用户名: 密码: 验证码:
液体Poiseuille流动特征的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微尺度下流体的流动,在工业、生物工程及电子信息技术有着广泛的应用。近十几年来,随着微纳电子机械系统(MEMS/NEMS)和生物芯片等微纳米科学与技术的发展,微流动问题的研究日益受到人们的重视。微尺度下流体由于特征尺度小,其流动特征与宏观流相比有着很大的不同。目前,微流动的流动机制尚未弄清楚,在实际运用中也遇到许多问题,其中,流体在固体壁面的滑移及减阻问题显得尤为突出。润湿性是影响流体滑移的一个主要因素,由于目前缺少条件,我们还无法精确地测量其和界面滑移的关系。分子动力学作为分子模拟的一种方法,在微尺度条件下研究流体的流动方面,有着传统实验和理论方法无可比拟的优势。
     本论文在流体力学和分子动力学的基础上,研究在微尺度条件下润湿性对Poiseuille流的影响,主要工作如下:
     首先介绍了微流动的发展状况,微流动区别于与宏观流的特征;着重介绍了与研究内容有关的一些概念与模型,如润湿性、滑移、滑移长度及有关滑移的分子动力学研究现状;同时分析了流体流动的模型的建立过程,对这些物理模型进行理论计算和分析;比较详细地介绍了分子动力学模拟的基本原理、过程和方法。
     然后通过改变固液作用势中的能量参数来调节固壁表面的润湿性,采用分子动力学的方法模拟液氩液滴在不同润湿性平板上的静态形态,模拟出液滴在从疏水性平板到亲水性平板变化时润湿角的变化,结果与宏观计算结果相近。
     接着建立了平行板间的Poiseuille流模拟的模型,利用该模型模拟了平行板间液氩在外力作用和不同边界润湿性条件影响下的流动。分析了壁面的润湿性对流体的流速、流量和粒子的分布影响。计算的结果表明:在疏水性的情形下,易观察到速度滑移;反之,亲水性壁面附近的流体粒子有序层状分布,且粒子被吸附至壁面,形成黏附层。研究在亲水性不是很强时也可能出现小的滑移,其对流体流动影响很小。最后用解析法得到了在层流条件下,具有滑移边界条件下的平行板中流体流动的速度和流量公式,建立了微流动中速度及流量与滑移长度的关系,并与模拟结果作了比较。
     最后,论文考察润湿性对静态启动压力的影响。模拟的结果表明:流体流经强亲水性表面时,需要一个额外的力来克服由强亲水性表面所引起的阻力,即存在着启动压力。
The fluid flow in the micro channel has been widely applied in many fields such as industries, bio-engineering and electronic information technology. With the development of the micro/nano science and technology in recent ten years, such as MEMS/NEMS and biochips, the research in microscale is becoming more of concerns. Because the characteristic size is very small, the microfliud has great different flow characteristics from the macrofluid. At present, the mechanisms of microfliud flow are not yet clear, and some problems have been encountered many of in practices. Among the researches, the problems of the slippage and the drag reduction at a solid surface are especially important. We also still can't precisely measure the relationship between slippage and wettability which is a main factor to the micro-fliud because of lacking of conditions. Molecular Dynamics Simulation, as a methold of molecular simulation, has an incomparable advantages compared with traditional experimental and theoretical methods in studying microfliuds on microscale.
     In this paper, based on Fluid Mechanics and Molecular Dynamics Simulation, the influence of the wettability on the poiseuille flow on microscale were investigated as follows:
     Firstly, the developments of microflow and the differenct characteristics from macroflow were introduced; and some of the concepts and models related to the content of our research were emphasized, such as the wettability, the slippage, the slip length. The more detailed introduction was given to the basic principles, processes and methods of molecular dynamics simulations.
     Secondly, by using the Molecular Dynamics Simulation, the droplet static shape were simulated on different wettability panells.
     Then, Molecular Dynamics simulation was applied to study the phenomenon of the liquid argon flow between two parallel plane walls acted by the external force and different wettability boundaries. The effects of different wettability boundary to the liquid flow, the flow rate and the distribution of particles were investigated. The results show that it is easily observed the velocity slippage on the hydrophobic surface, while layered orderly distribution of the liquid particles near the hydrophilic surface. It was possible to have small slippage on the surface whose hydrophilic is not so strong, but has little effect on the flow. At last, by using analytic method, we got the velocity formula and flow rate formula of fluid between two parallel plate with the slip boundry in the case of the laminar flow. And the conclusions were compared with the simulation results.
     Finally the relationship between wettability and threshold pressure were investigated. The results of simulation show that the flow need a external force which was known as threshold pressure to overcome the resistance caused by the strong hydrobolic surface when theliquid flows through it.
引文
[1]周兆英,袁松梅,冯焱颖.纳米材料与器件[M].北京:清华大学出社,2002.
    [2]王沫然,李志信.基于MEMS的微流体机械研究进展.流体机械,2002,30(4):23-28.
    [3]Gad-el-Hak M. The fluid mechanics of microdevices-the scholar lecture. Journal of Fluids Engineering,1999,121:5-33.
    [4]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,22(5):575-577.
    [5]WHITBY M., QUIRKE N. Fluid flow in carbon nanotubes and nanopipes. Nature nanotechnology,2007,2:87-94.
    [6]谢种,樊箐,沈青.微槽道气体流动的统计模拟.计算物理,2002,9(5).
    [7]陈熙.动力论及其在传热与流动研究中的应用[D].北京:清华大学出版社,1996.
    [8]Choi S B, Barrori R F, Warrington R O. Fluid Flow and Heat Transfer in Microtubes[J].ASMED S C,1991,32:123-1341.
    [9]杜东兴.可压缩性及粗糙度对微细管内流动及换热特性的影响[D].北京清华大学工程力学系,2001.
    [10]凌智勇,丁建宁,杨继昌等.微流动的研究现状及影响因素.江苏学学报(自然科学版),2002,11,23(6):1-5.
    [11]Pafhler J N, Harley J, Bau H, etal. Liquid and Gas Transport in Small Channels[J].ASME DSC,1990,19:149-157.
    [12]刘静.微米/纳米尺度传热学[M].北京:科学出版社,2001.
    [13]林建忠,包福兵.微纳米尺度流场滑移-过渡流区流动和传热特性的研究.第二十一届全国水动力学研讨会论文集.
    [14]Pfund D, Rector D, Shekarriz, et al. Pressure drop measurements in a microchannel[J]. AICHE Journal,2000,46:1496-1507.
    [15]张颖,王蔚,田丽.微流动的尺寸效应.微纳电子技术,2008,45(1):33-37.
    [16]钟映春,谭湘强,杨宜民.微流体力学几个问题的探讨[J].广东工业大学学报,2001,18(2):46-481.
    [17]傅玉普,王新平.物理化学简明教程[M].大连:大连理工大学出版社,2007:276.
    [18]刘成有.润湿现象的解释.重庆师范学院学报(自然科学版),2000(17):143-147.
    [19]庞礼军.润湿现象中的附着力与内聚力.贵州师范大学学报(自然科学版),2000,18(4):89-91.
    [20]李外郎,顾惕.润湿现象与接触角,精细化工,1986,3(2):1-7.
    [21]姚凤英,姚同玉,李继山.油层润湿性反转的特点与影响因素[J].油气地质与采收率,2007,14(4):76-78.
    [22]杨普华.化学驱提高石油采收率.北京:石油工业出版社,1988.
    [23]韩冬,沈平平.表面活性剂驱油原理及应用.北京:石油工业出版社,2001.
    [24]沈平平,俞稼镛.大幅度提高石油采收率的基础研究.北京:石油工业出版社,2001.
    [25]吴承伟,马国军.关于流体流动的边界滑移.中国科学,G辑,2004,34(7):681-690.
    [26]王娴,王秋旺,陶文栓等.直接模拟蒙特卡罗方法在微通道流动模拟中的应用.工程热物理学报,2002,23 (suppl):25-128.
    [27]Peter A. Thompson, Mark Robbins. Simulations of Contact-Line Motion: Slip and the Dynamic Contact Angle. Phys. Rev. lett.,1989,63 (7):766-769.
    [28]Bhattacharya D. K., Lie G. C. Molecular-dynamics simulations of nonequilibrium heat and momentum transport in very dilute gases. Phys. Rev. Lett.,1989,62 (8):897-900.
    [29]L. Hannon,. Lie G. C, Clementi E. Molecular Dynamics Simulation of Channel Flow. Phys. Lett. A,1986,119 (4):174-177.
    [30]M. Sun, C. Ebner. Molecular-dynamics simulation of compressible fluid flow in two-dimensional channels. Phys. Rev. A,1992,46 (8):4813-4818.
    [31]Navier C L M H. Memoire sur lea lois du mouvement des fluides. Mem 1'Acad Roy Sci I'Inst France,1823,6:389-440.
    [32]Thompaon P A, Troian S M. A general boundary condition for liquid flow at solid surfaces. Nature,1997,389:360-362.
    [33]Priezjev N V. Rate-dependent slip boundary conditions for simple fluids. Physical Review E,2007,75:051605.
    [34]Heinbuch U, Fischer J. Liquid on in pores:Slip, no-slip, or multilayer sticking[J]. Phys Rev. A,1989,40:1144-1146.
    [35]Thompson P A, Robbins M 0. Origin of stick-slip motion in boundary lubrication[J]. Science,1990,250:792-794.
    [36]蒋开等.纳米尺度边界滑移的分子动力学模拟研究.摩擦学学报,2005,25(3):238-241.
    [37]Smith F W. Lubricant behavior in concentrated contact systems-the castor oil-stell system. Wear,1959,2:250-263.
    [38]Smith F W. Lubricatn behavior in concentrated contact some rheological problems. ASLE,71nnsaction,1960,3:18-25.
    [39]Bair S., Winer W 0. Shear strength measurements of lubricants at high pressure. ASME Journal of Lubrication Technology,1979,101:251-256.
    [40]马国军.微纳米间隙流动的边界滑移及其流体动力学研究.大连理工大学,工程力学(专业)博士论文,2007.
    [41]Zhu Y X, Granick S. Rate-dependent slip of Newtonian liquid at smooth surfaces. Physica! Review Letters,2001,87:096105.
    [42]Olgun U, Kalyon D M. Use of molecular dynamics to investigate polymer melt-metal wall interactions. Polymer,2005,46:9423-9433.
    [43]Koplid. Molecular dynamics of poiseuille flow and moving contact lines. Phys. Review lett.1988,60,1282.
    [44]KoPlikJ, BanavarJR, Willemsen J F. Molecular dynamics of fluid flow at solid Surface. Physics of Fluids A,1989,1(5):751-794.
    [45]Uwe Heinbuch, Johann Fischer. Liquid flow in pores:slip, no-slip, or multilayer sticking. Phys. Review A,1989,40(2):1144-1146.
    [46]ThomPson P A, Troian S M. A general boundayr condition for liquid flow at solid surface. Nature,1997,389:360-362.
    [47]Jabbarzadeh A, Atkinson J D, Tanner R L. Eeffcts of the wall roughness on slip and Rheological Properties of hexadecane in molecular dynamics simulation of Couette Shear flow between two sinusoidal walls. Physical Review E,2000,61(1):690-699.
    [48]CiePlak M., KoPlik J., BnavaarJ R. Boundary conditions at a fluid-solid interface. Physical Review Letters,2001,86(5):803-806.
    [49]Cecile cottin-bizonne. Low-friction flows of liquid at nanopatterned interfaces. Nature materials.2003,2(4):237-240.
    [50]Nagayama G, Cheng P. Eeffets of interafce wettability on microscale flow by molecular dynamics simulation. Int. J. of Heat and Mass Tarnsfer,2004, 47:501-513.
    [51]蒋开,陈云飞,庄苹等.纳米尺度边界滑移的分子动力学模拟研究.摩擦学学报,2005,25(3):238-241.
    [52]曹炳阳,陈民,过增元.纳米通道内液体流动的滑移现象.物理学报,2006,55(10):5305-5310.
    [53]刘彬武,刘朝.微通道中Poiseuille流动的分子动力学研究.2007,中国科技论文在线.
    [54]贾妍,刘恒,虞烈.纳米流道内液体特性的分子动力学研究.西安交通大学报,2008,42(1)
    [55]凌智勇,刘勇,丁建宁等.亲水性和疏水性微管道中流动滑移特性的实验研究[J].中国机械工程,2006,17(22):2326-2329.
    [56]郭照立,郑楚光.格子Boltzmann方法的原理及应用.北京:科学出版社,2009.
    [57]尹增谦,管景峰等.蒙特卡罗方法及应用.物理与工程,2002,12(3):45-49.
    [58]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用.北京:科学出版社,1980.
    [59]方再根.计算机模拟和蒙特卡罗方法论.北京:北京工业学院出版社,1988.
    [60]樊康旗,贾建援.经典分子动力学模拟的主要技术.微纳电子技术,2005,(3).
    [61]温诗铸.纳米摩擦学[M].北京:清华大学出版社,998:60-80.
    [62]Alder B. J., Wainwright T. E. Phase transition for a hard sphere system. Journal of Chemical Physics,1975,27:1208-1209.
    [63]Rahman A., Stillinger, F H. Molecular Dynamics Study of Liquid Water. J. chem. Phys.,1971,55:3336-3359.
    [64]Rychaert J. P., Ciccotti G., Berendsen H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of nalkanes. J. Comput. Phys.,1977,23:327-341.
    [65]Gillan M J., Dixon M. The calculation of thermal conductivities by perturbed molecular dynamics simulation. J. Phys. C,1983,16:869-878.
    [66]Car R., Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett.,1985,55,2471-2474.
    [67]T. Cagin, Pettit. B. M. Molecular dynamics with a variable number of molecules. Mol. Phys.1991, vol.72:169-175.
    [68]Frenkel, Smit.分子模拟---从算法到应用.北京:化学工业出版社,2002
    [69]陈强,曹红红,黄海波.分子动力学中势函数研究.天津理工学院学报,2004,20(2):101-105.
    [70]钱学森.物理力学讲义.北京:科学出版社,1962:223-227.
    [71]Cotterill R M J, Doyama M. Energier and Atomic Configuration of Line Defects and Plane Defects. Lattice Defects and their Interactions.New York:Gordon and Breach Science Publishers Inc.,1967,62-75.
    [72]Johnson R A, Wilson W D. Defect Calculations for FCC and Bcc Metals. 1971, New York:Plenum:301-305.
    [73]Daw M S, Baskes M I. Embedded atom method deriation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984,29(12):8486-8495.
    [74]D. C. Rapaport. The art of molecular dynamics simulation. Cambridge Univ. Press, Cambridge,2004.
    [75]G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Univ. Press, Cambridge,1967.
    [76]Nagayama, Gyoko, Tsuruta, Takaharu. Molecular dynamics simulation on bubble formation in a nanochannel. International Journal of Heat and Mass Transfer.2006,49(23):4437-4443.
    [77]Delhommelle, Millie P., Inadequacy of the Lorentz-Berthelot Combing Rules for Accurate Predictions of Equilibrium Properties by Molecular Simulation [J]. Mol. Phys.2001,99(8):619-625.
    [78]P. G. de Gennes. Wetting:statics and dynamics. Rev. Mod. Phys,1985,57: 827-863.
    [79]M. Sbragaglia, A. Prosperetti, J. F. Willemsen. A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys. Fluids,2007,19(4),043603.
    [80]David M. Huang, Christian Sendner, Dominik Horinek. Water Slippage versus Contact Angle:A quasiuniversal relationship. Phys. Rev. Lett.2008, 101(22),226101.
    [81]Daniello R. J., Waterhouse N. E. et al. Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids,2009,21(8),085103.
    [82]Tretheway D C, Meinhart C D. Apparent fluid slip at hydrophobic microchannel walls. Physics of Fluids,2002,14(3):9-12.
    [83]Roman S. Voronov, Dimitrios V. et al. Slip length and contact angle over hydrophobic surfaces. Chem. Phys. Lett.,2007,441(4-6):273-276.
    [84]Pit R, Hervet H, Leger L. Direct Experimental Evidence of Slip in Hexadecane:Solid Interfaces. Phys. Rev. lett.,2000,85(5):980-983.
    [85]Tretheway D C, Meinhart C D. Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids,2002,14(3):9-12.
    [86]Nikolai V. Priezjev. Molecular Origin and Dynamic Behavior of Slip in Sheared Polymer Films. Phys. Rev. Lett.2004,92(1):018302.
    [87]Choi C, Westin J A, Breuer K S. Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids,2003,15(10):2897-2902.
    [88]霍素斌,于志家等.超疏水表面微通道内水的流动特性.化工学报,2007,58(11):2721-2726.
    [89]向恒,姜培学等.平直纳米通道内液体流动规律的分子动力学研究.自然科学进展,2008,18(11):1346-1350.
    [90]Navier C L M H. Memoire sur lea lois du mouvement des f luides. Mem 1'Acad Roy Sci I'Inst France,1823,6:389-440.
    [91]A T Gelbunuv. Petroleum Industry of China (in Chinese),1987:181
    [92]Yan Q L, He Q X. Journal of Xi'an Petroleum Institute,1990:51.
    [93]Huang Y Z. Petroleum Industry of China(in Chinese),1998:26.
    [94]Song F Q, Liu C Q. The Fast Transient Measurement of Threshold Pressure Gradient., ACTA,2001,22(3):67-70.
    [95]Liu W D. Journal of Chongqing University(Natural Science Edition).2000, 23,119.
    [96]Li J H, Chen Q H. Journal of Northwest University (Natural Science Edition). 2001,31(2),41.
    [97]Ho C M, Tai Y C. Annu. Rev. Fluid Mech.1998,30,579.
    [98]Gad-el-Hak. The fluid mechanics of microdevices——The Freeman Scholar lecture[J]. J. of Fluids Engineering.1999,121:5-33.
    [99]Liu J. Micro/Nano Scale Heat Transfer. 北京:科学出版社,2001.
    [100]Cui HH, Siber-Li ZH. Flow characteristics of liquids in microtubes driven by a high pressure. Physics of Fluids.2004,16(5):1803-1810.
    [101]Hwang Y W, Kim M S. The pressure drop in microtubes and the correlation development. Int. J. Heat Mass Transfer,2006,49:1804-1812.
    [102]Jiang R J, Song Fu-quan. Flow characteristics of deionized water in microtubes. Chin. Phys. Lett,2006,23(12):3305-3308.
    [103]Anuar Ishak, Roslinda Nazar, loan Pop. Boundary Layer on a Moving Wall with Suction and Injection. Chin. Phys. Lett.2007,24(8):2274-2276.
    [104]Ruckenstein E., Rajora P. On the no-slip boundary condition of hydrodynamics, J. Colloid Interface Sci.1983,96(2):488-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700