kajima R A. Study on suspended sediment duo to wave action.Coast Engineering in Japan1965,8:85-103.
    Horikawa K, Watanabe A, Katori S. Sediment transport under sheet flow condition.Proceedings of the18th International Conference on Coastal Engineering,1982:1335-1352.
    Horikawa K, Watanabe A. A study on sand movement due to wave action. CoastalEngineering in Japan,1967,10:39-57.
    Horikawa K.1988. Nearshore dynamics and coastal processes. University of Tokyo Press.
    Hrenya C W, Sinclair J L. Effects of particle-phase turbulence in gas-solid flows. AIChEJ.,1997,43(4):853-869.
    Hsu T, Chang H, Hsieh C. A two-phase flow model of wave-induced sheet flow. Journal ofHydraulic Research,2003,41(3):299-310.
    Hsu T, Hanes D M. Effects of wave shape on sheet flow sediment transport. Journal ofGeophysical Research,2004,109, C05025, doi:10.1029/2003JC002075.
    Hsu T, Jenkins J T, Liu P. On two-phase sediment transport: sheet flow of massive particles.Proceedings, Royal Society of London A460,2004:2223-2250.
    Hunt J N. The turbulent transport of suspended sediment in open channels. Proceedings ofthe Royal Society London, Ser. A,1954,224:322-335.
    Hurst H E. The suspension of sand in water. Proceedings of the Royal Society London, Ser.A,1929,124:196-201.
    Ikeda S, Horikawa K, Nakamura H. Oscillatory boundary layer over a sand ripple model[J].Coastal Engineering in Japan,1991,(32):15-29.
    Ikeda S, Nishimura T. Bed topography in bends of sandsilt rivers. Journal of HydraulicEngineering,1985,111(11):1397-1411.
    Inman D L, Bowen A J. Flume experiments on sand transport by waves and currents.Proceedings of the8th International Conference on Coastal Engineering,1963,137-150.
    Ishii M. Thermo-Fluid Dynamics Theory of Two-Phase Flow. Paris: Eyrolles,1975.
    Jensen B L, Sumer B M, Fredsoe J. Turbulent oscillatory boundary layers at high Reynoldsnumbers. Journal of Fluid Mechanics,1989,206:265-297.
    Johns B. The form of the velocity profile in a turbulent shear wave boundary. Journal ofGeophysical Research,1975,80:5109-5112.
    Johnson I G, Massoudi M, Rajagopal K R. Flow of a fluid-solid mixture between flat plates.Chemical Engineering Science,1991,46(7):1713-1723.
    Jonsson I G. Measurement in the turbulent wave boundary layer. Proc10th Congr. IHAR,London,1963,1:85-92.
    Jonsson I G. Wave boundary layers and friction factors. Proceedings of the10thInternational Conference on Coastal Engineering,1966:127-148.
    Justesen P, Fredsoe J, Deigaard R. The bottleneck problem for turbulence in relation tosuspended sediment in the surf zone. Proceedings of the20th International Conferenceon Coastal Engineering,1986:1225-1239.
    Justesen P. Prediction of turbulent oscillatory flow over rough beds. Coastal Engineering,1988,12:257-284.
    Kajiura K. A model for the bottom boundary layer in water waves. Journal of FluidMechanics,1968,182:369-409.
    Kajiura K. On the bottom friction in an oscillatory current. Bull. Earthq. Res. Inst,1964,42:147-174.
    Katori S, Mizuguchi M, Watanabe A. A numerical model of sheet flow sediment transport.Proceedings of the25th International Conference on Coastal Engineering1996,1996:3818-3829.
    Kennedy J F, Falcon M. Wave generated sediment ripples. Report No.86, HydrodynamicsLaboratory, MIT, U.S.A.,1965.
    Kim H, O'Connor B A, Kim T H, William J J. Suspended sediment concentration overripples. Proceeding of the27th International Conference on Coastal Engineering,2000:2873-2885.
    Kim H, O'Connor B A, Shim Y. Numerical modelling of flow over ripples using SOLAmethod. Proceeding of the24th International Conference on Coastal Engineering,1994:2140-2154.
    Kos’yan R D. Vertical distribution of suspended sediment concentrations of seawards of thebreaking zone. Coastal Engineering,1985,9:171-187.
    Koshizuka S. Tamako H. Moving-particle semi-implicit method. Nuclear SeienceEngineering1996123:421-434.
    Koshizukar S, Nobe A, Oka Y. Numerical analysis of breaking waves using the movingparticle semi-implieit method. Intenrational Journal of Numerical Methods in Fluid.199826:751-769.
    Kuipers J A M, Hoomans B P B, van Swaaij W P M, in Fluidization IX (eds, Horio M, Knowlton T), Engineering Foundation, Colorado,1998:15-30.
    Lane E W, Kalinske A A. Engineering calculation of suspended sediment. Trans. Amer.Geophys. Union,1941:603-607.
    Lewis A W, Hitching E, Perrier G, Hansen E A, Earnshaw H, Eidsvik K, Greated C, SumerM, Temperville A. Flow over ripples: models and experiments. Proceedings of the2ndInternational Conference on Coastal Dynamics,1995:686–697.
    Li L, Sawamoto M. Multi-phase model on sediment transport in sheet-flow regime underoscillatory flow. Coastal Engineering in Japan,1995,38(2):157-178.
    Li M, Fernando P T, Pan S, O'Connor B A, Chen D. Development of a quasi-3d numericalmodel for sediment transport prediction in the coastal region. Journal ofHydro-environment Research,2007,1:143-156.
    Li M, Pan S, O'Connor B A. A two-phase numerical model for sediment transport predictionunder oscillatory sheet flows. Coastal Engineering,2008,55:1159-1173.
    Li, M. Micro-modeling of suspended sediment transport over bed forms.[Ph.D.]. TheUniversity of Liverpool. July2004:90.
    Lin B N, Huan J Q, Li X Q. Unsteady transport of suspended load at small concentrations.Journal of Hydraulic Engineering,1983,109(91):86-98.
    Lin B N, Falconer R. Numerical modeling of three-dimensional suspended sediment forestuarine and coastal water. Journal of Hydraulic Research,1997,34(4):435-456.
    Liu H, Sato S Modeling sediment movement under sheet flow conditions using a two-phaseflow approach. Coastal Engineering Journal,2005,47(4):255-284.
    Liu H, Sato S. A two-phase flow model for asymmetric sheet flow conditions. CoastalEngineering,2006,53:825-843.
    Lofquist K E B. Sand ripple growth in an oscillatory-flow water tunnel. Tech. Pap.78-5,Coastal Engineering Research Centre, USACE, U.S.A.,1978.
    Longo S. Two-Phase flow modeling of sediment motion in seet-fows above plane beds.Journal of Hydraulic Engineering,2005,131(5):366-379
    Longuet-Higgins M S. Oscillating flow over steep sand ripples. Journal of Fluid Mechanics,1981,107:1-35.
    Madsen O S. Sediment transport outside the surf zone. Technical Report. U.S. ArmyEngineering Waterways Experiment Station, Vicksburg, MS,1993.
    Madsen O S, Grant W D. Sediment Transport in the Coastal Environment. CoastalEngineering,1976:1-28.
    Malarkey J, Davies A G, Li Z. A simple model of unsteady sheet-flow sediment transport.Coastal Engineering,2003,48:171-188.
    Malarkey J, Davies A G. Discrete vortex modelling of oscillatory flow over ripples. AppliedOcean Research,2002,24:127-145.
    Malarkey J, Pan S, Li M, O'Donoghue T, Davies A G, O'Connor B A. Modelling andobservation of oscillatory sheet-flow sediment transport. Ocean Engineering,2009,36:873-890.
    Marble F E. Dynamics of a gas containing small solid particles. In Proc.5th AGARDCombustion and Propulsion Colloquium, Pergamon Press, London,1963.
    Marin F. Velocity and turbulence distributions in combined wave-current flowa over arippled bed. Journal of Hydraulic Research,1999,37:501-519.
    McLean S R, Ribberink J S, Dohmen-Janssen C M, Hassan W N. Sand transport inoscillatory sheet flow with mean current. ASCE Journal of Waterway, Port, Coastaland Ocean Engineering,2001,127(3):141-151.
    Mellor, G. Oscillatory bottom boundary layers. Journal of Physical Oceanography,2002,32:3075-3088.
    Melville W K, Bray K N C. A model of the two-phase turbulent jet. Int J Heat Mass Transfer,1979,22:647-656.
    Meyer-Peter E, Muller R. Formulas for bed-load transport. Rep2nd Meet. Int. Assoc.Hydraul. Struc. Res., Stockholm,1948:39-64.
    Mogridge G R, J W Kamphuis. Experiments on bed form generation by wave action.Proceedings of the13th International Conference on Coastal Engineering,1972:1123-1142.
    Murray J O. On the mathematics of fluidization, part1, Fundamental equations and wavepropagation. Journal Fluid Mechanics,21, part3,1965.
    Myrhaug D. On a theoretical model of rough turbulent wave boundary layers. OceanEngineering,1982,9(6):547-565.
    Nakagawa H, Tsujimoto T. Sand bed instability due to bed-load motion. Journal of theHydraulics Division,1980,106(12):2029-2051.
    Nakato T, Locher F A, Glover J R, Kennedy J F. Wave entrainment of sediment from rippledbeds. Journal of Waterway, Port, Coastal and Ocean Division, ASCE,1976,103(ww1):83-99.
    Nezu I, Rodi W. Open-channel measurements with a laser Doppler anemometer. Journal ofHydraulic Engineering,1986,112(5):335–355.
    Nielsen P, Callaghan D P. Shear stress and sediment transport calculations for sheet flowunder waves. Coastal Engineering,2003,47:347-354.
    Nielsen P, Teakle I A. Turbulent diffusion of momentum and suspended particles: A finitemixing length theory. Phys Fluids,2004,7:2342-2348.
    Nielsen P, van der W K, Gillan L. Vertical fluxes of sediment in oscillatory sheet flow.Coastal Engineering,2002,45,61-68.
    Nielsen P. Coastal bottom boundary layers and sediment transport. Singapore, WorldScientific Publishing,1992.
    Nielsen P. Sheet flow sediment transport under waves with acceleration skewness andboundary layer streaming. Coastal Engineering,2006,53:749-758.
    Nielsen P. Three simple models of wave sediment transport. Coast Engineering,1988,12:43-62.
    Nikora V I, Goring D G. Fluctuations of suspended sediment concentration and turbulentsediment fluxes in an open-channel flow. Journal of Hydraulic Engineering,2003,128(2):214-224.
    O’Brien M P. Review of the theory of turbulent flow and its relation to sediment transport.Trans Amer Geophys Union,1933.
    O’Donoghue T, Clubb G. Sand ripples generated by regular oscillatory flow. CoastalEngineering,2001,44(2):101–115.
    O'Connor B A, Pan S, Heron M, William J J, Voulgaris G, Silva A. Hydrodynamicmodelling of a dynamic inlet. Proceedings of the27th International Conference onCoastal Engineering,2000:3472-3481.
    O'Donoghue T, Doucette J S, van der Werf J J, Ribberink J S. The dimensions of sandripples in full-scale oscillatory flows. Coastal Engineering,2006,53:997-1012.
    O'Donoghue T, Wright S. Concentrations in oscillatory sheet flow for well sorted and gradedsands. Coastal Engineering,2004a,50:117-138.
    O'Donoghue T, Wright S. Flow tunnel measurements of velocities and sand flux inoscillatory sheet flow for well-sorted and graded sands. Coastal Engineering,2004b,51:1163-1184.
    Panton R. Flow properties for the continuum viewpoint of a non-equilibrium gas-particlemixture. Journal of Fluid Mechanics,1968,31:273-303.
    Parker G. Self-formed straight rivers with equilibrium banks and mobile bed. Part1: Thesand-silt river. Journal of Fluid Mechanics,1978,89(01):109-125.
    Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: Hemispher.1980.
    Pedocchi F, Garcia M H. Ripple morphology under oscillatory flow:1. Prediction. Journalof Geophysical Research,2009a,114(C12), doi:10.1029/2009JC005354.
    Perrier G. Numerical modelling of the transport of non-cohesive sediments by waves andcurrents over a rippled bed.[Ph.D.], Department Laboratory National D'Hydraulique,1996.
    Picart A, Berlemont A, Gouesbet G. Modelling and predicting turbulence fields and thedispersion of discrete particles transported by turbulent flows. International Journal ofMultiphase Flow,1986,12:237-261.
    Puleo J A, Holland K T, Plant N G, Slinn D N, Hanes D M. Fluid acceleration effects onsuspended sediment transport in the swash zone. Journal of Geophysical Research,2003,108(C11),3350. doi:10.1029/2003JC001943.
    Ranasoma K, Sleath J F A. Velocity measurements close to rippled beds. Proceedings of the23rd International Conference on Coastal Engineering,1992:2383-2396.
    Ribberink J S, Al-Salem A A. Sediment transport in oscillatory boundary layers in cases ofrippled beds and sheet flow. Journal of Geophysical Research,1994,99(C6):12707-12727.
    Ribberink J S, Al-Salem A A. Sheet flow and suspension of sand in oscillatory boundarylayers. Coastal Engineering,1995,25:205-225.
    Ribberink J S, Al-Salem A A. Time dependent sediment transport phenomena in oscillatoryboundary layer flow under sheet flow conditions. Technical Report H840,20, Part IV,Delft Hydraulics,1992.
    Ribberink J S, Chen Z. Sediment Transport of Fine Sand under Asymmetric OscillatoryFlow. Report H840, Part VII. Delft Hydraulics, The Netherlands,1993.
    Ribberink J S. Bed-load transport for steady flows and unsteady oscillatory flows. CoastalEngineering,1998,34:59-82.
    Richardson J F, Zaki W N. Sedimentation and fluidization (Part1). Trans. IChE,1954,32(1):35-53.
    Rouse H. Modern conceptions of the mechanics of turbulence. Trans. ASCE.,1937,102:436-505.
    Roux J P Le. Wave friction factor as related to the Shields parameter for steady currents.Sedimentary Geology,2003,155:37-43.
    Rubey W W. Settling velocities of gravel, sand and silt particles. Am. J. Sci,1993,25(148):325-338.
    Ruessink B G, van den Berg T J J, van Rijn L C. Modeling sediment transport beneathskewed asymmetric waves above a plane bed. Journal of Geophysical Research,2009,114, C11021, doi:10.1029/2009JC005416.
    Sana A, Tanaka H, Yamaji H, Kawamura I. Hydrodynamic behavior of asymmetricoscillatory boundary layers at low Reynolds numbers. Journal of HydraulicEngineering,2006,132(10):1086-1096.
    Sato S, Horikawa K. Laboratory study on sand transport over ripples due to asymmetricoscillatory flows. Proceedings of the20th International Conference on CoastalEngineering,1986:1481-1495.
    Sato S, Mimura N, Watanabe A. Oscillatory boundary layer flow over rippled beds.Proceedings of the19th International Conference on Coastal Engineering,1984:2293-2309.
    Sato S. Geometry of sand ripples and net sand transport rate due to regular and irregularoscillatory flows[J]. Coastal Engineering in Japan,1988,(30):90-98.
    Savell I A. An experimental study of near-bed hydrodynamics under a combination of wavesand steady current and the effects of this on sediment transport.[Ph.D.] Department ofEngineering, The University of Manchester.,1986.
    Savioli J, Justesen P. Sediment in oscillatory flow over flat beds. J Hydr Div ASCE,1987,113:308-322.
    Savioli J, Justesen P. Sediment in oscillatory flows over a plane bed. Journal of HydraulicResearch,1997,35(2):177-189.
    Sawamoto M. Stability theory of sand ripples due to wave action. Coastal Engineering InJapan,1986,(29):120-128.
    Schiller L, Naumann A. A Drag Coefficient Correlation. Z. Ver. Deutsch. Ing.,1935,77:318.
    Silva P A, Temperville A, Seabra Santos F. Sand transport under combined current and waveconditions: a semi-unsteady, practical model. Coastal Engineering,2006,53:897-913.
    Sleath J F A. Measurements of bed load in oscillatory flow. Journal of the Waterway, Port,Coastal and Ocean Division,1978,104(4):291-307.
    Sleath J F A. Turbulent oscillatory flow over rough beds. Journal of Fluid Mechanics,1987,182:369-409.
    Sleath J F A. Measurement of bed load in oscillatory flow, J. Waterw., Port Coastal OceanDiv. Am. Soc. Civ. Eng.,104(ww3),1978:291-307.
    Sleath J F A. Ripple geometry under serve wave condition. Proceedings of the27thInternational Conference on Coastal Engineering,2000:2686-2699.
    Sleath J F A. Sea Bed Mechanics. Wiley Interscience Publication,1984.
    Sleath J F A. Turbulent oscillatory flow over rough beds. Journal of Fluid Mechanics,1987,182:369-409.
    Sleath J F A. Friction coefficients of rippled beds in oscillatory flow. Continental ShelfResearch,1982,1(1):33-47.
    Sleath J F A. Sea Bed Mechanics. Wiley Interscience Publication,1984.
    Smith J D, Mclean S R. Spatially averaged flow over wavy surface. Journal of GeophysicalResearch,1977,82(12),1735-1746.
    Spalding D B, Computer simulation of two-phase flows, with special reference tonuclear-reactor system, In: Computational Techniques in Heat Transfer (Edited byLewis R W, Morgan K, Johnson J A,et al), Pineridge press,1985:1-44.
    Staub C, Jonsson I G, Svendsen I A. Sediment suspension in oscillatory flow: measurementsof instantaneous concentration at high shear. Coastal Engineering,1996,27:67-96.
    Steetzel H J. Sediment suspension under oscillatory wave conditions just above the sand bed.MSc. Thesis, Coastal Engineering Department, Delft University of Technology, TheNetherland.1984.
    Sumer B M, Kozakiewicz A, Fredsoe J, Deigaard R. Velocity and concentration profiles insheet-flow layer of movable bed. Journal of Hydraulic Engineering,1996,122(10):549-558.
    Tam C K W. The drag on a cloud of spherical particles in low Reynolds number flow.Journal of Fluid Mechanics,1969,38:537-546.
    Tanaka S, Sugimoto S. On the distribution of suspended sediment in experimental flumeflow-memories of the faculty of engieering. Kobe University, Japan,1958.
    Thorne P D, Williams J J, Davies A G. Suspended sediments under waves measured in alarge-scale flume facility. Journal of Geophysical Research,2002,107(C8),doi:10.1029/2001JC000988.
    Thowbridge J H, Madsen O S. Turbulent wave boundary layers: Model formation and firstorder solution. Journal of Geophysical Research,1984a,89(C5):7989-7998.
    Thowbridge J H, Madsen O S. Turbulent wave boundary layers: Second order theory andmass transport. Journal of Geophysical Research,1984b,89(C5):7999-8007.
    Tsujimoto G, Hayakawa N, Ichiyama M, Fukushima Y, Nakamura Y. A study on suspendedsediment concentration and sediment transport mechanism over rippled sand bed usinga turbulence model. Coastal Engineering in Japan,1991,34(2):177-189.
    van der A D A, O’Donoghue T, Ribberink J S. Measurements of sheet flow transport inacceleration-skewed oscillatory flow and comparison with practical formulations.Coastal Engineering,2010,57:331-342.
    van der Werf J J, Doucette J S, O’Donoghue T, Ribberink J S. Detailed measurements ofvelocities and suspended sand concentrations over full-scale ripples in regularoscillatory flow. Journal of Geophysical Research,2007,112(F2),doi:10.1029/2006JF000614.
    van der Werf J J, Magar V, Malarkey J, Guizien K, O'Donoghue T.2DV modelling ofsediment transport processes over full-scale ripples in regular asymmetric oscillatoryflow. Continental Shelf Research,2008,28:1040-1056.
    van Rijn L C, Davies A G, van de Graaff J, Ribberink J S. SEDMOC: Sediment transportmodelling in marine coastal environments. Delft, The Netherlands, Aqua Publications,2000.
    van Rijn L C. Entrainment of fine sediment particles: development of concentration profilesin a steady, uniform flow without initial sediment load. Rep. No. M1531, Part II, DelftHydraulic Laboratory, Delft, Netherlands,1981.
    van Rijn L C. Principles of sediment transport in rivers, estuaries and coastal seas.Amsterdam: Aqua Publications,1993.
    van Rijn L C. Sediment pick up functions. Journal of Hydraulic Engineering,1984a,110(10),1494-1502.
    van Rijn L C. Sediment transport. Part2: Suspendedload transport. Journal of HydraulicEngineering,1984b,110(11):1613-1641.
    Villaret C, Perrier G. Transport of fine sand by combined waves and current: Anexperimental study. Report No. E4202R, Direction Des Estudes et Recherches,Electricite de France, France.1992.
    Viollet P L, Simonin O. Modelling dispersed two-phase flows: Closure, Validation andsoftware development. Appl Mech Rev,1994,47(6), part2:80-84.
    Wang Z B, Ribberink J S. The validity of a depth-integrated model for suspended sedimenttransport. Journal of Hydraulic Research,1986,24(1):53-63.
    Watanabe A, Sato S. A sheet-flow transport rate formula for asymmetric forward-leaningwaves and currents. Proceedings,29th International Conference on CoastalEngineering,2004:1703-1714.
    Williams J J, Bell P S. Observed and predicted vertical suspended sediment concentrationprofiles and bedforms in oscillatory flow. Journal of Coastal Research,2000,16(3):698-708.
    Williams J J, Bell P S, Thorne P D, Metje N, Coates L E. Measurement and prediction ofwave-generated suborbital ripples. Journal of Geophysical Research,2004,109(C2),doi:10.1029/2003JC001882.
    Wilson K C. Friction of wave-induced sheet flow. Coastal Engineering,1989,12(4),371-379.
    W rner M. A Compact Introduction to the Numerical Modeling of Multiphase Flows,Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany,2003.
    Wright S, Parker G. Flow resistance and suspended load in sand-bed rivers:Simplified stratification model. Journal of Hydraulic Engineering,2004,130(8):796-805.
    Yalin M S. Mechanics of sediment transport,2nd Edition. Pergamon Press, Oxford, England,1977.
    Yamashita T, Sawamoto M, Takeda H, Yokomori G. A study on oscillatory flow and sediment transport at sheet-flow condition, Proceedings, Japanese Conference on Coastal Engineering, JSCE,1985:297-301.(in Japanese)
    Youemura S, Tanaka T, Tsuji Y. In Gas-Solid Flows, ASME,1993,166:303-309.
    Zala-Flores N, Sleath J. Mobile layer in oscillatory sheet flow. Journal of Geophysical Research,1998,103(C6),12:783-793.
    Zheng Y, Wan X T, Qian Z. Numerical simulation of the gas-particle turbulent flow in riser reactor based on k-ε-kp-εp-θ two-fluid model. Chem. Eng. Sci,2001,56(24):6813-6822.
    Zhong D, Wang G, Ding Y. Bed sediment entrainment function based on kinetic theory. Journal of Hydraulic Engineering,2011,137(2):222-233.
    Zhou J J, Lin B N. One-dimensional mathematical model for suspended sediment by lateral integration. Journal of Hydraulic Engineering,1998,124(7):712-717.
    Zyserman J A, Fredsoe J. Data analysis of bed concentration of suspended sediment. Journal of Hydraulic Engineering,1994,120(9):1021-1042.
    蔡飞鹏.催化裂化提升管进料混合段内气固两相流动的数值模拟与实验研究。北京:石油大学机电学院,2004.
    蔡树棠,范正翘,陈越南。两相流基本方程。应用数学和力学,1986,7(6):477-485.
    曹志先,张效先,习和忠.基于湍流猝发的明渠流悬沙浓度分布.水利学报,1997,2:52-57.
    曹祖德,李蓓,孔令双.波流共存时的水体挟沙力.水道港口,2001,12:151-155.
    陈景仁[美]著,臧团才,刘希云,戴有为等译.湍流模型及有限元分析法。上海:上海交通大学出版社.1989:16-27.
    陈天翔.多相流体力学的场方程及其平均.力学进展,1986,16(4):482-494.
    窦国仁,董风舞.潮流和波浪的挟沙能力.科学通报,1995,3:443-446.
    窦国仁.潮汐水流中的悬沙运动及其淤积计算.水利学报,1963,4:11-20.
    窦国仁.紊流力学(下册).北京:高等教育出版社,1987.
    傅旭东,王光谦.低浓度固液两相流的颗粒相动理学模型.力学学报.2003,35(6):650-659.
    蒋昌波,白玉川,赵子丹,张红武.波浪作用下涡动沙纹床面的悬沙运动数值研究.水利学报,2003,3:93-103.
    李丹勋.悬移质颗粒运动特性的研究[博士论文].被京:清华大学水利水电工程系,1999.
    李勇.基于固液两相紊流理论的近岸悬移质泥沙运动数值研究[博士论文].北京:清华大学水利水电工程系.2007.
    林鹏,陈立.低含沙水流紊动结构的实验研究.水动力学研究与进展,2003,3:209-216.
    刘大有.从二相流方程出发研究平衡输沙一扩散理论和泥沙扩散系数的讨论.水利学报,1995,4:62-67.
    刘大有.二相流体动力学.北京:高等教育出版社,1993.
    刘大有.建立两相流方程的动力论方法.力学学报,1987,5:213-221.
    刘大有.现有泥沙理论的不足和改进一扩散模型和费克定律适用性的讨论.泥沙研究,1996,3:39-45.
    刘峰,李义天.新的水流挟沙力计算公式.长江科学院院报,1997,3:16-20.
    刘建军.明渠水流含沙量沿垂线分布研究.泥沙研究,1996,6(2):105-108.
    倪晋仁,惠遇甲.悬移质浓度垂线分布的各种理论及其问关系.水利水运科学研究,1988,1:83-95.
    倪晋仁,王光谦,张红武.固液两相流基本理论及其最新应用.北京:科学出版社,1991.
    钱宁,万兆惠.泥沙运动力学.北京:科学出版社,1983.
    全忠青.N-S方程的数值解和紊流模型.河海大学出版社,1989.
    邵学军,夏震寰.悬浮颗粒紊动扩散系数的随机分析.水利学报,1990,10:32-40.
    陶文铨.数值热传学.第二版.西安交通大学出版社,2001.
    王建峰.波流共同作用下悬沙浓度垂向分布的研究[硕士论文].天津:天津大学建筑工程学院,2004.
    王尚毅.波浪作用下含沙量的垂向分布.中国科学A辑,1984,12:1151-1160.
    王兴奎.悬移质泥沙运动及其对水流结构的影响[博士论文].北京:清华大学水利水电工程系,1985.
    严冰,张庆河.波浪作用下悬沙浓度垂线分布的研究.泥沙研究,2006,10(5):63-68.
    于勇.两相流动气体湍流变动模型和稠密两相湍流模型的研究[博士论文].北京:清华大学工程力学系,2004.
    赵子丹.波浪作用下的泥沙起动.海洋通报,1983,2:75-79.
    周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700