用户名: 密码: 验证码:
微圆管内水流动特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对水在圆形不锈钢微通道内的流动特性进行了实验研究,研究内容包括:进口段效应、粗糙度效应、超疏水微通道内的滑移减阻特性,还进行了超疏水不锈钢表面的制备研究。
     通过对一系列不同长径比微通道内水流动特性的研究对比,考察了进口段效应的影响。实验发现,层流向湍流的转变的临界雷诺数Re与常规理论一致.由于流动特性同时还受到受粗糙度效应的影响,所以当进口段效应可以忽略时,泊谡叶数Po的稳定值随Re的升高而增大。内径1.050mm、0.850mm、0.550mm圆管内层流流动特性受进口段效应影响的最大长径比分别约为280、290、400。受进口段效应影响的层流区泊谡叶数Po值和文献报道的理论公式及经验关联式进行了比较,与经验关联式的吻合程度好于理论公式.
     通过化学刻蚀法得到了具有较大粗糙度的不锈钢微圆管,研究了粗糙度对流动特性的影响。刻蚀后微圆管最大相对粗糙度为0.663%,所有刻蚀后微圆管内层流向湍流转变的临界雷诺数仍与常规理论一致.实验结果表明,Po随管壁相对粗糙度的增大而升高,并且粗糙度的影响在高Re下更显著。在相对粗糙度最大的微通道内,层流流动阻力较常规理论值最大增加约32%。对微尺度下粗糙度效应使层流流动阻力升高的机理进行了分析。
     采用化学刻蚀和表面氟化两步法在不锈钢平板上制备了超疏水表面。在制备的超疏水表面上,水滴的接触角可达到163°,接触角滞后为4°。分析表明,在不锈钢表面刻蚀形成的微—纳米相间的阶层粗糙结构是形成超疏水表面的关键.通过对实验条件和工艺的改进,在不锈钢微通道内壁上制备出了超疏水表面:同时制备了具有超亲水内表面的不锈钢微通道.
     对比了超亲水和超疏水表面不锈钢微通道内水的流动特性。结果表明,超疏水表面微通道内流动阻力较低,在实验范围内减阻率为8%~31%,减阻率随着Re的增大而下降并最终达到较稳定值。对这一现象的物理机制进行了分析。超疏水微通道内水流动的滑移长度也是Re的函数,最大滑移长度达到63μm。利用粗糙度一粘度模型修正了作为超疏水管内滑移参照的亲水管内流动阻力和传统理论值的偏差;然后从理论上推导了超疏水微通道内达西摩擦系数和滑移长度间的关系;最后,利用实验结果检验了所推导的关系式,两者吻合良好。
Water flow characteristics in circular stainless steel micro-tubes were experimentally studied.In this paper,emphasises are put on entrance effect,roughness effect,flow resistance reduction and slip flow characteristics in a superhydrophobic micro-tube as well as fabrication of stainless steel superhydrophobic surfaces.
     Water flow characteristics in micro-tubes with different length-to-diameter ratio were measured to study the entrance effect.It is found that the critical Reynolds number(Re),at which the transition from laminar flow to turbulent flow starts,is consistent with traditional theory.The steady value of Poiseuille number(Po) increases with increasing Re when the entrance effect can be negligible,which is caused by the surface roughness effect.The maximal length-to-diameter ratios,within which entrance effect reacts in laminar flow region,for micro-tubes with inner-diameters of 1.050 mm、0.850 mm、0.550 mm are about 280,290 and 400,respectively.Poiseuille number Po affected by entrance effect was compared with theoretical and experiential correlation predictions from literatures.The quantitative agreement between the experimental values of Po with the latter is better than that with the former.
     Micro-tubes with larger relative surface roughness were obtained with solution of chemical etching,and then the roughness effect on flow characteristics was studied.The largest relative surface roughness of etched microtubes is 0.663%,the critical flow region transition Re for all the etched microtubes is consistent with traditional theory.It is found that Po increases with increasing the relative roughness of tube-wall,and the roughness effect is more remarkable in high Re flow region.In laminar flow region,the flow resistance increases by 0%~32%compared with traditional theory for the microtube with the largest relative surface roughness.The mechanism for roughness effect on the flow resistance is analyzed.
     Superhydrophobic stainless steel surfaces were fabricated with chemical etching and then fluorination treatment.The water contact angle on superhydrophobic stainless steel surface is 163°,and the contact angle hysteresis is 4°.It is found that,the etched surface is configured in a rough structure with protuberances and caves at the scale of microns and nanometers,which is the key to the fabrication of superhydrophobic surface. Superhydrophobic stainless steel micro-tubes were then fabricated by ameliorating preparation technology and experimental conditions based on the studies above.
     Water flow characteristics in a superhydrophilic and a superhydrophobic micro-tube were compared.It is found that the latter reduces the flow resistance compared with the former.And the pressure drop reduction varies from 8%to 31%within the operating range. The pressure drop reduction first decreases with increasing Re then levels off to a certain value.And the mechanism for this phenomenon is analyzed.Slip lengths for water flowing in the superhydrophobic micro-tube were obtained by referencing the superhydrophilic microtube.The slip length depends on Re and the maximal slip length is 63μm.The roughness-viscosity model is adopted to considering the departure between the flow characteristics in the superhydrophilic microtube and traditional theory.Then the relation between Darcy friction factor and slip length is theoretically analyzed.Finally,the obtained correlation is testified with present experimental result,and the quantitative agreement between them is well.
引文
[1]Ho C M,Tai Y C.Micro-Electro-Mechanical-System(MEMS) and fluid flows[J].Annu.Rev.Fluid Mech.,1998,30:579-612.
    [2]梅涛,孔德义,张培强,等.微电子机械系统的力学特性与尺度效应[J].机械强度,2001,23(4):373-379.
    [3]周兆英,叶雄英,李勇,等.微流量系统的基础技术研究[J].中国机械工程,1999,10(9):991-993.
    [4]陈光文,袁权.微化工技术[J].化工学报,2003,54(4):427-439.
    [5]Guo Z Y,Li Z Y.Size effect on single-phase channel flow and heat transfer at microscale[J].Int.J.Heat Fluid Flow,2003,24:284-298.
    [6]过增元.国际传热研究前沿-微细尺度传热学[J].力学进展,2000,30(1):1-6.
    [7]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,22(5):575-577.
    [8]Chen W L,Twu M C,Pan C.Gas-liquid two-phase flow in micro-channels[J].Int.J.Multiphase Flow,2002,28:1235-1247.
    [9]Chung P M-Y,Kawaji M.The effect of diameter on adiabatic two-phase flow characteristics in microchannels[J].Int.J.Multiphase Flow,2004,30:735-761.
    [10]Voronov R S,Papavassiliou D V,Lee L L.Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle[J].Ind.Eng.Chem.Res.,2008,47(8):2455-2477.
    [11]傅玉普,郝策,蒋山.多媒体CAI物理化学[M].大连:大连理工大学出版社,2004.
    [12]Pfahler J,Harley J,Bau H.Liquid transport in micronand submicron channels[J].Sens.Actuators,1990,A21-23:431-434.
    [13]Jiang P X,Fan M H,Si G S,et al.Thermal-hydraulic performance of small scale micro-channel and porous-media heat exchangers[J].Int.J.Heat Mass Transfer,2001,44:1039-1051.
    [14]Schiller L.Die entwicklung der laminaren geschwindigkeitsverteilung und ihre bedeutung furahigkeitsmessungen[J].Z.Angew.Math.Mech.,1922,2:96-106.
    [15]Han L S.Hydrodynamic entrance lengths for incompressible laminar flow[J].J.Appl.Mech.,1960,82:403-409.
    [16]Han L.S,Cooper A L.Approximate solutions of two internal flow problems-solutions by an integral method[C].Proceding of the 4th U.S.National Congress Appllied Mechanics,America,1962:1269-1278.
    [17]Lunderen T S,Sparrow E M,Sfarr J B.Pressure drop to the entrance region in ducts of arbitrary cross section[J].J.Basic Eng.,Transaction of ASME,1964,86(D):620-626.
    [18]Fleming D P,Sparrow E M.Flow in the hydrodynamic entrance region of ducts of arbitrary cross section[J].J.Heat Transfer,Transaction of ASME,1969,91:345-354.
    [19]Carlson G A,Hornbeck R W.A numerical solution for laminar entrance flow in a square duct[J].J.Appl.Mech.,Transaction of ASME,1973,40(1):25-30.
    [20]Mohanty A K,Asthana S B L.Laminar flow in the entrance region of a smooth pipe [J].J.Fluid Mech.,1978,90:433-446.
    [21]丁忠满,王致清.幂律流体两平行圆板间径向扩散层流进口段流动阻力的分析[J].力学学报,1994,26(3):368-373.
    [22]王补宣.圆管进口段层流边界层发展区的流动阻力[J].力学学报,1963,6(1):38-52.
    [23]Zhu S X,Wang Z Q.A study on flow resistance in the entrance region of isosceles triangular ducts[J].Appl.Math.Mech.,1993,14(9):837-852.
    [24]祝世兴,高德,王致清.任意三角形管道层流进口段流动阻力研究[J].水动力学研究与进展A辑,1998,8:508-517.
    [25]Sparrow E M,Lin S H.Flow development in the hydrodynamic entrance region of tubes and ducts[J].Phys.Fluids,1964,7:338-347.
    [26]Langhaar H L.Steady flow in the transition length of a straight tube[J].J.Appl.Mech.,1942,9:A55-58.
    [27]Shapiro A H,Smith R D.Friction coefficient in the inlet length of smooth round tubes[J].NACA TN,1948:1785.
    [28]#12
    [29]#12
    [30]Renksizbulut M,Niazmand H.Laminar flow and heat Transfer in the entrance region of trapezoidal channels with constant wall temperature[J].J.Heat Transfer,2006,128:63-74.
    [31]Mishan Y,Mosyak A,Pogrebnyak E,et al.Effect of developing flow and thermal regime on momentum and heat transfer in micro-scale heat sink[J].Int.J.Heat Mass Transfer,2007,50:3100-3114.
    [32]Gao P,Person L S,Favre-Marinet M.Scale effects on hydrodynamics and heat transfer in two dimensional mini and microchannels[J].Int.J.Them.Sci.,2002,41:1017-1027.
    [33]魏珍,吴慧英,吴信宇.水/乙醇混合工质在硅基微通道中的流动与换热[J].化工学报,2008,59(11):2706-2712.
    [34]Campbell L A,Kandlikar S G.Effect of entrance condition on frictional losses and transition to turbulence in conventional and minichannel flows[J].Therm.Sci.Eng.,2004,12(6):1-12.
    [35]Goldstein S.Modern developments in fluid dynamics[M].Oxford University Press,1938.
    [36]Drew T B,Koo E C,Mcadams W n.The friction factor for clean round pipes[J].Transaction of American Institute of Chemical Engineers,1932,28:56-72.
    [37]Kemler E A.Study of the data on the flow of fluids in pipes[J].Transaction of ASME,1933,55(2):7-32.
    [38]Pigott R J.The flow of fluids in closed conducts[J].Mech.Eng.,1933,55:497-501,515.
    [39]Nikuradse J著,张瑞瑾 译.粗糙管中水的流动规律[M].北京:水力出版社,1957.
    [40]Colebrook C F.Turbulent flow in pipes,with particular reference to the region between the smooth and rough pipe laws[J].J.Inst.Civ.Eng.,1939,11(4):133-156.
    [41]Moody L F.Friction factors for pipe flow[J].Transaction of ASME,1944,66:671-684.
    [42]Hetsroni G,Mosyak A,Pogrebnyak E,et al.Fluid flow in micro-channels[J].Int.J.Heat Mass Transfer,2005,48(10):1982-1998.
    [43]Mala G M,Li D.Flow characteristics of water in microtubes[J].Int.J.Heat Fluid Flow,1999,20(2):142-148.
    [44]Judy J,Maynes D,Web W B.Liquid flow pressure drop in microtubes[C].International Conference on Heat Transfer and Transport Phenomena in Microscale,Banff,Canada,2000:149-154.
    [45]Li Z X,Du D X,Guo Z Y.Experimental study on flow characteristics of liquid in circular micortubes[C].International Conference on Heat Transfer and Transport Phenomena in Microscale,Banff,Canada,2000:162-167.
    [46]Yang C Y,Chen H T,Lu S R,et al.Friction characteristics of water,R-134a and air in small tubes[C].International Conference on Heat Transfer and Transport Phenomena in Microscale,Banff,Canada,2000:168-174.
    [47]Qu W,MaIa M,Li D.Pressure-driven water flows in trapezoidal silicon microchannels[J].Int.J.Heat Mass Transfer,2000,43(3):353-364.
    [48]Jiang P X,Fan M H,Si G S,et al.Thermal hydraulic performance of small scale micro-channel and porous--media heat exehangers[J].Int.J.Heat Mass Transfer,2001,44(5):1039-1051.
    [49]Hergab H E,Bari A,Ameel T.Friction and convection studies of R-134a in microchannels within the transition and turbulent flow regimes[J].Exp.Heat Transfer,2002,15(4):45-259.
    [50]Gao P,Peterson S L,Favre-Marinet M.Scale effects on hydrodynamics and Heat transfer in two-dimensional mini and microchannels[J].Int.J.Ther.Sci.,2002,41(11):1017-1027.
    [51]Li Z X,Du D X,Guo Z Y.Experimental study on flow characteristics of liquid in circular microtubes[J].Microscale Thermophys.Eng.,2003,7(3):253-265.
    [52]Herjak P.The single phase pressure drop in microchannels[J].Int.J.Heat Fluid Flow,2007,28(1):2-14.
    [53]Churchill S W.Friction factor equations spands all fluid-flow regimes[J].Chem.Eng.,1977,11:91-92.
    [54]辛明道,师普生.微矩形槽道内的受迫对流换热性能实验[C].中国工程热物理学会第八届年会,北京,1992.
    [55]张培杰,辛明道.微尺寸管内流体流动与换热[C].中国工程热物理学会第八届年会,北京,1992.
    [56]蒋洁,郝英立,施明恒.矩形微通道中流体流动阻力和换热特性实验研究[J].热科学与技术.2006,5(3):189-194.
    [57]谢永奇,余建祖,赵增会,等.矩形微槽内FC-72的单相流动和换热实验研究[J].北京航空航天大学学报,2004,30(8):739-743.
    [58]徐绍良,岳湘安,侯吉瑞.去离子水在微圆管中流动特性的实验研究[J].科学通报,2007,52(1):120-124.
    [59]Wenzel R N.Resistance of solid surfaces to wetting by water[J].Ind.Eng.Chem.,1936,28:988-994.
    [60]Cassie A,Baxter S.Wettability of porous surfaces[J].Trans.Faraday Soc.,1944,40:546-551.
    [61]Patankar N A.On the modeling of hydrophobic contact angles on rough surfaces[J].Langmuir,2003,19(4):1249-1253.
    [62]Johnson R E,Dettre R H.Contact angle hysteresis,Part Ⅰ.Study of an idealized rough surface[J].Adv.Chem.Ser.,1964,43:112-135.
    [63]王庆军,陈庆民.超疏水表面的制备技术及其应用[J].高分子材料科学与工程,2005,21(2):6-10.
    [64]Thompson A P,Troian S M.A general boundary condition for liquid flow at solid surfaces[J].Nat.,1997,389:360-375.
    [65]Granick S,Zhu Y X,Lee H.Slippery questions about complex fluids flowing past solids[J].Nat.Mater.,2003,2(4):221-227.
    [66]Lauga E,Brenner M P,Shone H A.Microfluidics:the no-slip boundary condition [M].Handbook of Experimental Fluid Dynamics,New York:Springer,2005.
    [67]Chiara N,Drew R.Boundary slip in Newtonian liquids:a review of experimental studies[J].Rep.Prog.Phys.,2005,.68:2859-2897.
    [68]Pit R,Hervet H,L(?)ger L.Direct experimental evidence of slip in hexadecane-solid interfaces[J].Phys.Rev.Lett.,2000,85:980-984.
    [69]Byun D,Kim J,Ko H S,et al.Direct measurement of slip flows in superhydrophobic microchannels with transverse grooves[J].Phys.Fluids,2008,20(11):113601.
    [70]Choi C-H,Westin K J A,Breuer K S.Apparent slip flows in hydrophilic and hydrophobic microchannels[J].Phys.Fluids,2003,15(10):2897-2902.
    [71]Tretheway D C,Meinhart C D.A generating mechanism for apparent fluid slip in hydrophobic microchannels[J].Phys.Fluids,2004,16(5):1509-1515.
    [72]Gennes P G de.On fluid/wall slippage[J].Langmuir,2002,18(9):3413-3414.
    [73]Tyrell J,Attard P.Images of nanobubbles on hydrophobic surfaces and their interactions[J].Phys.Rev.Lett.,2001,87:176104.
    [74]Ou J,Perot B,Rothstein J P.Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J].Phys.Fluids,2004,16(12):4635-4643.
    [75]Ou J,Rothstein J P.Direct velocity measurements of the flow past drag-reduction ultrahydrophobic surfaces[J].Phys.Fluids,2005,17(10):103606.
    [76]Lauga E,Stone H A.Effective slip in pressure-driven Stokes flow[J].J.Fluid Mech.,2003,489:55-77.
    [77]Choi C-H,Ulmanella U,Kim J,et al.Effective slip and friction reduction in nanograted superhydrophobic microchannels[J].Phys.Fluids,2006,18(8):087105.
    [78]Davies J,Maynes D,Webb B W,et al.Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs[J].Phys.Fluids,2006,18(8):087110.
    [79]Maynes D,Jeffs K,Woolford B,et al.Laminar flow in a microchannel with superhydrophobic surface patterned microribs oriented parallel to the flow direction[J].Phys.Fluids,2007,19(9):093603.
    [80]Ng C-O,Wang C Y.Stokes shear flow over agrating:implications for superhydrophobic slip[J].Phys.Fluids,2009,21(1):013602.
    [81]陈敏恒,丛德滋,方图南,等.化工原理[M].北京:化学工业出版社,2004.
    [82]陈天玉.不锈钢表面处理技术[M].北京:化学工业出版社,2004.
    [83]Li Z X,Du D X,Guo Z Y.Experimental study on flow characteristics of liquid in circular micro-tubes[C].International Conference on Heat Transfer and Transport Phenomena in Micro-scale,Banff,Canada,2000:162-167.
    [84]Wu H Y,Cheng P.An experimental study of convective heat transfer in silicon micro-channels with different surface conditions[J].Int.J.Heat Mass Transfer,2003,46(14):2547-2556.
    [85]周继军,申盛,徐进良,等.微槽道内单相流动阻力与传热特性[J].化工学报,2005,56(10):580-586.
    [86]Croce G,Paola D,Nonino C.Three-dimensional roughness effect on microchannel heat transfer and pressure drop[J].Int.J.Heat Mass Transfer,2007,50(25):5249-5259.
    [87]郝鹏飞,姚朝晖,何枫.粗糙微管道内液体流动特性的实验研究[J].物理学报,2007,56(8):4728-4733.
    [88]Kohl M J,Abdel-Khalik S I,Jeter S M,et al.An experimental investigation of microchannel flow with internal pressure measurements[J].Int.J.Heat Mass Transfer,2005,48(8):1518-1533.
    [89]赵丽冰,陈沛贤,陈六平,等.一个开放式研究性实验--不锈钢表面刻蚀[J].大学化学,2005,20(4):37-39.
    [90]Sugimura H,Hozumi A,Kameyama T,et al.Organosilane self-assembled monolayers formed at the vapour/solid interface[J].Surf.Interface Anal.,2002,34(1):550 - 554.
    [91]Zhang X H,Anthony Q,William A D.Nanobubbles at the interface between water and a hydrophobic solid[J].Langmuir,2008,24(9):4756-4764.
    [92]Bahadur V,Garimella S V.Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements[J].Langmuir,2009,25(8):4815-4820.
    [93]Watanabe K,Yanuar,Udagawa H.Drag reduction of Newtonian fluid in a circular pipe with a highly water repellent wall[J].J.Fluid Mech.,1999,381:225-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700