用户名: 密码: 验证码:
增压流化床流动与富氧燃烧辐射换热的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增压富氧燃烧技术是燃煤发电站捕集CO2较为经济的技术之一。适合高压富氧煤燃烧较成熟的技术是增压流化床锅炉。本文设计搭建了增压流化床冷、热态实验台,从实验分析与理论研究的角度,对增压流化床内的气固流动与富氧燃烧辐射换热特性进行了研究。
     冷态实验中,在压力0.1-4.5MPa范围内,以Geldart A和B为实验床料,研究了压力对流化特性的影响。结果表明:随压力的升高,B类颗粒的最小流化速度减小,而A类颗粒的基本保持不变,两类颗粒的最小流化空隙率变化较小,但床层膨胀高度均有所增大;A类颗粒的最小鼓泡速度、最小鼓泡空隙率和乳化相空隙率均随压力的升高而增大;基于实验测量值及理论分析,整理得到了可以预测增压流化床流动特性的关联式。采用CCD摄像法对增压床内气泡特性进行了研究,在相同床高和较高气速下,两类颗粒的气泡直径和气泡群上升速度均随压力的升高而减小,而气泡频率和分率均增大。根据前人及本实验结果,拟合得到了增压流化床中气泡直径和流化气体在两相间分配份额的定量计算关联式。结果表明,实验值与拟合值吻合较好,离散程度在18%以内。
     热态实验中,在压力0.1~0.6MPa和温度20-800℃范围内,以Geldart B和D为实验床料,测量了两类颗粒的最小流化速度,并得到了预测增压流化床热态最小流化速度的关联式和合理计算步骤。结果表明:在压力不变的情况下,温度对最小流化速度的影响随床料的种类和压力的不同而有明显的差别,并且预测值与实验结果吻合较好;在床温和给煤量不变的情况下,随压力的升高,烟煤燃烧烟气中CO浓度和最小CO浓度所对应的过量空气系数均减小;基于已得到的有关高压下流化、燃烧特性,建立了增压流化床中密相区的传热模型。
     针对增压富氧燃烧流化床炉内稀相区的辐射换热,建立了描述含灰高浓度三原子混合气体非灰辐射特性的部分光谱k模型。采用该模型与离散坐标法相结合的方法,计算了不同工况下增压富氧燃烧含灰高浓度三原子混合气体的辐射强度和壁面热流量,并与标准计算模型、灰体加权和模型和全光谱关联k分布模型的计算结果进行了对比分析。结果表明:由于灰体加权和模型将飞灰颗粒近似为灰体,使得其误差最大值达到了35%。全光谱k分布模型在温度变化剧烈时,使得关联k假设完全失效,导致全光谱k分布模型产生很大的误差。而本文提出的模型与标准模型的计算结果吻合较好,最大相对误差在12%以内。
Pressurized oxygen-enriched combustion power cycle is one of the most promising carbon capture and sequestration technologies in power plant. In this system, the development of pressurized oxygen-enriched combustor is a key issue. Until now, the most ideal and mature technology is the widely used pressurized bubbling fluidized bed in chemical industry which can satisfy the new system just by further rising operation pressure. Knowledge of the fundamental behaviors of high pressure fluidization combustion and radiative heat transfer is mandatory for optimal design and operation of the high pressure fluidized bed reactors employed in new system. So a pressurized fluidized bed test facility was established, in which the cold-state and hot-state tests were done and theoretical analysis was given.
     In cold-state test, an experimental study of the influence of pressure on fluidization characteristics was carried out over the range of operating absolute pressure0.1-4.5MPa with Geldart A and B particles. The results show that for B particle minimum fluidization velocity is found to decrease obviously, but there is no influence of pressure for A particle. It is found that the bed expansion height increases with the increasing of pressure for fixed value of gas velocity whilst average bed voidage at minimum fluidization velocity is unaffected from B to A particles. For A particle minimum bubbling velocity average bed voidage at minimum bubbling velocity, and dense phase voidage are found to increase obviously with pressure. Furthermore, the existing correlations which are developed for predicting high pressure fluidization were examined based on the experimental data. The influence of pressure on bubble properties in bed was studied with CCD cameras. It is found that bubble diameter and velocity decrease obviously with the increasing of pressure, but bubble frequency and fraction increase with increasing of pressure. Correlations of bubble diameter and allocation of fluidization gas between two phases in pressurized fluidized bed were proposed based on other worker's data and experimental results. The results show that calculated result using correlations show good agreement with observed values and the degree of dispersion is with18%.
     In hot-state test, the minimum fluidization velocity of Geldart B and D particles were measured in the range of operating absolute pressure0.1-0.6MPa and temperature20~800℃.The results show that at a given pressure, the effect of temperature on minimum fluidization velocity is dependent on the material. Based on Ergun equation and bed stress analysis, an equation about minimum fluidization velocity was proposed, and then a reasonable calculation steps about minimum fluidization velocity at elevated pressure and temperature was given. The discrete degree between predicted minimum fluidization velocity and experimental results is small. The influence of pressure on combustion characteristics of bituminous coal was carried out in bed. Under the circumstances of constant bed temperature and coal feeding rate, the CO concentration and excess air coefficient corresponding to minimum CO concentration in flue gas are found to decrease with the increasing of pressure. A new theoretical heat transfer model of dense zone in pressurized fluidized bed was established based on the high pressure experimental results of fluidization and combustion.
     A part spectrum k-distribution model is developed to calculate the radiative properties of sparse zone in pressurized fluidized bed under oxygen-enriched combustion mode, characterized by possibly high concentration of water vapor and carbon dioxide compared to air-fired boilers. In order to verify the model, calculation and analysis are carried out in coal-fired boiler of flue gas with soot under the pressurized oxygen-enriched combustion mode by coupling with discrete ordinate method, results of radiation and wall flux are compared with that of line by line calculation, full spectrum correlated k distribution and weighted sum of grey gases model. The results show that the deviation of weighted-sum-of-grey-gases model is more than35%, because of grey approximation. The deviation of full spectrum correlated k distribution model is also big, because the correlated k hypothesis is invalid when temperature changes quickly. However the relative error of the part spectrum k-distribution model is within12%and much smaller than that of other models when comparing with benchmark line-by-line calculations.
引文
[1]阎维平.洁净煤发电技术[M].(第二版)北京:中国电力出版社.2008:1-18
    [2]阎维平.洁净煤发电技术的发展前景分析[J].华北电力大学学报.2008,35(6):67-71
    [3]马建堂.中华人民共和国2011年国民经济和社会发展统计公报[R].北京:中华人民共和国国家统计局.2012
    [4]盛来运.中国统计年鉴2011[M].北京:中国统计出版社.2011:1-36
    [5]中国煤炭新闻网.2050年煤炭在我国一次性能源中所占比例不低于50%[EB/OL].(2008-9-18). [2012-03-21]. http://www.cwestc.com/index.aspx
    [6]中国电力企业联合会官网.国家能源局发布2011年全社会用电量[EB/OL].(2012-01-16) [2012-03-21]. http://www.cec.org.cn/yaowenkuaidi/
    [7]王彦彦.增压富氧流化床流化特性研究[D].华北电力大学硕士学位论文.2010:1-10
    [8]郑楚光.温室效应及其控制对策[M].北京:中国电力出版社.2001:1-18
    [9]中央企业节能减排网.中科院估算2011年我国分行业二氧化碳排放量[EB/OL]. (2011-02-11) [2012-03-21]. http://114.255.43.243/news_view5.asp
    [10]骆仲泱,方梦祥.二氧化碳捕集封存和利用技术[M].北京:中国电力出版社.2012:1-31
    [11]张茂,吴少华,李振中.火电厂CO2捕集及资源化技术[J].电站系统工程.2007,23(5):11-13
    [12]方梦祥,张卫风,晏水平,等.燃煤电厂分离CO2的经济性分析[J].浙江大学学报(工学版).2007,41(12):2076-2081
    [13]林汝谋,段立强,金红光,等.整体煤气化联合循环热力系统设计优化研究[J].燃气轮机技术.2004,17(2):3-11
    [14]晏水平,方梦祥,张卫风,骆仲泱.基于膜吸收技术的烟气CO2分离工艺设计与经济性分析[J].动力工程.2007,27(3):415-421
    [15]房凡,李振山,蔡宁生.钙基CO2吸收剂循环反应特性的试验与模拟[J].中国电机工程学报.2009,29(14):30-35
    [16]房凡,李振山,蔡宁生.基于CCRs过程的双流化床反应器设计与冷态试验[J].工程热物理学报.2009,30(6):1059-1062
    [17]蔡宁生,房凡,李振山.钙基吸收剂循环煅烧/碳酸化法捕集CO2的研究进展[J].中国电机工程学报.2010,30(26):35-43
    [18]熊杰,张超,赵海波,等.基于热经济学结构理论的电站热力系统全局优化[J].中国电机工程学报.2007,27(26):65-71
    [19]熊杰,赵海波,柳朝晖,郑楚光.基于热经济学的O2/CO2循环燃烧系统和MEA吸附系统的技术-经济评价[J].工程热物理学报.2008,29(10):1625-1629
    [20]刘忠,宋蔷,姚强,等O2/CO2燃烧技术及其污染物生成与控制[J].华北电力大学学报.2007,34(1):82-88
    [21]Hong J., Chaudhry G., Brisson J G., et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor[J]. Energy.2009, 34(9):1332-1340
    [22]Hong J., Field R., Gazzino M., Ghoniem A. F., Operating pressure dependence of the pressurized oxy-fuel combustion power cycle[J]. Energy.2010, 35(12):5391-5399
    [23]Zheng C., Zheng L., Pomalis R., et al. Conceptual design and experimental study overview:flue gas treatment and CO2 recovery experimental system for high pressure oxygen fired coal combustion[A]. Proceeding of the 33rd International Technical Conference on Coal Utilization and Fuel Systems[C]. Clearwater, Florida, Coal Technology Association 2008:209-220
    [24]Fassbender A., Tao L., Henry, R., Physical properties and liquid vapor equilibrium of pressurized CO2 rich gases from pressurized oxy-fuel combustion of coal. [A]. Proceeding of the 33rd International Technical Conference on Coal Utilization and Fuel Systems[C]. Clearwater, Florida, Coal Technology Association 2008:15-24
    [25]Henry R., Modeling of Pressurized oxy-fuel for recovery of latent heat and carbon capture using usibelli coal [A]. Proceeding of the 32nd International Technical Conference on Coal Utilization and Fuel Systems[C]. Clearwater, Florida, Coal Technology Association 2007:38-46
    [26]Ghoniem A., Iloeje C., Field R., et al. Process modeling and analysis of CO2 purification for pressurized oxy-coal combustion[A]. Proceeding of the 35th International Technical Conference on Coal Utilization and Fuel Systems[C]. Clearwater, Florida, Coal Technology Association 2010:287-298
    [27]Yang T., Hunt P., Lisauskas R., et al. Pressurized oxy-fuel combustion carbon capture power system[A]. Proceeding of the 35th International Technical Conference on Coal Utilization and Fuel Systems[C]. Clearwater, Florida, Coal Technology Association 2010:299-309
    [28]Zheng L., Pomalis R., Clements B., et al. Optimization of high pressure oxy-fuel combustion process for power generation and CO2 capture [A]. Proceeding of the 35th International Technical Conference on Coal Utilization and Fuel Systems[C]. Clearwater, Florida, Coal Technology Association 2010:324-332
    [29]Gazzino M., Riccio G., Rossi N., et al. Pressurized oxy-fuel coal combustion rankine-cycle for future zero emission power plants:technological issues[A].Proceeding of the ASME 2009 3rd International Conference of Energy Sustainability[C]. San Francisco, California, ASME Press 2009:881-892
    [30]Alex G., Fassbender P. E., Robert S. H., Pressurized oxy-fuel for advanced coal to liquids power plant[A]. Proceeding of the 34th International Technical Conference on Coal Utilization and Fuel Systems[C]. Clearwater, Florida, Coal Technology Association 2009:355-366
    [31]Chen L., Ghoniem A. F., Gazzino M., Characteristics of pressurized oxy-fuel coal combustion under increasing swirl number [A]. Proceeding of the 35th International Technical Conference on Coal Utilization and Fuel Systems[C]. Clearwater, Florida, Coal Technology Association 2010:161-172
    [32]Fassbender A., Pressurized oxy-fuel combustion for multi-pollutant capture [A]. Proceeding of the 30th International Technical Conference on Coal Utilization and Fuel Systems[C]. Clearwater, Florida, Coal Technology Association 2005:38-49
    [33]Clements B., Zheng L., Pomalis R., Next generation oxy-fired systems:potential for energy efficiency improvement through pressurization[A].Proceeding of the ASME 2009 3rd International Conference of Energy Sustainability[C]. San Francisco, California, ASME Press 2009:689-698
    [34]章名耀.增压流化床联合循环发电技术[M].南京:东南大学出版社.1998:1-20
    [35]顾宗安.增压流化床联合循环发电运营设计标准与新技术应用[M].北京:中国科技文化出版社.2008:921-930
    [36]肖睿,金保异,熊源泉,等.中试规模的第二代增压流化床联合循环发电技术研究与开发[J].工程热物理学报.2006,27(3):537-539
    [37]肖睿,金保异,熊源泉,等.第二代增压流化床煤部分气化炉单元中间试验研究[J].东南大学学报.2005,35(1):24-28
    [38]陈晓平,赵长遂,段钰锋,等15MWe PFBC-CC中试机组增压流化床锅炉的设计及试运行结果[J].动力工程.2002,22(6):2072-2077
    [39]肖军,章名耀,郑莆燕.增压部分气化燃煤联合循环(PPG-CC)发电系统热力性能分析[J].热能动力工程.2003,16(4):1-4
    [40]段钰锋,陈晓平,吴新,等.增压流化床锅炉启动特性研究[J].东南大学学报.2001,31(6):45-51
    [41]卢平,章名耀,徐跃年.增压流化床用水煤膏管内流动滑移效应研究[J].热能动力工程.2002,17(97):31-33
    [42]陈晓平,谷小兵,段钰锋,等.气化半焦加压着火特性及燃烧稳定性研究[J].热能动力工程.2005,20(2):153-157
    [43]熊源泉,郑守忠,金保舁,等.煤气化半焦增压流化床燃烧特性中试试验研究[J].热能动力工程.2007,22(2):154-157
    [44]Chitester D. C., Kornosky R. M., Fan L., Characteristic of fluidization at high pressure[J]. Chemical Engineering Science.1984,39(2):253-261
    [45]Richtberg M., Richter R., Wirth K. E., Characterization of the flow patterns in a pressurized circulating fluidized bed[J]. Powder Technology.2005, 155(2):147-152
    [46]景慧敏,程中虎,王鸿瑜.压力下流化床流动特性的实验研究[J].燃料化学学报.2008,36(1):104-107
    [47]朱志平.加压循环流化床的实验与模型研究[D].中国科学院工程热物理研究所博士学位论文.2008:15-30
    [48]简庆杭,唐楚明,刘前鑫,等.压力流化床流体动力特性的冷态试验研究[J].浙江大学学报.1985,4(19):8-18
    [49]Abrahamsen A. R., Geldart D., Behavior of gas-fluidized beds of fine powders: part I. Homogeneous expansion[J]. Powder Technology.1980,26(3):35-46
    [50]Sobreiro L. E. L., Monteiro J. L. F., The effect of pressure on fluidized bed behavior[J]. Powder Technology.1982,33(3):95-100
    [51]Bin A. K., Prediction of the minimum fluidization velocity[J]. Powder Technology.1994,81(2):197-199
    [52]Weimer A. W., Quarderer G. J., On dense phase voidage and bubble size in high pressure fluidized beds of fine powders[J]. AIChE Journal.1985, 31(6):1019-1028
    [53]Liop M. F., Casal J., Arnaldos J., Expansion of gas-solid fluidized beds at pressure and high temperature [J]. Powder Technology.2000,107(3):212-225
    [54]Sidorenko I., Rhodes M J., Influence of pressure on fluidization properties [J]. Powder Technology.2004,141 (1):137-154
    [55]Marzocchella A., Salatino P., Fluidization of solids with CO2 at pressure from ambient to supercritical [J]. AIChE Journal.2000,46(5):901-910
    [56]Zhu Z., Na Y., Lu Q., Effect of pressure on minimum fluidization velocity[J]. Journal of Thermal Science.2007,16(3):264-269
    [57]Saxena S. C., Vogel G. J., The measurement of incipient fluidization velocities in a bed of coarse dolomite at temperature and pressure [J]. Transactions of the Institution of Chemical Engineers.1977,55(1):184-189
    [58]Botterill J. S. M., Teoman Y., Fluid bed behavior at elevated temperature [J]. Powder Technology.1982,31(8):101-118
    [59]Wen C. Y., Yu Y. H., Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series.1966,62:100-111
    [60]Yang W. C., Chitester D. C., A generalized methodology for estimating minimum fluidization velocity at elevated pressure and temperature [J]. AIChE Journal.1985,31(7):1086-1092
    [61]Macneil S., Basu P., Effect of pressure on char combustion in a pressurized circulating fluidized bed boiler[J]. Fuel.1998,77(4):269-275
    [62]Altum E. N., Kok M. V.. Investigation of the influence of pressure on the combustion of Alpagut lignite[J]. Journal of Thermal Analysis and Calorimetry. 2008,94(1):235-240
    [63]陈晓平,谷小兵,段钰锋,等.半焦加压燃烧特性研究[J].工程热物理学报.2004,25(2):345-347
    [64]Reddy B. V., Basu P., A model for heat transfer in a pressurized circulating fluidized bed furnace[J]. International Journal of Heat and Mass Transfer.2001, 44(15):2877-2887
    [65]Gungor A., A study on the effects of operational parameters on bed-to-wall heat transfer[J]. Applied Thermal Engineering.2009,29(11):2280-2288
    [66]Rothmana L. S., Camy P. C., Flaud J. M., et al. HITEMP, the high temperature molecular spectroscopic database 2010[EB/OL]. (2010-5-16). [2012-06-21]. http://www.hitran.com.
    [67]Johansson R., Leckner B., Andersson K., et al. Account for variations in the H2O to CO2 molar ratio when modeling gaseous radiative heat transfer with the weighed-sum-of-gray-gases model[J]. Combustion and Flame.2011, 158(5):893-901
    [68]Andre F., Vaillon R., Galizzi C, et al. A multi-spectral reordering technique for the full spectrum SLMB modeling of radiative heat transfer in nonuniform gaseous mixtures [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2011,112(3):394-411
    [69]Chu H., Liu F., Zhou H., Calculations of gas thermal radiation transfer in one-dimensional planar enclosure using LBL and SNB models[J]. International Journal of Heat and Mass Transfer.2011,54(21):4736-4745
    [70]阎维平,米翠丽.基于宽带关联k模型的气体辐射特性分析与计算[J].动力工程.2009,29(12):1115-1122
    [71]Wang C. S., Berry G. F., Chang K. C., et al. Combustion of pulverized coal using waste carbon dioxide and oxygen[J]. Combustion and Flame.1988, 72(3):301-310
    [72]Payne R., Chen S. L., Wolsky A. M., et al. CO2 recovery via coal combustion in mixtures of oxygen and recycled flue gas[J]. Combustion Science and Technology.1989,67(1):1-16
    [73]Croiset E., Thambimuthu K. V., NOx and SO2 emissions from O2/CO2 recycle coal combustion[J]. Fuel.2001,80(14):2117-2121
    [74]朱路平O2/CO2燃烧技术应用的经济可行性分析[D].华北电力大学硕士学位论文.2011:3-28
    [75]毛玉如,方梦祥,骆仲泱,等O2/CO2气氛下煤焦热重试验研究[J].电站系统工程.2004,20(5):17-18
    [76]毛玉如,方梦祥,骆仲泱,等.富氧气氛下循环流化床煤燃烧试验研究[J].燃烧科学与技术.2005,11(2):188-191
    [77]邹维祥.富氧燃烧方式下煤粉燃烧特性研究[D].华中科技大学硕士学位论文.2007:16-36
    [78]段伦博,赵长遂,李庆钊,等O2/CO2气氛下煤焦燃烧实验研究[J].燃料化学学报.2009,37(6):654-658
    [79]李庆钊,赵长遂,武卫芳,等.O2/CO2气氛下煤粉燃烧反应动力学的试验研究[J].动力工程2008,28(3):447-452
    [80]韩亚芬.富氧条件下煤燃烧特性的热重法实验基础研究[D].哈尔滨工业大学硕士学位论文.2007:25-30
    [81]刘彦,刘彦丰,徐江荣O2/CO2煤粉燃烧污染物特性实验和理论研究[M].北京:科学出版社.2009:50-60
    [82]游卓,王智化,周志军,刘建忠,周俊虎,等O2/CO2气氛下无烟煤及烟煤燃烧NO释放特性对比试验研究[J].中国电机工程学报.2011,31(35):53-58
    [83]周志军,姜旭东,周俊虎,等.煤粉富氧燃烧着火模式判断和动力学参数分析[J].浙江大学学报.2012,46(3):482-488
    [84]樊越胜,司鹏飞,曹子栋.富氧煤粉气流着火机理的实验研究[J].动力工程学报.2011,31(1):33-36
    [85]张利琴,宋蔷,吴宁,姚强.煤烟气再循环富氧燃烧污染物排放特性研究[J].中国电机工程学报.2009,29(29):35-40
    [86]王小华.氧燃烧方式下煤粉燃烧及炉内辐射传热特性基础研究[D].华中科技大学硕士学位论文.2007:30-39
    [87]王小华,刘豪,邱建荣,等.氧燃烧方式下煤粉锅炉辐射传热特性分析[J].热能动力工程.2009,24(1):85-88
    [88]李冬O2/CO2燃烧条件下气体辐射特性参数计算及数值模拟[D].华中科技大学硕士学位论文.2008:43-51
    [89]刘彦丰,薛宪阔O2/CO2燃烧方式的锅炉热力计算方法研究与分析[J].华东电力.2008,36(3):83-85
    [90]米翠丽,阎维平,李皓宇,等.O2/CO2燃烧方式下锅炉对流传热系数的修正算法和数值研究[J].动力工程.2009,29(5):417-421
    [91]王长安,车得福.O2/CO2燃烧技术研究进展1:燃烧与传热特性[J].热力发电.2011,40(5):10-14
    [92]殷上铁,金保昇,钟文琪,等.加压循环流化床气固流动特性实验研究1:颗粒体积分数分布特性[J].东南大学学报.2012,42(2):308-312
    [93]刘明辉.加压流化床流体力学性能研究及CFD数值模拟[D].北京化工大学硕士学位论文.2011:1-10
    [94]刘德昌,阎维平.流化床燃烧技术[M].北京:水利电力出版社.1995:16-19
    [95]郭慕孙.流态化手册[M].北京:化学工业出版社.2008:150-255
    [96]Zhong W., Jin B., Zhong Y., et al. Fluidization of biomass particle in a gas-solid fluidized bed[J]. Energy and Fuels.2008,22(6):4170-4176
    [97]陈振东,陈晓平,吴烨,等.热态临界流化速度研究[J].中国电机工程学报.2010,30(14):21-25
    [98]Geldart D., Estimation of basic particle properties for use in fluid-particle process calculations[J]. Powder Technology.1990,60(1):1-13
    [99]Svarovsky L. Powder Testing Guide[M]. Amsterdam:Elsevier Press.1987:40-52
    [100]Rietema R., The Dynamics of Fine Powders[M]. London:Elsevier Applied Science.1991:28-35
    [101]Gudeds de Carvalha J. R. F., Dense phase expansion in fluidised beds of fine particles[J]. Chemical Engineering Science.1981,36(2):413-416
    [102]Foscolo P. U., Gibalaro L. G., A fully predictive criterion for the transition between particulate and aggregate fluidization[J]. Chemical Engineering Science.1984,39(4):1667-1675
    [103]Jacob K. V., Weimer A. W., High-pressure particulate expansion and minimum bubbling of fine carbon powders[J]. AIChE Journal.1987,33(10):1698-1706
    [104]Doraiswamy L. K., Transport in Fluidized Particle System[M]. Amsterdam: Elsevier.1989:33-75
    [105]Yang W. C., Fluidization Solids Handling and Processing:Industrial Applications[M]. Westwood:Noyes Publications.1999:111-152
    [106]Tanneui V., Dubien C. J., Fournel B., et al. Group A particle fluidization in supercritical carbon dioxide:effect of operating conditions on fluidization efficiency [J]. Powder Technology.2008,187(2):190-194
    [107]Olowson P. A., Almstedt A. E., Hydrodynamics of a bubbling fluidized bed-influence of pressure and fluidization velocity in terms of drag force[J]. Chemical Engineering Science.1992,47(2):357-366
    [108]Olowson P. A., Almstedt A. E., Influnence of pressure on the minimum fluidization velocity [J]. Chemical Engineering Science.1991,46(2):637-640
    [109]Liop M. F., Casal. J., Incipient fluidization and expansion in fluidized beds operated at pressure and temperature [A]. Proceedings of the Eighth Engineering Foundation Conference on Fluidization[C]. New York, Engineering Foundation 1996:130-138
    [110]Gibilaro L. G., Felice R., Waldram S. P., et al. Generalized friction factor and drag coefficient correlations for fluid-particle interactions[J]. Chemical Engineering Science.1985,40(10):1817-1823
    [111]Busciglio A., Vella G., Micale G., et al. Analysis of the bubbling behavior of 2D gas solid fluidized beds part 1 digital image analysis technique[J]. Chemical Engineering Science.2008,140(1):398-413
    [112]Godieb W., Deen N. G., Kuipers J. A. M., Bubble behavior in fluidised beds at elevated pressures [J]. Macromolecular Materials and Engineering.2011, 296(3):270-277
    [113]周云龙,宋连壮,周红娟.基于图像处理的气固流化床中气泡行为的分析[J].化工自动化及仪表.2011,38(1):60-64
    [114]Asegehegn T. W., Schreiber M., Krautz H. J., Investigation of bubble behavior in fluidized beds with and without immersed horizontal tubes using a digital image analysis technique[J]. Powder Technology.2011,210(3):248-260
    [115]Sanchez-Delgado S., Almendros-lbanez J. A., Garcia-Hernando N., et al. On the minimum fluidization velocity in 2D fluidized beds[J]. Powder Technology. 2011,207(1):145-153
    [116]Busciglio A., Vella G., Micale G., et al. Experimental analysis of bubble size distributions in 2D gas fluidized beds[J]. Chemical Engineering Science.2010, 65(16):4782-4791
    [117]Cai P., Schiavetti M., Michela G. D., et al Quantitative estimation of bubble size in PFBC[J]. Powder Technology.1994,80(2):99-109
    [118]Cai P., Chen S., Jin Y., Effect of operating temperature and pressure on the transition from bubbling to turbulent fluidization[J]. Chinese Jouranl of Chemical Engineering.1990,5(1):122-132
    [119]Sellakumar K. M., Zakkay V., Bubble characterization in pressurized fluidized-bed combustor with internals[J]. Combustion Science and Technology. 1988,60(4):359-374
    [120]Karimipour S., Pugsley T., A critical evaluation of literature correlations for predicting bubble size and velocity in gas-solid fluidized beds[J]. Powder Technology.2011,205(1):1-14
    [121]Busciglio A., Vella G., Micale G., et al. Analysis of the bubbling behavior of 2D gas solid fluidized beds part 2 Comparison between experiments and numerical simulations via digital image analysis technique[J]. Chemical Engineering Jouranl.2009,148(1):145-163
    [122]Chan I. H., Sishtla C., Knowlton T. M., The effect of pressure on bubble parameters in gas-fluidized beds[J]. Powder Technology.1987,53(3):217-235
    [123]Rowe P. N., Prediction of bubble size in a gas fluidised bed[J]. Chemical Engineering Science.1976,31(4):285-288
    [124]Yang T., Leu L., Study of transition velocities from bubbling to turbulent fluidization by statistic and wavelet multi-resolution analysis on absolute pressure fluctuation [J]. Chemical Engineering Science.2008,33(7):1950-1970
    [125]Zhong W., Zhang M., Jin B., et al. Flow behaviors of a large spout-fluid bed at high pressure and temperature by 3D simulation with kinetic theory of granular flow[J]. Powder Technology.2007,175(2):90-103
    [126]Kang S., Kang Y, Han K., et al. Effects of pressure on the minimum fluidization velocity and bubble properties in a gas-solid fluidized bed[J]. Journal of Industrial and Engineering Chemistry.2004,10(3):330-336
    [127]Godlieb W., Gorter S., Deen N. G., et al Experimental study of large scale fluidized beds at elevated pressure[J]. Industrial and Engineering Chemistry Research.2012,51(4):1962-1969
    [128]Moughrabiaj W. O., Grace J. R., Bi H. Effects of pressure, temperature, and gas velocity on electrostatics in gas-solid fluidized beds[J]. Industrial and Engineering Chemistry Research.2009,48(1):320-325
    [129]King D. F., Harrison D., Fluidization of fine particles under pressure[A]. Proceedings of the second Engineering Foundation Conference on Fluidization[C]. New York, Plenum Press 1980:101-108
    [130]Yang G., Du B., Fan L., Bubble formation and dynamics in gas-solid fluidization-A review[J]. Chemical Engineering Science.2007,62(1):2-27
    [131]Stubingtion J. F., Barrett D., Lowry G., Bubble size measurements and correlation in a fluidised bed at high temperatures[J]. Chemical Engineering Research and Design.1984,62(3):173-178
    [132]Davidson J. F., Fluidization[M]. (second edition)London:Academic Press.1985:156-187
    [133]Kunii D., Levensipe O., Fluidization Engineering[M]. (second edition)London: Elsevier.1991:376-398
    [134]Pyle D. L., Harrison D., An experimental investigation of the two-phase theory of fluidization[J]. Chemical Engineering Science.1967,22(4):1199-1207
    [135]王春波.侯伟军,陈传敏,等.富氧燃烧循环流化床锅炉炉内传热特性[J].中国电机工程学报.2011,31(20):1-6
    [136]王春波,霍志红,刑晓娜,增压富氧燃烧流化床炉内传热特性[J].动力工程学报.2012,32(3):182-186
    [137]Reddy B. V., Basu P., Estimation of the effect of system pressure and CO2 concentration of radiation heat transfer in a pressurized circulating fluidized bed combustor[J]. Chemical Engineering Research and Design.2002, 80(2):178-182
    [138]Zahrani A. A., Daous M. A., Bed expansion and average bubble rise velocity in a gas-solid fluidized bed[J]. Powder Technology.1996,87(3):255-257
    [139]Gilbertson M. A., Cheesman D. J., Yates J. G., Observations and measurements of isolated bubbles in a pressurized gas-fluidized bed[A]. Proceedings of the Ninth Engineering Foundation Conference on Fluidization[C]. New York, Engineering Foundation 1998:61-68
    [140]Olowson P. A., Almstedt A. E., Influence of pressure and fluidization velocity on the bubble behaviour and gas flow distribution in a fluidized bed[J]. Chemical Engineering Science.1990,45(7):1733-1741
    [141]Lin T., Tsuchiya K., Fan L., Bubble flow characteristics in bubble columns at elevated pressure and temperature [J]. AIChE Journal.1998,44(9):545-560
    [142]张健,岳敏.单个气泡在加压液-固流化床中上升速度的模型[J].应用基础与工程科学学报.2000,8(1):78-83
    [143]Jean R. H., Fan L. S., Rise velocity and gas-liquid mass transfer of a single large bubble in liquid and liquid-solid fluidized beds[J]. Chemical Engineering Science.1990,45(4):1057-1070
    [144]Schreiber M., Asegehegn T. W., Krautz H. J., Numerical and experimental investigation of bubbling gas-solid fluidized beds with dense immersed tube bundles[J]. Industrial and Engineering Chemistry Research.2011, 50(12):7653-7666
    [145]Ranz W. E., On sprays and spraying[M]. Pennsylvania:State University Press. 1956:65-80
    [146]Movahedirad S., Dehkordi A. M., Banaei M., et al. Bubble size distribution in two-dimensional gas-solid fluidized beds[J]. Industrial and Engineering Chemistry Research.2012,51(18):6571-6579
    [147]Rowe P. N., Foscolo P. U., Hoffman A. C., et al. X-ray observation of gas fluidised beds under pressure [A]. Proceedings of the Fourth Engineering Foundation Conference on Fluidization[C]. New York, Engineering Foundation 1984:53-60
    [148]Godlieb W., Deen N. G., Kuipers J. A. M., Discrete particle simulations of high pressure fluidization[A]. Proceedings of CHISA 17th International Congress of Chemical and Process Engineering[C]. Prague, UTpublications 2006:27-31
    [149]Allahwala S. A., Singh B, Potter O E. Bubble frequency and distribution in fluidized beds[J]. Chemical Engineering Communications.1981 11(4):255-280
    [150]Baeyens J., Wu S. Y., Bed expansion and the visible bubble flow rate in gas fluidized beds[J]. Advanced Powder Technology.1992,87(3):163-189
    [151]Pisters K., Prakash A., Investigation of axial and radial variations of heat transfer coefficient in bubbling fluidized bed with fast response probe[J]. Powder Technology.2011,207(1):224-231
    [152]Nyoman S. W., Basu P., Effect of pressure and carbon dioxide concentration on heat transfer at high temperature in a pressurized circulating fluidized bed combustor [J]. International Journal of Heat and Mass Transfer.2001, 44(15):2965-2971
    [153]雷鸣,王春波,阎维平,等.大同烟煤增压富氧燃烧的热重实验研究[J].中国电机工程学报.2012,32(5):21-26
    [154]阎维平,Botterill J S M.温度对最小流化速度影响的试验研究[J].华北电力学院学报.1989,22(1):28-34
    [155]Rowe P. N., The effect of pressure on minimum fluidization velocity[J]. Chemical Engineering Science.1984,39(2):173-174
    [156]Sangeetha V., Swathy R., Narayanamurthy N., etal. Minimum fluidization velocity at high temperature based on Geldart powder classification[J]. Chemical Engineering Technology.2000,23(8):713-719
    [157]Girimonte R., Fromisani B., The minimum bubbling velocity of fluidized beds operating at high temperature [J]. Powder Technology.2009,189(1):71-84
    [158]Sanael S., Mostufi N., Radmanesh R., et al. Hydrodynamic characteristics of gas-solid fluidization at high temperature [J]. The Canadian Journal of Chemical Engineering.2010,88(1):1-11
    [159]徐通模.燃烧学[M].北京:机械工业出版社.2011:98-127
    [160]Liakos H. H., Theologos K. N., Boudouvis A. G., et al. The effect of pressure on coal char combustion[J]. Applied Thermal Engineering.2001, 21(9):917-928
    [161]Altun N. E., Kok M. V., Investigation of the influence of pressure on the combustion of Alpagut lignite[J]. Journal of Thermal Analysis and Calorimetry. 2008,94(1):235-240
    [162]沈德魁,方梦祥,李杜锋,等.热辐射下木材的热解与着火特性[J].燃烧科学与技术.2007,13(5):437-442
    [163]Abe R., Sasatsu H., Harada T., et al. Prediction of emission gas concentration from pressurized fluidized bed combustion (PFBC) of coal under dynamic operation conditions[J]. Fuel.2001,80(1):135-144
    [164]Jensen A., Johnssion J. E., Modelling of NOx emissions from pressurized fluidized bed combustion-a parameter study [J]. Chemical Engineering Science. 1997,52(11):1715-1731
    [165]Svoboda K., Pohorely M., Hartman M., Effects of operating conditions and dusty fuel on the NOx, N2O and CO emissions in PFB co-combustion of coal and wood[J]. Energy and Fuel.2003,17(4):1091-1099
    [166]Chejne F., Lopera E., Londono C. L., Modelling and simulation of a coal gasification process in pressurized fluidized bed[J]. Fuel.2011,90(1):399-411
    [167]米翠丽.富氧燃煤锅炉设计研究及其技术经济性分析[D].华北电力大学博士学位论文.2010:20-30
    [168]Flamant G., Lu J. D., Towards a generalized model for vertical wall to gas-solid fluidized beds heat transfer-2 radiative transfer and temperature effects[J]. Chemical Engineering Science.1993,48(13):2493-2503
    [169]米翠丽,阎维平.增压富氧燃烧烟气辐射特性宽带关联k模型[J].中国电机工程学报.2010,30(29):62-68
    [170]郑楚光,柳朝晖.弥散介质的光学特性及辐射传热[M].武汉:华中科技大学出版社.1996:18-27
    [171]Schenker G. N., Keller B., Line-by-line calculation of the absorption of Infrared radiation by water vapor in a box-shaped enclosure filled with humid air[J]. International Journal of Heat and Mass Transfer.1995, 38(17):3127-3134
    [172]刘林华.辐射传递方程数值模拟的有限元和谱元法[M].北京:科学出版社.2008:16-29
    [173]尹雪梅,刘林华,李炳熙.气体与粒子混合物辐射特性宽带k分布模型[J].化工学报.2008,59(6):1354-1359
    [174]Marin O., Bukius R. O., A simplified wide band model of the cumulative distribution function for water vapor[J]. International Journal of Heat and Mass Transfer.1998,41(19):2877-2892
    [175]He J., Cheng W. L., Buckius R. O., Wide band cumulative absorption coefficient distribution model for overlapping absorption in H2O and CO2 mixtures[J]. International Journal of Heat and Mass Transfer.2008, 51(5):1115-1129
    [176]Irvine T. F., Hartnett J. P., Advances in Heat Transfer[M]. London:Academic Press.1976:116-192
    [177]He J., Buckius R. O., Improved band parameters for a simplified wide band cumulative absorption coefficient distribution model for H2O and CO2[J]. International Journal of Heat and Mass Transfer.2008,51(6):1467-1474
    [178]Chang H., Charalampopoulos T. T., Determination of the wavelength dependence of refractive indices of flame soot[J]. Proceeding of the Royal Society of London,1990,430(1880):577-591
    [179]Fiveland W. A., Discrete-Ordinates Methods for Radiative Heat Transfer in Isotropically and Anisotropically Scattering Media[J]. ASME Journal of Heat Transfer.1987,109(3):809-812
    [180]Rehfeldt S., Kuhr C., Ehmann M., et al. Modeling of radiative heat transfer in an oxyfuel atmosphere with a wide band model and a weighted sum of gray gases [A]. Proceeding of the 35 th International Technical Conference on Coal Utilization and Fuel Systems[C]. Clearwater, Florida, Coal Technology Association 2010:905-912
    [181]Portera R., Liu F., Pourkashanian M., et al. Evaluation of solution methods for radiative heat transfer in gaseous oxy-fuel combustion environments [J]. Journal of Quantitative Spectroscopy and Radiative Transfer.2010, 111(5):2084-2094
    [182]Robert J., Andersson K., Leckner B., et al. Models for gaseous radiative heat transfer applied to oxy-fuel conditions in boilers[J]. International Journal of Heat and Mass Transfer.2010,53(6):220-230
    [183]Soloyjov V. P., Webb B. W., An efficient method for modeling radiative transfer in multicomponent gas mixtures with soot[J]. ASME Journal of Heat Transfer.2001,123(3):450-457
    [184]Andersson K., Johansson R., Johnsson F., et al. Soot formation in propane-fired oxy-fuel flames[J]. Energy and Fuels.2008,22(3):1535-1541
    [185]Bahador M., Sunden B., Investigation on the effects of fly ash particles on thermal radiation in biomass fired boilers[J]. International Journal of Heat and Mass Transfer.2008,51(9):2411-2417

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700