用户名: 密码: 验证码:
新型撞击流生物反应器及其在废水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效节能的污水处理装置,是废水处理中的追求目标,近年来,新型生物反应器的开发是较为热门的研究课题,在废水处理中被认为是一种具有广泛应用前景的反应器,但传统的曝气方式效率低及底物的传质速率低等问题却严重阻碍了生物反应器的进一步开发应用。因此,如何提高曝气效率及底物的传质速率是开发新型生物反应器亟需解决的问题,作为化工领域最有效的促进相间传递的技术-撞击流在提高曝气效率和底物传质速率方面具有较大优势。为此,本文集生物膜、循环流、撞击流强化相间传递的优势,研发了一种能在曝气时促进氧的快速及充分吸收,提高底物的传质速率,适用于快速好氧生物法污水处理,流动结构简单、高效节能的污水处理装置---内循环撞击流生物膜流化床反应器。通过对反应器的停留时间分布研究、反应器处理人工合成生活废水和高氨氮废水等方面的系统实验,综合研究了该反应器的基本性能并取得了相应的结果:
     在反应器的停留时间分布研究中,以KCl为示踪剂,采用脉冲输入-出口响应技术,通过检测出口物料中示踪剂浓度随时间的变化,从而确定反应器的停留时间分布。在曝气量Va不变(0.1m~3/h)的条件下,试验研究了不同进水流量Vi下反应器的停留时间分布。根据对试验结果的无因次停留时间分布函数、无因次停留时间分布密度函数及停留时间分布的无因次方差分析,结果发现反应器中液体流型介于平推流和全混流之间,且存在相当大的滞流区。Vi=13.47L/h为反应器内流型改变的临界值,小于此流量,反应器中流型随Vi的变化而改变,液体流量越小,反应器内的返混程度越小;大于此流量,反应器内流体流型基本不随流量改变,流体返混程度也不再随流量变化。
     在反应器处理人工合成生活废水研究中,为研究生物膜载体对水处理性能的影响,分别以两种玉米芯填料和聚丙烯悬浮填料作为流化床段的生物膜载体,以废水处理后的COD和NH_4~+-N去除及溶液溶解氧(DO)变化等为指标,分三阶段即-挂膜阶段、间歇运行阶段和连续运行阶段探讨了各因素对反应器处理人工合成生活废水性能的影响。
     在挂膜阶段,主要研究了生物膜载体对挂膜时间的影响,反应器采用接种后间歇培养挂膜。作为生物制品的玉米芯仅需15个反应循环即可完成挂膜,而聚丙烯悬浮填料挂膜需25个反应循环。挂膜完成后,反应器的水处理性能仅随载体的表面积增大而略有增强。
     间歇方式运行阶段主要考察反应器中底物随反应时间的变化规律,发现0-1.5h的反应时间段内,反应器的COD和NH_4~+-N的去除率分别超过70%和60%,且反应器出口处溶液DO在该时段最低。
     在连续运行阶段,探讨了进水底物浓度、水力停留时间(HRT)和曝气量Va等操作条件对反应器的COD和NH_4~+-N去除影响。结果发现:增加进水底物浓度或减小HRT都能增强反应器的有机负荷及NH_4~+-N负荷去除能力,尽管出水COD及NH_4~+-N浓度都随之升高;减小HRT对反应器的有机及NH_4~+-N负荷去除能力提升效果更好。在适中的曝气量条件下(Va为0.3m~3/h),反应器的底物去除性能最强,曝气量过大或过小都会显著削弱反应器的有机负荷及NH_4~+-N负荷去除能力。通过对比不同工艺条件下反应器的内循环撞击流吸收器段和流化床段的进水有机负荷和NH_4~+-N负荷去除能力,发现流化床段在水处理中作用较小,有机负荷和NH_4~+-N负荷去除量均远小于内循环撞击流吸收器段,所以载体性能对反应器的生活废水处理性能影响较小。
     在反应器处理高氨氮废水的研究中,首先,通过与以聚丙烯为生物膜载体、葡萄糖为液相碳源的对比试验的对比,研究以玉米芯同时作为固体碳源和生物膜载体时处理硝氮废水的反硝化性能,分析讨论了溶液的COD/N比和反应时间对反硝化的影响。结果表明:反硝化菌位于生物膜内侧,与液相碳源相比,玉米芯释放的碳源更易于被反硝化菌利用,但玉米芯的碳源释放速率较慢,反硝化反应时间低于16h时,硝氮的反硝化率显著减小。其次,在反应器的内循环撞击流吸收器段和流化床段均装填玉米芯填料,以玉米芯为生物膜载体和反硝化碳源处理高氨氮废水。以COD、NH_4~+-N、总氮(TN)去除和反硝化率为指标,分析讨论了溶液的C/N比和DO对反应器处理高氨氮废水的影响。研究结果表明,溶液的C/N比和DO对反应器处理氨氮废水的性能都有影响,在溶液C/N比为1.5及DO为2mg/L条件下,反应器处理高氨氮废水的综合性能最好,此时TN去除率最高,在进水NH_4~+-N浓度高达200mg/L条件下,其COD、NH_4~+-N和TN去除率分别达到了92.7%、41.2%和23.8%,而反硝化率也达到57.7%。
     综上所述,所研发的撞击流曝气反应器符合对高效、节能污水处理装置的要求,是一种新型高效的生物法污水处理装置,具有较好的开发应用前景。本实验通过对反应器基本性能的综合研究,为反应器的进一步开发及结构优化提供了理论及实验依据。
Efficient and energy saving wastewater device has been the pursuing goal inwastewater treatment field. New types of bioreactor can be used extensively inwastewater treatment and their development has been the relatively popular researchsubject in recent years. However, the further application of these bioreactors isseriously hindered by such problems as low efficiency of traditional aerationfacilities and low mass transfer rate of substrates. Therefore, how to improveaeration efficiency and mass transfer rate of substrates need to be solved indeveloping new bioreactors. As one of the most efficient technology in promotinginterphase transfer in chemical engineering field, impinging stream has greatadvantages in improving aeration efficiency and mass transfer rate of substrates.Consequently, a novel bioreactor was developed by combination the strong points oftechnologies such as biofilm, circulating flow and impinging stream withemphasizing the following aspects: fast and sufficient absorbing of oxygen duringaeration, improving of mass transfer rate of substrates, suitable for the fast aerobicbiological treatment of wastewater, simple flow structure, efficient and energysaving. The bioreactor is named Inner Circulation Impinging Stream BiofilmReactor (ICISBR) and its main structure comprises the upper fluidized bed (FB)section and the lower inner circulation impinging stream absorber (ICISA) section.Basic performance of ICISBR was studied systematically by studying the residencetime distribution (RTD), synthetic domestic wastewater treatment and high ammoniawastewater treatment by ICISBR; corresponding results were obtained as follows.
     In the study of RTD of ICISBR, RTD was determined by impulse inputting thetracer (KCl solution), and then inspection the variations of tracer concentrations ofoutlet solution with residence time at conditions of different rate of inflow Vi andconstant aeration rate Va0.1m~3/h. According to the analysis of nondimensional RTDfunction, nondimensional RTD density function and nondimensional RTD varianceof the test results, liquid flow pattern falls in between plug flow and perfect mixingflow and there exists sizable stagnant area in ICISBR. Vi of13.47L/h is the criticalvalue for the transitions of liquid flow pattern, under this flow rate, flow patternchanged with the change of flow rate and the backmixing extent is proportional tothe liquid flow rate. Above this critical flow rate, flow pattern and the backmixing extent stop changing despite of the increase of the liquid flow rate.
     In the study of synthetic domestic wastewater treatment by ICISBR, two typesof corncob fillers and suspended polypropylene filler were used as biofilm carriersin FB section of the reactor in order to study the effects of biocarriers on thesubstrate removal performance of ICISBR. Removal of COD and NH_4~+-N andvariations of solution DO were used as the performance index, performance ofICISBR in wastewater treatment was studied in three stages, namely biofilmformation stage, batch operation stage and continuously operation stage.
     In the biofilm formation stage, effect of biocarriers on the time of biofilmformation was studied. biofilm was cultivated in batch mode with22h’s reactiontime every cycle after inoculation. It takes merely15reaction cycles for corncobbiocarriers and25reaction cycles for polypropylene biocarriers to complete thebiofilm formation in ICISBR. Substrate removal capacity of ICISBR slightlyincreased with the increase of specific area of biocarriers after biofilm formation.
     Variations of substrate concentration according to reaction time were studiedwhen ICISBR operated in batch mode. It was found that more than70%of COD and60%of NH_4~+-N were removed during0-1.5h of reaction time and solution DO wasthe lowest at outlet of ICISBR.
     When ICISBR run continuously, effects of inflow substrate concentration, HRTand aeration rate on the removal of COD and NH_4~+-N were studied. Resultsindicated that increasing the inflow substrate concentration or decreasing the HRT,the removal capacity of organic loads and NH_4~+-N loads all increased althougheffluent COD and NH_4~+-N increased either. By comparison, decreasing HRT wasmore efficient than increasing substrate concentration in the improvement of theremoval capacity of organic loads and NH_4~+-N loads. The highest substrate removalof ICISBR can be achieved at modest aeration rate of0.3m~3/h. A high or lowaeration rate would reduce the removal capacity of organic loads and NH_4~+-N loads.By comparing the removal capacity of organic loads and NH_4~+-N loads at ICISApart and FB part of ICISBR at different operation condition, it was found thatremoval of organic loads and NH_4~+-N loads were insignificant in FB part,consequently, influence of biocarriers on the domestic wastewater treatment ofICISBR were insignificant.
     In the study of high ammonia wastewater treatment by ICISBR, first, comparedwith comparative experiment with propylene as biocarriers and glucose as liquid carbon source, denitrification ability of corncob was studied by treating nitratewastewater with corncob as biocarriers and solid carbon source. Effects of solutionCOD/N ratio and reaction time on denitrification were discussed. Results of theexperiment indicated that carbon source released from corncob can be easier used bydenitrification bacteria than liquid carbon source, as denitrification bacteria grows inthe inner layer of biofilm. Because the release rate of carbon source was slow,efficiency of denitrification decreased obviously by decreasing reaction time lowerthan8h in treating nitrate wastewater with corncob used as biocarriers and carbonsource.
     Second, corncob was used as biocarriers and carbon source in treating highammonia wastewater by filling the ICISA part and the FB part of ICISBR withcorncob filler. Taking the removal of COD, NH_4~+-N, total nitrogen (TN) anddenitrification ratio as performance index of ICISBR, effects of solution C/N ratioand DO on the performance of treating high ammonia wastewater were discussed.Experimental results showed that high ammonia wastewater treatment performanceof ICISBR was significantly influenced by solution C/N ratio and DO, the bestcomprehensive performance in treating high ammonia wastewater obtained atconditions of solution C/N ratio of1.5and DO of2mg/L with the highest TNremoval percent. Removal of COD, NH_4~+-N and TN reached92.7%,41.2%and23.8%, respectively, and denitrification ratio57.7%although the inflow NH_4~+-Nconcentration reached up to200mg/L.
     In conclusion, ICISBR is a novel, energy saving and efficient wastewaterbiological treatment device and possess of good application prospect in wastewatertreatment. Results from basic performance study provide the essential data and thetheory reference for further development and structure optimization of ICISBR.
引文
[1].刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.3:3
    [2]. Mashall K.C., Stout R. and Mitchell S.R.. Mechanism of initial events in theadsorption of marine bacteria to surface [J]. J. General Microbiol,1971,68:337-348.
    [3]. Nicholas P. Cheremisinoff. Biotechnology for waste and wastewatertreatment [M]. NOYES PUBLICATIONS Weatwood, New Jerary, U.S.A,1996:18-25
    [4].唐玉斌,陈芳艳.水污染控制工程[M].哈尔滨:哈尔滨工业大学出版社,2006.7
    [5].扈恩华.曝气生物滤池研究应用进展及应用前景展望[J].价值工程,2011,29:316-317
    [6].高浚淇郭家骅.生物转盘法与生物滤池法的比较论术[J].科协论坛,2010,9:105-106
    [7].吴国旭,杨永杰,王旭.生物接触氧化法及其变形工艺[J].工业水处理,2009,29(6):9-11
    [8]. JERIS J S,C BEER,J A MUELLER.High rate biological denitrificationusing a granular fluidized bed[J]. Journal water Pollution ControlFederation,1974,46(9):2118-2128
    [9].张琳,孙根行,邹君臣,魏自辉.生物流化床的研究进展[J].安徽农业科学,2011,39(16):9806-9807,10000
    [10].陈月芳,宋存义,汪翠萍.沸石复合填料生物流化床在污水处理中的试验[J].中国环境科学.2006,26(4):432-435
    [11]. W odzimierz Sokó, Wojciech Korpal. Aerobic treatment of wastewaters inthe inverse fluidised bed biofilm reactor [J]. Chemical Engineering Journal,118(2006)199–205
    [12].宋敏,高富丽,杨云龙.移动床生物膜反应器及应用研究[J].科技情报开发与经济,2007,17(2):153-155
    [13]. HEM L. J., RUSTEN B. and DEGAARD H. Nitrification in a moving bedbiofilm reactor [J]. Wat Res.1994,28(6):1425-1433
    [14].季民,杨造燕,薛广宁,郭静,宋亚文,李清雪。移动床生物膜反应器在污水处理中的应用研究[J].城市环境与城市生态,2000,13(3):47-49,53
    [15]. S.M. Borghei, S.H. Hosseini, The treatment of phenolic wastewater using amoving bed biofilm reactor [J]. Process Biochemistry,2004,39,1177–1181
    [16]. Johnson C. H., M. W. Page, L. Blaha. Full scale moving bed biofilm reactorresults from refinery and slaughter house treatment facilities [J]. WaterScience and Technology.2000,41(4):401-407
    [17]. Jeong Y. S., J. S. Chung. Simultaneous Removal of COD, Thiocyanate,Cyanide and Nitrogen from Coal Process Wastewater Using FluidizedBiofilm Process [J].Process Biochemistry,2006,41(5):1141-1147.
    [18]. IRVINE R. L., P. A. WILDERER, H. C. FLEMMING. Controlled unsteadystate processes and technologies-an overview [J]. Water Science andTechnology,1997,35(1):1-10
    [19]. White D. M., T. A. Pilon, C. Woolard. Biological treatment of cyanidecontaining wastewater [J]. Water Research.2000,34(7):2105-2109.
    [20].金云霄,冯传平,丁大虎,郝春博,宋琳.智能化控制SBBR处理不同C/N城市污水脱氮除磷性能研究[J].环境科学,2011,32(3):729-735
    [21]. Wang Rong-Chang, X. H. Wen, Y. Qian. Influence of carrier concentrationon the performance and microbial characteristics of a suspended carrierbiofilm reactor [J]. Process Biochemistry,2005,40:2992–3001
    [22]. LITTLE J. C. HYPOLIMNETIC AERATORS: PREDICTING OXYGENTRANSFER AND HYDRODYNAMICS [J]. Water Research,1995,29(11):2475-2482
    [23]. DUDLEY J. PROCESS TESTING OF AERATORS IN OXIDATIONDITCHES [J]. Water Research,1995,29(9):2217-2219
    [24]. Marcos. E. C. Oliveira and Adriana S. Franca. SIMULATION OF OXYGENMASS TRANSFER IN AERATION SYSTEMS [J]. Int. Comm. Heat MassTransfer,1998,25(6):853-862
    [25]. Daniel F. Mcginnis, John C. Little. Bubble dynamics and oxygen transfer ina speece cone [J]. Water science and Technology,1998,37(2):285-292
    [26]. P. Havelka, V. Linek, J. Sinkule, J. Zahradník, M. Fialová. Hydrodynamicand mass transfer characteristics of ejector loop reactors [J]. ChemicalEngineering Science,2000,55:535-549
    [27].陈维平,江帆,李元元,李小强.射流曝气的气液两相流的数值模拟[J].环境污染治理技术与设备,2006,7(3):48-52
    [28]. J. MORCHAIN, C. MARANGES and C. FONADE. CFD MODELLING OFA TWO-PHASE JET AERATOR UNDER INFLUENCE OF ACROSSFLOW [J]. Water Research,2000,34(13):3460-3472
    [29]. A. ABUSAM, K.J. KEESMAN, K. MEINEMA and G. VAN STRATEN.OXYGEN TRANSFER RATE ESTIMATION IN OXIDATION DITCHESFROM CLEAN WATER MEASUREMENTS [J]. Water Research,35(8):2058–2064
    [30].洪涛,叶春,李春华,张保君,周磊.微米气泡曝气技术处理黑臭河水的效果研究[J].环境工程技术学报,2011,1(1):20-25
    [31].杨春玲,张有忱,黎镜中.新型气液混输型曝气增氧设备性能[J].化工进展,2011,30(3):483-487
    [32].余薇薇,张智,王涛.纯氧曝气A/O工艺处理医院污水的工艺特性研究[J].土木建筑与环境工程,2011,33:9-12
    [33].张新喜,陈舒,顾炳林.纯氧曝气与空气曝气处理生活污水的效果比较[J].环境科学与管理,2011,36(7):95-98
    [34].刘春,张磊,杨景亮,郭建博,李再兴.微气泡曝气中氧传质特性研究[J].环境工程学报,2010,4(3):585-589
    [35]. Herb Vandermeulen. Design and testing of a propeller aerator for reservoirs[J]. Water Research,1992,26(6):857-861
    [36]. TEODOR OGNEAN. RELATIONSHIP BETWEEN OXYGEN MASSTRANSFER RATE AND POWER CONSUMPTION BY VERTICALSHAFT AERATORS [J]. Water Research,1997,31(6):1325-1332
    [37]. Sanjib Moulick, B.C. Mal, S. Bandyopadhyay. Prediction of aerationperformance of paddle wheel aerators [J]. Aquacultural Engineering,2002,25:217–237
    [38]. Beatriz Cancino, Pedro Roth, Manfred Reu. Design of high efficiencysurface aerators Part1. Development of new rotors for surface aerators [J].Aquacultural Engineering,2004,31:83–98
    [39]. Beatriz Cancino. Design of high efficiency surface aerators, Part2. Rating ofsurface aerator rotors [J]. Aquacultural Engineering,2004,31:99–115
    [40]. Diego Rosso, Michael K. Stenstrom. Surfactant effects on a-factors inaeration systems [J]. Water Research,2006,40:1397–1404
    [41]. Bimlesh Kumar, Achanta Ramakrishna Rao. Oxygen transfer and energydissipation rate in surface aerator [J]. Bioresource Technology,2009,100:2886–2888
    [42]. Hai-Bing Cong, Ting-Lin Huang, Bei-Bei Chai, Jian-Wei Zhao. A newmixing–oxygenating technology for water quality improvement of urbanwater source and its implication in a reservoir [J]. Renewable Energy,2009,34:2054–2060
    [43].陈光,赵贺芳.曝气机叶片形状对氧化沟流动特性的影响[J].水资源与水工程学报,2010,21(6):57-66
    [44].张鑫珩.倒伞型复合叶轮曝气机特点及应用[J].给水排水动态,2006,8:14-15
    [45]. D. Guibert, R. Ben Aim, H. Rabie, and P. CM. Aeration performance ofimmersed hollow-fiber membranes in a bentonite suspension [J].Desalination1,2002,48(3):95-400
    [46]. Hee-Deung Park, Young Haeng Lee, Hyun-Bae Kim, Jihee Moon,Chang-Hyo Ahn, Keon-Tae Kim, Moon-Sun Kang. Reduction of membranefouling by simultaneous upward and downward air sparging in a pilot-scalesubmerged membrane bioreactor treating municipal wastewater [J].Desalination,2010,251:75–82
    [47]. TARIQ AHMED and MICHAEL J. SEMMENS. USE OF TRANSVERSEFLOW HOLLOW FIBERS FOR BUBBLELESS MEMBRANE AERATION[J]. Water Research,1996,30(2):440-446
    [48].刘岩龙,朱文亭,刘旦玉,王涛.中空纤维膜无泡曝气试验[J].工业用水与废水,2007,38(4):102-106
    [49].谷朝君,肖文涛,殷先雄.搅拌充氧曝气技术动向及设备发展[J].辽宁化工,2009,38(5):318-321
    [50].陈同德. QSB型深水曝气机结构设计[J].机械工程与自动化,2009,2:96-97
    [51]. Shian Gao, Peter R. Voke. Large-eddy simulation of turbulent heat transportin enclosed impinging jets [J]. Int. J. Heat and Fluid Flow,1995,16,349-356
    [52].诸林,刘瑾,王兵,王治红.化工原理[M].北京:石油工业出版社,2007.8:236
    [53]. M. Tsubokura, T. Kobayashi, N. Taniguchi, W.P. Jones. A numerical study onthe eddy structures of impinging jets excited at the inlet [J]. InternationalJournal of Heat and Fluid Flow,2003,24,500–511
    [54]. Z. Zhao, D.W. Yuen, C.W. Leung, T.T. Wong. Thermal performance of apremixed impinging circular flame jet array with induced-swirl [J]. AppliedThermal Engineering29(2009)159–166
    [55]. C.V. Tu, D. H. Wood. Wall Pressure and Shear Stress Measurements Beneathan Impinging Jet [J]. Experimental Thermal and Fluid Science1996;13,364-373
    [56]. Carlo Carcasci. An experimental investigation on air impinging jets usingvisualisation methods [J]. Int. J. Therm. Sci.1999,38,808-818
    [57]. Jung-ho Lee, Sang-Joon Lee. The effect of nozzle aspect ratio on stagnationregion heat transfer characteristics of elliptic impinging jet [J]. InternationalJournal of Heat and Mass Transfer,2000,43,555-575
    [58]. M.F. Koseoglu, S. Baskaya. The effect of flow field and turbulence on heattransfer characteristics of confined circular and elliptic impinging jets [J].International Journal of Thermal Sciences,2008,47,1332–1346
    [59]. Han-Chieh Chiu, Jer-Huan Jang, Wei-Mon Yan. Experimental study on theheat transfer under impinging elliptic jet array along a film hole surfaceusing liquid crystal thermograph [J]. International Journal of Heat and MassTransfer,2009,52,4435–4448
    [60]. Chang Shyy Woei, Jan Yih Jena, Chang Shuen Fei. Heat transfer ofimpinging jet-array over convex-dimpled surface [J]. International Journal ofHeat and Mass Transfer,2006,49,3045–3059
    [61]. Chang Shyy Woei, Hsin-Feng Liou. Heat transfer of impinging jet-array ontoconcave-and convex-dimpled surfaces with effusion [J]. InternationalJournal of Heat and Mass Transfer,2009,52,4484–4499
    [62]. Tzer-Ming Jeng, Sheng-Chung Tzeng. Numerical study of confined slot jetimpinging on porous metallic foam heat sink [J]. International Journal ofHeat and Mass Transfer,2005,48,4685–4694
    [63]. Felipe T. Dórea, Marcelo J.S. de Lemos. Simulation of laminar impinging jeton a porous medium with a thermal non-equilibrium model [J]. InternationalJournal of Heat and Mass Transfer,2010,53,5089–5101
    [64]. A. Abdel-Fattah. Numerical and experimental study of turbulent impingingtwin-jet flow [J]. Experimental Thermal and Fluid Science,2007,31,1061–1072
    [65]. Y. Ozmen. Confined impinging twin air jets at high Reynolds numbers [J].Experimental Thermal and Fluid Science,2011,35,355–363
    [66]. H.B. Li, H.S. Zhen, C.W. Leung, C.S. Cheung. Nozzle effect on heat transferand CO emission of impinging premixed flames [J]. International Journal ofHeat and Mass Transfer,2011,54,625–635
    [67]. Dong-Kwon Kim, Sung Jin Kim, Jin-Kwon Bae. Comparison of thermalperformances of plate-fin and pin-fin heat sinks subject to an impinging flow[J]. International Journal of Heat and Mass Transfer,2009,52,3510–3517
    [68]. Ken Bray, Michel Champion, Paul A. Libby. Premixed flames in stagnatingturbulence Part VI. Predicting the mean density and the permitted rates ofstrain for impinging reactant streams [J]. Combustion and Flame,2009,156,310–321
    [69]. N. Ashgriz, R. Washburn, and T. Barbat. Segregation of drop size andvelocity in jet impinging splash-plate atomizers [J]. Int. J. Heat and FluidFlow,1996,17:509-516
    [70]. Jo o M. Miranda, Jo o B.L.M. Campos. Concentration polarization in amembrane placed under an impinging jet confined by a conical wall—anumerical approach [J]. Journal of Membrane Science,2001,182,257–270
    [71].刘明侯, T. L. Chan.狭缝射流撞击圆柱表面的湍流特性实验研究[J].力学学报,2005,37(2):135-140
    [72].张传杰,孙纪宁,谭屏.横流对冲击射流换热特性影响机理的数值研究[J].航空动力学报,2011,26(1):65-71
    [73].周静伟,杨兴贤,耿丽萍,王玉刚.非稳态冲击射流强化传热试验研究[J].机械工程学报,2010,46(6):144-148
    [74]. Tamir A.撞击流反应器-原理和应用[A]. Elperin, I. T. Heat and masstransfer in opposing currents [J]. J. Engng. Physics.1961,6:62-68.
    [75].伍沅.撞击流-原理·性质·应用[M].北京:化学工业出版社2006,1-3
    [76]. Tamir A.撞击流反应器-原理和应用[M].伍沅译.北京:化学工业出版社.1996.
    [77].黄凯,刘华彦,伍沅.循环撞击流干燥设备和过程研究[J].高校化学工程学报.2001,15(3):78-80.
    [78]. Tamir, A. Absorption of acetone in a two impinging streams absorber[J].Chem. Engng. Sci.1986,(41):3023-3030.
    [79]. Berman Y, Tanklevsky A, Oren Y, Tamir A. Modeling, experimental studiesof SO2absorption in coaxial cylinders with impinging streams, Part ⅠandⅡ[J]. Chem Eng Sci.2000,55:1009-1028.
    [80].李芳,伍沅.撞击流吸收器燃煤烟气湿法脱硫(Ⅰ)-装置设计[J].武汉化工学院学报.2005,27(1):43-45,86.
    [81].周玉新,刘碧,刘建章等.撞击流燃煤烟气湿法脱硫剂的选择[J].武汉工程大学学报.2007.29(3):8-10.
    [82]. Kleingeld A. W., L. Lorenzen and F. G. Botes. The development andmodelling of high-intensity impinging stream jet reactors for effective masstransfer in heterogeneous systems[J]. Chemical Engineering Science1999,54:4991-4995
    [83]. Choicharoen K., S. Devahastin, S. Soponronnarit. Comparative evaluation ofperformance and energy consumption of hot air and superheated steamimpinging stream dryers for high-moisture particulate materials[J]. AppliedThermal Engineering2011,31:3444-3452
    [84].谭天恩,麦本熙,丁惠华.化工原理(下册)[M].北京:化学工业出版社,1990.第二版.
    [85]. Amir Masoud Jamshidi, Morteza Sohrabi, Farzaneh Vahabzadeh, BabakBonakdarpour. Hydrodynamic and mass transfer characterization of a downflow jet loop bioreactor [J]. Biochemical Engineering Journal,2001,8,241–250
    [86]. Tamir A., Herskowits D., Herskowits V.. Spray and bubble absorption ofacetone from air into water in a two-impinging-jets absorber[J]. IECResearch,1990,29:272-277
    [87]. Levenspiel O. Chemical Reaction Engineering[M]. New York: John Wiley&Sons,1972,2nd.
    [88].朱炳辰.化学反应工程[M].北京:化学工业出版社,2001,第二版.
    [89]. Ingersoll, A.C.,1951, Fundamentals and performance of gravity separation–a literature review, in Proceedings[C]. API31st Meeting, Division ofRefining, Vol.31M(III).
    [90]. M. Günther, S. Schneider, J. Wagner, R. Gorges, Th. Henkel, M. Kielpinski,J. Albert, R. Bierbaum, J.M. K hler. Characterisation of residence time andresidence time distribution in chip reactors with modular arrangements byintegrated optical detection[J]. Chemical Engineering Journal,2004,101:373–378
    [91]. Nauman, E.B., Residence time distributions and micromixing[J]. Chem. Eng.Commun.1981,8,53–131.
    [92]. Thulasidas, T. C., Abraham, M. A., Cerro, R. L. Dispersion during bubbletrain flow in capillaries[J]. Chem. Eng. Sci,1999,54,61–76.
    [93]. Patrick Jr., R. H., Klindera, T., Crynes, L. L., Cerro, R. L., Abraham, M. A.Residence time distribution in three-phase monolith reactor[J]. AIChE J.1995,41,649–657.
    [94]. Heibel, A. K., Lebens, P. J. M., Middelhoff, J. W., Kapteijn, F., Moulijn, J.Liquid residence time distribution in the film flow monolith reactor[J].AICHE J.2005,51,122–133.
    [95]. Yawalkar, A. A., Sood, R., Kreutzer, M. T., Kapteijn, F., Moulijn, J. A. Axialmixing in monolith reactors: effect of channel size[J]. Ind. Eng. Chem. Res.2005,44,2046–2057.
    [96]. Kreutzer, M. T., Bakker, J. J. W., Kapteijn, F., Moulijn, J. A., Verheijen, P. J.T. Scaling-up multiphase monolith reactors: linking residence timedistribution and feed maldistribution[J]. Ind. Eng. Chem. Res.2005,44,4898–4913.
    [97].伍沅,陈煜,刘华彦.浸没循环撞击流反应器-极具应用潜力的液相和液固相反应装置[J].湖北化工,1999,6:38-40
    [98].郭烈锦.两相与多相流动力学[A]. Zuber N, Findlay J A. Averagevolumetric concentration in two-phase flow systems[J]. ASME J. HeatTransfer.1965,97:453
    [99]. Bogte J J, Breure A M, Van Andel J G, Lettinga G. Anaerobic treatment ofdomestic sewage in small-scale UASB reactors. Water Science andTechnology,1993,27(9):75-82
    [100].陈涣壮.污水处理厂投资及运营研究[D].湖南大学,2004,12-19
    [101].朱立毅、杜宇.住建部称全国61个城市没有建成污水处理厂[Z].中国政府网,2010-12-15
    [102].国务院办公厅.国务院关于印发“十二五”节能减排综合性工作方案的通知[Z].中央政府门户网站,国发〔2011〕26号.
    [103].陈浩.分散式污水处理再生利用模式研究[D].西安建筑科技大学,2007.
    [104]. Scndura J. E. and M. D. Sobsey. Viral and bacterial contamination ofgroundwater from on-site sewage treatmen sysytems[J]. Water Science andTechnology,1997,35(11-12):141-146
    [105].贺墨梅,刘炎.污水集中式与分散式处理技术的比较研究[J].西南给排水,2006,28(4):20-23
    [106]. Chan S. Y., Y. F. Tsang, L. H. Cui and H Chua. Domestic wastewatertreatment using batch-fed constructed wetland and predictive modeldevelopment for NH3-N removal[J]. Process Biochemistry,2008,43(3):297-305
    [107]. Lesage E, D. P. L. Rousseau, E. Meers, F. M. G. Tack and N. De Pauw.Accumulation of metals in a horizontal subsurface flow constructed wetlandtreating domestic wastewater in Flanders, Belgium[J]. Science of the TotalEnvironment,2007,380:102-115
    [108]. David N. Steer, Lauchlan H. Fraser, Beth A. Seibert. Cell-to-cell pollutionreduction effectiveness of sbusurface domestic treatment wetlands[J].Bioresource Technology,2005,96(8):969-976
    [109]. J. M. Dalu and J. Ndamba. Duckweed based wastewater stabilization pondsfor wastewater treatment (a low cost technology for small urban areas inZimbabwe)[J]. Physics and Chemistry of the Earth, Parts A/B/C,2003,28(20-27):1147-1160
    [110]. Kayombo S., T.S.A. Mbwette, J.H.Y. Katima and S.E Jorgensen. Effects ofsubstrate concentrations on the growth of heterotrophic bacteria and algae insecondary facultative ponds[J]. Water Research,2003,37(12):2937-2943
    [111]. Zimmo O. R., N.P. van der Steen and H.J. Gijzen. Comparison of ammoniavolatilisation rates in algae and duckweed-based waste stabilisation pondstreating domestic wastewater[J]. Water Research,2003,37(19):4587-4594
    [112]. Zimmo O. R., N.P. van der Steen and H.J. Gijzen. Nitrogen mass balanceacross pilot-scale algae and duckweed-based wastewater stabilisationponds[J]. Water Research,2004,38(4):913-920.
    [113]. CHERNICHARO C. A. L. and DOS REIS CARDOSO M. Development andevaluation of a partitioned upflow anaerobic sludge blanket (UASB) reactorfor the treatment of domestic sewage from small villages[J]. Water Scienceand Technology,1999,40(8):107-113
    [114]. T. A. Elmitwalli, S. Sayed, L. Groendijk, J. van Lier, G. Zeeman and G.Lettinga. Decentralised treatment of concentrated sewage at low temperaturein a two-step anaerobic system: two upflow-hybrid septic tanks [J]. WaterScience and Technology,2003,48(6):219-226
    [115]. Saber A. El-Shafai, Fatma A. El-Gohary, Fayza A. Nasr, N. Peter van derSteen and Huub J.Gijzen. Nutrient recovery from domestec wastewater usinga UASB-duckweed ponds system [J]. Bioresource Technology,2007,98(4):798-807
    [116]. Boller M. Small wastewater treatment plants-A challenge to wastewterengineers [J]. Water Science and Technology,1997,35(6):1-12
    [117].范福洲,康勇,孔琦,安晓娇.废水处理用生物膜载体研究进展[J].化工进展,2005,24(12):1331-1335.
    [118]. Tseng R.L., S.K. Tseng. Pore structure and adsorption performance of theKOH-activated carbons prepared from corncob [J]. Journal of Colloid andInterface Science,2005,287:428–437.
    [119].陆少鸣,方平,杜敬.曝气生物滤池挂膜的中试试验[J].水处理技术,2006,32(8):67-69.
    [120]. Stenstrom Michael K. and Richard A. Poduska. The effect of dissolvedoxygen concentration on nitrification [J]. Water Research,1980,14(6):643-649.
    [121].柏景方.污水处理技术[M].哈尔滨:哈尔滨工业大学出版社,2006,7:440-443
    [122].李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007,8:85-86.
    [123].董向农,杨启国.微波密封消解法测定化学耗氧量(CODcr)[J].环境科学与技术,1997,4:30-31.
    [124].魏复盛等.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社:258-261,276-281.
    [125]. GB/T15453-2008,工业循环冷却水和锅炉用水中氯离子的测定[S].
    [126]. Li J., X. H. Xing and B. Z. Wang. Characteristics of phosphorus removalfrom wastewater by biofilm sequencing batch reactor (SBR)[J]. BiochemicalEngineering Journal,2003,16:279–285
    [127]. Liu Y. Adhesion kinetics of nitrifying bacteria on various thermoplasticsupports [J]. Colloids and surfaces B: Biointerfaces,1995,5(5):213-219.
    [128]. Yang R., Xu S., Wang Z. and Yang W. Aqueous extraction of corncob xylanand production of xylooligosaccharides [J]. LWT-Food Science andTechnology,2005,38(6),677-682.
    [129]. GB18918-2002,城镇污水处理厂污染物排放标准[S].
    [130]. HUROK OH, YOUNG-JUNG WEE, JONG-SUN YUN, AND HWA-WONRYU. Lactic Acid Production Through Cell-Recycle Repeated-BatchBioreactor [J]. Applied Biochemistry and Biotechnology,2003,107(1-3):603-613
    [131]. Hyung Sool Lee, Se Jin Park, Tai Il Yoon. Wastewater treatment in a hybridbiological reactor using powdered minerals: effects of organic loading rateson COD removal and nitrification [J]. Process Biochemistry,2002,38:81-88
    [132]. OKABE. S, OOZAWA. Y, HIRATA. K and WATANABE Y. RELATINSHIPBETWEEN POPULATION DYNAMICS OF NITRIFIERS IN BIOF1LMSAND REACTOR PERFORMANCE AT VARIOUS C:N RATIOS [J]. WaterResearch,1996,30(7):1563-1572.
    [133].温沁雪,唐致文,陈志强,施汉昌,吕炳南. A2O工艺好氧末段DO变化对脱氮除磷影响[J].环境工程学报,2011,5(5):1041-1046.
    [134].马秀兰,田娇,曹国军,王晓龙.不同pH值和DO对低碳氮比生活污水基质去除率的影响[J].安徽农业科学,2010,38(31):17629-17631
    [135]. Fang Liu, Chao-Cheng Zhao, Dong-Feng Zhao, Guo-Hua Liu. Tertiarytreatment of textile wastewater with combined media biological aerated filter(CMBAF) at different hydraulic loadings and dissolved oxygenconcentrations [J]. Journal of Hazardous Materials,2008,160(1):161-167
    [136]. Zhu Lingfen, Gao Ruqin, Wang Zhe, Wang Yangyang, Zhang Runtao, LiuLili. Research on the Characteristic of Dyeing-Printing WastewaterTreatment with Micro-Aerobic Granular Sludge [J]. Energy Procedia,2011,11:2802-2806.
    [137]. Nagadomi H., T. Kitamura, M. Watanabe and K. Sasaki. Simultaneousremoval of chemical oxygen demand (COD), phosphate, nitrate and H2S inthe synthetic sewage wastewater using porous ceramic immobilizedphotosynthetic bacteria [J]. Biotechnology Letters,2000,22:1369–1374.
    [138]. Halil Hasar, Siqing Xia, Chang Hoon Ahn, et al. Simultaneous removal oforganic matter and nitrogen compounds by an aerobic/anoxic membranebiofilm reactor [J]. water research,2008,42:4109–4116
    [139].朱月琪,张丽娟,曾国驱等.低浓度NH3-N废水在ABR中的厌氧氨氧化研究[J].环境工程学报,2010,4(6):1224-1230.
    [140]. Wang Jianlong, Shi Hanchang, Qian Yi. Wastewater treatment in a hybridbiological reactor (HBR): effect of organic loading rates [J]. ProcessBiochemistry,2000,36:297–303.
    [141].黄梅,周少奇,丁进军.同步脱氮除磷工艺中好氧池最适氧浓度研究[J].环境科技与技术,2007,30(6):75-77.
    [142]. Ni Bing-Jie, Han-Qing Yu. Simulation of heterotrophic storage and growthprocesses in activated sludge under aerobic conditions [J]. ChemicalEngineering Journal,2008,140:101–109
    [143]. Akratos Christos S., Vassilios A. Tsihrintzis. Effect of temperature, HRT,vegetation and porous media on removal efficiency of pilot-scale horizontalsubsurface flow constructed wetlands [J]. ecological engineering.2007,29:173–191
    [144]. FENG HUA-JUN, LI-FANG HU, DAN SHAN, et al. Effects of Temperatureand Hydraulic Residence Time (HRT) on Treatment of Dilute Wastewater ina Carrier Anaerobic Baffled Reactor [J]. BIOMEDICAL ANDENVIRONMENTAL SCIENCES,2008,21:460-466.
    [145].黄志金,黄光团,史春琼等. DO对膜生物反应器处理高NH3-N废水的影响[J],环境科学与技术,2010,33(1):138-145
    [146].尹军贤.焦化废水的生物脱氮技术[J].燃料与化工,1996,27(6):309-314.
    [147].郁飞远,刘光利,李碧良等.氨氮废水的生化处理实验[J].兰化科技,1999,12(2):148-153.
    [148].方士,李莜.高氨氮味精废水的亚硝化/反硝化脱氮研究[J].环境科学学报,2001,21(1):79-83.
    [149].张占平.水体中氨氮来源及其控制-富营养化的思考[J].内蒙古环境科学,2008,20(5):71-72.
    [150].孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003.
    [151].叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [152].郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    [153].吴家前,张健,李英花.空气吹脱法在生活垃圾渗滤液氨氮脱除中实验研究[J].广西科学,2010,17(3):274-276.
    [154]. Cheung K. C., Chu L. M., Wong M. H. Ammonia stripping as a pretreatmentfor landfill leachate water [J]. Water. Air. And Soil Pollution,1997,94(1-2):209-221.
    [155]. Bonmati A. Flotats X. Air stripping of ammonia from pig slurry:characterisation and feasibility as a pre-or post-treatment to mesophilicanaerobic digestion [J]. Waste Management,2003,23(3):261-272.
    [156].孙东刚.离子交换法处理化肥厂废水基础研究[D].太原理工大学,2008.
    [157]. Jorgensen T. C. and Weatherley L. R. Ammonia removal from wastewater byion exchange in the presence of organic contaminants [J]. Water Research,2003,37:1723-1728.
    [158]. Nguyen M. L. and Tanner C. C. Ammonia removal from wastewaters usingnatural New Zealand zeolites [J]. New Zealand Journal of AgriculturalResearch,1998,41:427-446.
    [159].罗仙平,李健昌,严群等.处理低浓度氨氮废水吸附材料的筛选[J].化工学报,2010,61(1):216-222.
    [160]. Chung Y. C., Son D. H., Ahn D. H. Nitrogen and organics removal fromindustrial wastewater using natural zeolite media [J]. Water Science andTechnology,2000,42(5-6):127-134.
    [161]. Ozturki, Altinbasm, Koyuncul, et al. Advanced physico-chemical treatmentexperiences on young municipal landfill leachates [J]. Waste Management,2003,23(5):441-446.
    [162]. Kurama H., Poetzschke J. and Haseneder R. The application of membranefiltration for the removal of ammonium ions from potablewater [J]. WaterResearch,2002,36(11):2905-2909.
    [163]. Ahn W. Y., Kang M. S., Yim S. K. and Choi K. H. Advanced landfill leachatetreatment using an integrated membrane process [J]. Desalination,2002,149(1-3):109-114.
    [164]. Stratful I., M. D. Scrimshaw and J. N Lester Conditions influencing theprecipitation of magnesium ammonium phosphate [J]. Water Research,2001,35(17):4191-4199.
    [165].王伟,黄年彬,匡载侨等.四苯硼酸钠对高浓氨氮废水的处理利用[J].中国石油和化工,2010,7:42-43.
    [166].景明霞.化学沉淀法处理稀土氨氮废水的研究[J].安徽化工,2010,36(3):71-72,74.
    [167].罗领先,崔喜军.化学沉淀法处理高浓度氨氮废水的动力学研究[J].广东农业科学,2010,6:203-204.
    [168].时永辉,张韬,刘峰等. MAP法处理高氨氮废水的影响因素研究[J].中国给水排水,2010,26(7):80-82.
    [169]. Kaewpuang-Ngam S., Inazu K., Kobayashi T. et al. Selective wet-airoxidation of diluted aqueous ammonia solutions over supported Ni catalysts[J]. Water Research,2004,38(3):778-782.
    [170]. Cao S., Chen G., Hu X. et al. Catalytic wet air oxidation of wastewatercontaining ammonia and phenol over activated carbon supported Pt catalysts[J]. Catalysis Today,2003,88(1-2):37-47.
    [171].鲁剑,张勇,吴盟盟等.电化学氧化法处理高氨氮废水的试验研究[J].安全与环境工程,2010,17(2):51-53.
    [172].李丹丹,刘中清,颜欣. TiO2纳米管阵列光电催化氧化处理氨氮废水[J].无机化学学报,2011,27(7):1358-1362
    [173].丁元娜,代进,滕欣宇.生物脱氮新技术研究现状探讨[J].纯碱工业,2011,1:22-25.
    [174].石娟,张传义.生物脱氮新技术[J].山西建筑,2011,37(4):112-114.
    [175].曲春先,张晓宁.新型生物脱氮工艺的研究现状及发展[J].黑龙江科技信息,2010,2:12.
    [176].雷灵琐,张雁秋,赵跃民.生物脱氮技术研究的新进展[J].江苏环境科技,2003,16(3):43-46.
    [177].郝祥超,王良,张俊华等. A/O工艺在高氨氮废水中应用[J].环境科学与管理,2010,35(7):82-84.
    [178]. Sattayatewa C., Pagilla K., Pitt P. et al. Organic nitrogen transformations in a4-stage Bardenpho nitrogen removal plant and bioavailability/biodegradability of effluent DON [J]. Water Research,2009,43:4507-4506.
    [179].张宝军,耿德强,张雁秋. A2/O工艺处理城市污水的应用研究[J].煤矿环境保护,2002,16(3):32-35.
    [180]. Li J., David Elliott D., Nielsen M. et al. Long-term partial nitrification in anintermittently aerated sequencing batch reactor (SBR) treatingammonium-rich wastewater under controlled oxygen-limited conditions [J].Biochemical Engineering Journal,2011,55:215–222.
    [181]. Wu G., Rodgers M., Zhan X. Nitrification in sequencing batch reactors withand without glucose addition at11C [J]. Biochemical Engineering Journal2008,40:373–378.
    [182]. Wu C., Chen Z., Liu X. et al. Nitrification–denitrification via nitrite in SBRusing real-time control strategy when treating domestic wastewater [J].Biochemical Engineering Journal2007,36:87–92.
    [183]. Zhou X., Guo X., Han Y. et al. Enhancing nitrogen removal in an Orbaloxidation ditch by optimization of oxygen supply: practice in a full-scalemunicipal wastewater treatment plant [J]. Bioprocess and biosystemsengineering,2012,2.
    [184].张园,罗固源,许晓毅. UCT工艺的活性污泥特性及稳定性研究[J].中国给水排水,2011,27(1):24-28.
    [185].王微微,高路,郭子洋.废水生物脱氮工艺综述[J].黑龙江水利科技,2010,38(1):127-128.
    [186]. Ciuda G., Rubilar O., Munoz P., et al. Partial nitrification of high ammoniaconcentration wastewater as a part of a shortcut biological nitrogen removalprocess [J]. Process Biochemistry,2005,40(5):1715-1719.
    [187].肖永辉.高氨氮废水短程硝化的影响因素[J].北方环境,2011,23(5):122.
    [188]. Dosta J., Gali A., EI-Hadj T. B., et al. Operation and model description of asequencing batch reactor treating reject water for biological nitrogen removalvia nitrite [J]. Bioresource Technology,2007,98(11):2065-2075.
    [189]. Jetten M. S. M., Wagner M., Fuerst J., et al. Microbiology and application ofthe anaerobic ammonium oxidation (‘anammox’) process [J]. CurrentOpinion in Biotechnology,2001,12:283-288.
    [190]. Van de Graaf A. A., de Bruijn P., Robertson L. A. et al. Metabolic pathway ofanaerobic ammonium oxidation on the basis of15N studies in a fluidized bedreactor [J]. Microbiology,1997,143(7):2415-2421.
    [191]. Cho S., Fujii N., Lee T., et al. Development of a simultaneous partialnitrification and anaerobic ammonia oxidation process in a single reactor [J].Bioresource Technology,2011,102:652–659.
    [192]. Virdis B., Read S. T., Rabaey K., et al. Biofilm stratification duringsimultaneous nitrification and denitrification (SND) at a biocathode [J].Bioresource Technology,2011,102:334–341.
    [193]. Holman J.B., Wareham D.G. COD, ammonia and dissolved oxygen timeprofiles in the simultaneous nitrification/denitrification process [J].Biochemical Engineering Journal2005,22:125–133.
    [194]. Robertson L. A., Kuenen J. G. Combined heterotrophic nitrification andaerobic denitrification in Thiosphaera pantotropha and other bacteria [J].Antonie van Leeuwenhoek,1990,57:139-152.
    [195]. Van de Graff A. A., de Bruijn P., Robertson L. A., et al. Metabolic pathwayof anaerobic ammonium oxidation on the basis of N studies in a fluidizedbed reactor [J]. Microbiology,1997,143:2415-2421.
    [196]. Hippen A, Rosenwinkel K. H., Baumgarten G, et al. Aerobicdeammonification: A new experience in the treatment of waste waters [J].Water Science and Technology,1997,35:111-120.
    [197]. Lee. N. M. and Welander T. The Effect of Different Carbon Sources onRespiratory Denitrification in Biological Wastewater Treatment [J]. Journalof Fermentation and Bioengineering,1996,82(1),277-285.
    [198]. Modin O., Fukushi K. and Yamamoto K. Denitrification with methane asexternal carbon source [J]. Water Research,2007,41(12),2726–2738.
    [199]. Blaszczyk M. Effect of medium composition on the denitrification of nitrateby Paracoccus denitrificans [J]. Applied and Environment Microbiology,1993,59(11),3951-3953.
    [200]. Almeida J. S., Julio S. M., Reis M. A. and Carrondo M. J. T. Nitriteinhibition of denitrification by Pseudomonas fluorescens [J]. Biotechnologyand Bioengineering,1995,46(3),194-201.
    [201]. Bernat K., Wojnowska-Bary a I. Carbon source in aerobic denitrification [J].Biochemical Engineering Journal,200736:116–122.
    [202].刘江霞,罗泽娇,靳孟贵等.以麦秆作为好氧反硝化碳源的研究[J].环境工程,2008,26(2):94-96.
    [203].文辉,陈云峰,高良敏.不同碳源材料用于污水厂尾水生物反硝化碳源的效果研究[J].环境科学学报,2011,31(3):499-504.
    [204].周贵忠,孙静,张旭.地下水生物反硝化碳源材料研究[J].环境科学与技术,2008,31(7):4-6,10.
    [205].邵留,徐祖信,金伟等.以稻草为碳源和生物膜载体去除水中硝酸盐[J].环境科学,2009,30(5):1414-1419.
    [206]. Schipper L. A. and Maja V. V. Nitrate removal from groundwater anddenitrification rates in a porous treatment wall amended with sawdust [J].Ecological Engineering,2000,14:269-278.
    [207]. Volokita M., Abehovich A. and M. Inês M. Soares. Denitrification of groundwater using cotton as energy source [J]. Water Science and Technology,1996,34(1):379-385.
    [208]. Li G., Chen J., Li Q., et al. Biodegradable Composites from PinewoodSawdust and Polyvinyl Alcohol Adhesives [J]. Advanced Materials Research,2011,281:59-63.
    [209].姚光裕.过氧化物-氨溶液对松木的脱木素作用[J].黑龙江造纸,2006,1:22-23.
    [210]. Yang R., Xu S., Wang Z. and Yang W. Aqueous extraction of corncob xylanand production of xylooligosaccharides [J]. LWT-Food Science andTechnology,2005,38(6),677-682.
    [211]. Carrera, J., Vicent, T., Lafuente, J. Effect of influent COD/N ratios onbiological nitrogen removal (BNR) from high-strength ammonium Industrialwastewater[J]. Process Biochemistry,2004,39:1615-1624.
    [212].阎宁,金雪标,张俊清.甲醇与葡萄糖为碳源在反硝化过程中比较[J].上海师范大学学报(自然科学版),2002,31(3):41-44.
    [213].封功能,许伟,刘汉文等.玉米芯二步发酵生产生物饲料的研究[J].饲料工业,2011,32(3):53-55.
    [214].金赞芳,陈英旭,小仓纪雄.以棉花为碳源去除地下水硝酸盐的研究[J].农业环境科学学报,2004,23(3):512-515.
    [215]. Xiao L. W., Rodgers M. and Mulqueen J. Organic carbon and nitrogenremoval from a strong wastewater using a denitrifying suspended growthreactor and a horizontal-flow biofilm reactor. Bioresource Technology,2007,98,739-744.
    [216]. Elefsiniotis P. and Li D. The effect of temperature and carbon source ondenitrification using volatile fatty acids. Biochemical Engineering Journal,2006,28,148-155.
    [217]. Akunna J. C., Bizeau C. and Moletta R. Nitrate and nitrite reductions withanaerobic sludge using various carbonsources: glucose, glycerol, acetic acid,lactic acid and methanol. Water Research,1993,27,1303-1312.
    [218]. Cappai G., Carucci A. and Onnis A. Use of industrial wastewater for theoptimization and control of nitrogen removal processes. Water Science andTechnology.2004,50,17-24.
    [219]. Rodriguez L., Vollasenor K. and Fernandez F. J. Use of agro-foodwastewater for the optimisation of the denitrification process. Water Scienceand technology,2007,55,63-70.
    [220]. De Lucas A., Rodríguez L., Villase or J. and Fernández F. J. Denitrificationpotential of industrial wastewater. Water Research,2005,39,3715-3726.
    [221]. Constontin H. and Fick M. Influence of C-sources on the denitrification rateof a high-nitrate concentrated industrial wastewater. Water Research,1997,31,583-589.
    [222]. Münch E. V., Lant P., Keller J. Simultaneous nitrification and denitrificationin bench-scale sequencing batch reactors [J]. Water Research,1996,30:277-284.
    [223]. Pai S. L., Chong N. M., Chen C. H. Potential applications of aerobicdenitrifying bacteria as bioagents in wastewater treatment [J]. BioresourceTechnology,1999,68:179-185.
    [224]. Yoo H., Ahn, K. H., Lee H. J. et al. Nitrogen removal from syntheticwastewater by simultaneous nitrification and denitrification (SND) via nitritein an intermittently-aerated reactor [J]. Water Research,1999,33:145-154.
    [225]. Gupta A. B., Gupta S. K. Simultaneous carbon and nitrogen removal fromhigh strength domestic wastewater in an aerobic RBC biofilm [J]. WaterResearch,2001,35:1714-1722.
    [226]. Patureau D., Bernet N., Bouchez T., et al. Biological nitrogen removal in asingle aerobic reactor by association of a nitrifying ecosystem to an aerobicdenitrifier, Microvirgula aerodenitrificans [J]. Journal of Molecular CatalysisB: Enzymatic,1998,5:435-439.
    [227]. Patureau D., Bernet N., Molletta R. Combined nitrifcation and dentirificationin a single aerated reactor using the aerobic denitrifier Comamonas sp. strainSGLY2[J]. Water Research,1997,31:1363-1370.
    [228]. Hano T., Matsumoto M., Kuribayashi K., et al. Biological nitrogen removalsin a bubble column with a draught tube [J]. Chemical Engineering Science,1992,47:3737–3744.
    [229]. Fujiwara T., Somiya I., Tsuno H., et al. Effect of draft tube diameter onnitrogen removal from domestic sewage in a draft tube type reactor [J].Water Science and Technology,1998,38(1):319–326.
    [230]. van Loosdrecht M. C., van Benthum W. A. and Heijnen J. J. Integration ofnitrification and denitrification in biofilm airlift suspension reactors[J]. WaterScience and Technology,2000,41(4-5):97–103.
    [231]. Frijters, C. T. M. J., Eikelboom D. H., Mulder A., et al. Treatment ofmunicipal wastewater in a CIRCOX airlift reactor with integrateddenitrification [J]. Water Science and Technology,1997,36:173–181.
    [232]. Sen P., Dentel S. K. Simultaneous nitrification-denitrification in a fluidizedbed reactor [J]. Water Science and Technology,1998,38:247–254.
    [233]. Ro M., Vrtov ek J. Wastewater treatment and nutrient removal in thecombined reactor [J]. Water Science and Technology,1998,38:87–95.
    [234]. Pochana, K., Keller, J., Study of factors affecting simultaneous nitrificationand denitrification (SND)[J]. Water Science and Technology,1999,39(6):61–68.
    [235]. Kuroda, M., Watanabe, T., Umedu, Y., Simultaneous oxidation and reductiontreatments of polluted water by a bio-electro reactor [J]. Water Science andTechnology,1996,34(9):101–108.
    [236]. Virdis B., Read S. T., Rabaey K., et al. Biofilm stratification duringsimultaneous nitrification and denitrification (SND) at a biocathode [J].Bioresource Technology,2011,102:334–341.
    [237]. Yilmaz, G., Lemaire, R., Keller, J., Yuan, Z., Simultaneous nitrification,denitrification, and phosphorus removal from nutrient-rich industrialwastewater using granular sludge. Biotechnology and Bioengineering,2008,100(3):529–541.
    [238]. Liu Y., Shi H., Xia L., et al. Study of operational conditions of simultaneousnitrification and denitrification in a Carrousel oxidation ditch for domesticwastewater treatment [J]. Bioresource Technology,2010,101:901–906.
    [239]. R. Leyva-Ramos, L.A. Bernal-Jacome, I. Acosta-Rodriguez. Adsorption ofcadmium(II) from aqueous solution on natural and oxidized corncob [J].Separation and Purification Technology,2005,45:41–49
    [240]. Holman J.B., Wareham D.G. COD, ammonia and dissolved oxygen timeprofiles in the simultaneous nitrification/denitrification process [J].Biochemical Engineering Journal,2005,22:125–133.
    [241]. Van Niel E. W. J., Braber K. J., Robertson L. A., Kuenen J. G. Heterotrophicnitrification and aerobic denitrification in Alcaligenes faecalis strain TUD [J].Antonie van Leeuwenhoek,1992,62:231–237.
    [242]. Robertson, L. A., Kuenen, J. G. Heterotrophic nitrification in Thiosphaerapantotropha: oxygen uptake and enzyme studies [J]. Journal of GeneralMicrobiology,1988,134:857–863.
    [243]. Stouthamer, A. H., de Boer, A. P. N., van der Oost, J., van Spanning, R. J. M.Emerging principles of inorganic nitrogen metabolish in Paracoccusdenitrificans and related bacteria[J]. Antonie van Leeuwenhoek,1997,71:33–41.
    [244]. T. C. Zhang, Y. C. Fu and P. L. Bishop. Competition in biofilms [J]. WaterScience and technology,1995,29(10-11):263-270.
    [245]. F Fdz-Polanco, E Méndez, M.A Urue a, S Villaverde, P.A Garc a. Spatialdistribution of heterotrophs and nitrifiers in a submerged biofilter fornitrification [J]. Water Research,2000,34(16):4081-4089.
    [246]. Jianping Li, David Elliott, Michael Nielsena, et al. Long-term partialnitrification in an intermittently aerated sequencing batch reactor (SBR)treating ammonium-rich wastewater under controlled oxygen-limitedconditions [J]. Biochemical Engineering Journal,2011,55:215–222
    [247]. Hiroaki Uemoto, Masahiko Morita. Nitrogen removal with a dual bag systemcapable of simultaneous nitrification and denitrification [J]. BiochemicalEngineering Journal52(2010)104–109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700